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Abstract

Neural network language models, or
continuous-space language models (CSLMs),
have been shown to improve the performance
of statistical machine translation (SMT)
when they are used for reranking n-best
translations. However, CSLMs have not
been used in the first pass decoding of SMT,
because using CSLMs in decoding takes a lot
of time. In contrast, we propose a method
for converting CSLMs into back-off n-gram
language models (BNLMs) so that we can
use converted CSLMs in decoding. We show
that they outperform the original BNLMs and
are comparable with the traditional use of
CSLMs in reranking.

1 Introduction

Language models are important in natural language
processing tasks such as speech recognition and
statistical machine translation. Traditionally, back-
off n-gram language models (BNLMs) (Chen and
Goodman, 1996; Chen and Goodman, 1998;
Stolcke, 2002) are being widely used for these tasks.

Recently, neural network language models,
or continuous-space language models (CSLMs)
(Bengio et al., 2003; Schwenk, 2007; Le et al., 2011)
are being used in statistical machine translation
(SMT) (Schwenk et al., 2006; Son et al., 2010;
Schwenk et al., 2012; Son et al., 2012; Niehues
and Waibel, 2012). These works have shown that
CSLMs can improve the BLEU (Papineni et al.,
2002) scores of SMT when compared with BNLMs,
on the condition that the training data for language

modeling are the same size. However, in practice,
CSLMs have not been widely used in SMT.

One reason is that the computational costs of
training and using CSLMs are very high. Various
methods have been proposed to tackle the training
cost issues (Son et al., 2010; Schwenk et al., 2012;
Mikolov et al., 2011). However, there has been little
work on reducing using costs. Since the using costs
of CSLMs are very high, it is difficult to use CSLMs
in decoding directly.

A common approach in SMT using CSLMs is
the two pass approach, or n-best reranking. In this
approach, the first pass uses a BNLM in decoding
to produce an n-best list. Then, a CSLM is used to
rerank those n-best translations in the second pass.
(Schwenk et al., 2006; Son et al., 2010; Schwenk et
al., 2012; Son et al., 2012)

Another approach is using restricted Boltzmann
machines (RBMs) (Niehues and Waibel, 2012)
instead of using multi-layer neural networks
(Bengio et al., 2003; Schwenk, 2007; Le et al.,
2011). Since probability in a RBM can be calculated
very efficiently (Niehues and Waibel, 2012), they
can use the RBM language model in SMT decoding.
However, the RBM was just used in an adaptation of
SMT, not in a large SMT task, because the training
costs of RBMs are very high.

The last approach is using a BNLM to simulate
a CSLM (Deoras et al., 2011; Arsoy et al., 2013).
(Deoras et al., 2011) used a recurrent neural network
language model (RNNLM) to generate a large
amount of text, which was generated by sampling
words from the probability distributions calculated
by the RNNLM. Then, they trained the BNLM
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from the text using the interpolated Kneser-Ney
smoothing method. (Arsoy et al., 2013) converted
neural network language models of increasing order
to pruned back-off language models, using lower-
order models to constrain the n-grams allowed in
higher-order models.

Both of these methods were used in decoding for
speech recognition. These methods were applied
to not-so-large scale experiments (55 million (M)
words for training their BNLMs) (Arsoy et al.,
2013). In contrast, our method is applied to SMT
and can be used to improve a BNLM created from
746 M words by using a CSLM trained from 42 M
words.

Because BNLMs can be trained from much larger
corpora than those that can be used for training
CSLMs, improving a BNLM by using a CSLM
trained from a smaller corpus is very important.
Actually, a CSLM trained from a smaller corpus
can improve the BLEU scores of SMT if it is used
in the n-best reranking (Schwenk, 2010; Huang et
al., 2013). In contrast, we will demonstrate that a
BNLM simulating a CSLM can improve the BLEU
scores of SMT in the first pass decoding.

Our approach is as follows: (1) First, we train a
CSLM (Schwenk, 2007) from a corpus. (2) Second,
we also train a BNLM from the same corpus or
larger corpus. (3) Finally, we rewrite the probability
of each n-gram of the BNLM with that probability
calculated from the CSLM. We also re-normalize the
probabilities of the BNLM, then use the re-written
BNLM in SMT decoding.

In Section 2, we describe the BNLM and CSLM
(Schwenk, 2010) used for re-writing BNLMs. In
Section 3, we describe the method of converting
a CSLM into a BNLM. In Sections 4 and 5, we
evaluate our method and conclude.

2 Language Models

In this section, we will introduce the standard
BNLM and CSLM structure and probability
calculation.

2.1 Standard back-off ngram language model

A BNLM predicts the probability of a word wi given
its preceding n − 1 words hi = wi−1

i−n+1. But
it will suffer from data sparseness if the context,

hi, does not appear in the training data. So an
estimation by “backing-off” to models with smaller
histories is necessary. In the case of the modified
Kneser-Ney smoothing (Chen and Goodman, 1998),
the probability of wi given hi under a BNLM,
Pb(wi|hi), is:

Pb(wi|hi) = P̂b(wi|hi) + γ(hi)Pb(wi|wi−1
i−n+2) (1)

where P̂b(wi|hi) is a discounted probability and
γ(hi) is the back-off weight. A BNLM is used with
a CSLM as shown below.

2.2 CSLM structure and probability
calculation

The main structure of a CSLM using a multi-
layer neural network contains four layers: the input
layer projects all words in the context hi onto
the projection layer (the first hidden layer); the
second hidden layer and the output layer achieve the
non-liner probability estimation and calculate the
language model probability P (wi|hi) for the given
context. (Schwenk, 2007).

The CSLM calculates the probabilities of all
words in the vocabulary of the corpus given
the context at once. However, because the
computational complexity of calculating the
probabilities of all words is quite high, the CSLM is
only used to calculate the probabilities of a subset
of the whole vocabulary. This subset is called
a short-list, which consists of the most frequent
words in the vocabulary. The CSLM also calculates
the sum of the probabilities of all words not in the
short-list by assigning a neuron for that purpose.
The probabilities of other words not in the short-list
are obtained from a BNLM (Schwenk, 2007;
Schwenk, 2010).

Let wi, hi be the current word and history. The
CSLM with a BNLM calculates the probability of
wi given hi, P (wi|hi), as follows:

P (wi|hi) =

{
Pc(wi|hi)
1−Pc(o|hi)

Ps(hi) if wi ∈ short-list
Pb(wi|hi) otherwise

(2)

where Pc(·) is the probability calculated by the
CSLM, Pc(o|hi) is the probability of the neuron
for the words not in the short-list, Pb(·) is the
probability calculated by the BNLM as in Eq. 1,
and

Ps(hi) =
∑

v∈short-list
Pb(v|hi). (3)
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It can be considered that the CSLM redistributes
the probability mass of all words in the short-list.
This probability mass is calculated by using the
BNLM.

3 Conversion of CSLM into BNLM

As described in the introduction, we first train a
CSLM from a corpus. We also train a BNLM from
the same corpus or a larger corpus. Then, we rewrite
the probability of each ngram in the BNLM with the
probability calculated from the CSLM.

First, we use the probabilities of 1-grams in
the BNLM as they are. Next, we rewrite the
probabilities of n-grams (n=2,3,4,5) in the BNLM
with the probabilities calculated by using the n-gram
CSLM, respectively. Note that the n-gram CSLM
means that the length of its history is n − 1. Note
also that we only need to rewrite the probabilities
of n-grams ending with a word in the short-list.
Finally, we re-normalize the probabilities of the
BNLM using the SRILM’s ‘-renorm’ option.

When we rewrite a BNLM trained from a larger
corpus, the ngrams in the BNLM often contain
unknown words for the CSLM. In that case, we use
the probabilities in the BNLM as they are.

4 Experiments

4.1 Common settings
We used the patent data for the Chinese to English
patent translation subtask from the NTCIR-9 patent
translation task (Goto et al., 2011). The parallel
training, development, and test data consisted of 1
M, 2,000, and 2,000 sentences, respectively.

We followed the settings of the NTCIR-9 Chinese
to English translation baseline system (Goto et al.,
2011) except that we used various language models
to compare them. We used the MOSES phrase-
based SMT system (Koehn et al., 2003), together
with Giza++ (Och and Ney, 2003) for alignment and
MERT (Och, 2003) for tuning on the development
data. The translation performance was measured by
the case-insensitive BLEU scores on the tokenized
test data. We used mteval-v13a.pl for
calculating BLEU scores.1

1It is available at http://www.itl.nist.gov/iad/
mig/tests/mt/2009/

We used the 14 standard SMT features: five
translation model scores, one word penalty score,
seven distortion scores and one language model
score. Each of the different language models was
used to calculate the language model score.

As the baseline BNLM, we trained a 5-gram
BNLM with modified Kneser-Ney smoothing using
the English side of the 1 M sentences training data,
which consisted of 42 M words. We did not discard
any n-grams in training this model. That is, we
did not use count cutoffs. We call this BNLM as
BNLM42.

A 5-gram CSLM was trained on the same
1 M training sentences using the CSLM toolkit
(Schwenk, 2010). The settings for the CSLM
were: projection layer of dimension 256 for each
word, hidden layer of dimension 384 and output
layer (short-list) of dimension 8192, which were
recommended in the CSLM toolkit. We call this
CSLM CSLM42. CSLM42 used BNLM42 as the
background BNLM.

We also trained a larger 5-gram BNLM with
modified Kneser-Ney smoothing by adding
sentences from the 2005 US patent data distributed
in the NTCIR-8 patent translation task (Fujii et al.,
2010) to the 42 M words. The data consisted of
746 M words. We call this BNLM BNLM746. We
discarded 3,4,5-grams that occurred only once when
we created BNLM746.

Next, we re-wrote BNLM42 with CSLM42 by
using the method described in Section 3. This
re-written BNLM was interpolated with BNLM42.
The interpolation weight was determined by the grid
search. That is, we changed the interpolation weight
to 0.1, 0.3, 0.5, 0.7, 0.9 to create an interpolated
BNLM. Then we used that BNLM in the SMT
system to tune the weight parameters on the first
half of the development data. Next, we selected
the interpolation weight that obtained the highest
BLEU score on the second half of the development
data. After we selected the interpolation weight,
we applied MERT again to the 2,000 sentence
development data to tune the weight parameters.2

We call this BNLM CONV42. We also obtained
CONV746 by re-writing BNLM746 with CSLM42

2We aware that the interpolation weight might be
determined by minimizing the perplexity on the development
data. However, we opted to directly maximize the BLEU score.
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in the same way.
The vocabulary of these language models was the

same, which was extracted from the 1 M training
sentences.

4.2 Experimental results
Table 1 shows the percent BLEU scores on the test
data. The figures in the “1st pass” column show
the BLEU scores in the first pass decoding when
we changed the language model. The figures in the
“reranking” column show the BLEU scores when
we applied CSLM42 to rerank the 100-best lists for
the different language models. When we applied
CSLM42 for reranking, we added the CSLM42
score as the additional 15th feature. The weight
parameters were tuned by using Z-MERT (Zaidan,
2009).

LMs 1st pass rerank
BNLM42 31.60 32.44
CONV42 32.58 32.98

BNLM746 32.83 33.36
CONV746 33.22 33.54

Table 1: Comparison of BLEU scores

We also performed the paired bootstrap re-
sampling test (Koehn, 2004).3 We sampled 2000
samples for each significance test.

Table 2 shows the results of a statistical
significance test, in which the “1st” is short for
the “1st pass”. The marks indicate whether the
LM to the left of a mark is significantly better
than that above the mark at a certain level. (“≫”:
significantly better at α = 0.01, “>”: α = 0.05,
“−”: not significantly better at α = 0.05)

First, as shown in the tables, the reranking
by applying CSLM42 increased the BLEU scores
for all language models. This observation is in
accordance with those of previous work (Schwenk,
2010; Huang et al., 2013).

Second, the reranking results of BNLM42 (32.44)
were not better than those of the first pass of
BNLM746 (32.83). This indicates that if the
underlying BNLM is made from a small corpus, the
reranking using CSLM can not compensate for it.

3We used the code available at http://www.ark.cs.
cmu.edu/MT/.
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CONV746 (rerank) − ≫ ≫ ≫ ≫ ≫ ≫
BNLM746 (rerank) − ≫ > ≫ ≫ ≫
CONV746 (1st) ≫ − ≫ ≫ ≫
CONV42 (rerank) − ≫ ≫ ≫
BNLM746 (1st) − ≫ ≫
CONV42 (1st) − ≫
BNLM42 (rerank) ≫

Table 2: Significance tests for systems with different LMs

Third, CONV42 was better than BNLM42 for
both first-pass and reranking. This also holds in the
case of CONV746 and BNLM746. This indicated
that our conversion method improved the BNLMs,
even if the underlying BNLM was trained on a larger
corpus than that used for training the CSLM. As
described in the introduction, this is very important
because BNLMs can be trained from much larger
corpora than those that can be used for training
CSLMs. This observation has not been found in the
previous work.

In addition, the first-pass of CONV42 and
CONV746 (32.58 and 33.22) were comparable with
those of the reranking results of BNLM42 and
BNLM746 (32.44 and 33.36), respectively. That is,
there were no significant differences between these
results. This indicates that our conversion method
preserves the performance of the reranking using
CSLM.

5 Conclusion

We have proposed a method for converting CSLMs
into BNLMs. The method can be used to improve
a BNLM by using a CSLM trained from a smaller
corpus than that used for training the BNLM. We
have also shown that BNLMs created by our method
performs as good as the reranking using CSLMs.

Our future work is to compare our conversion
method with that of (Arsoy et al., 2013).4

4We aware that (Arsoy et al., 2013) compared their method
with the one that is identical with our method. However, the
experiments were conducted on a speech recognition task and
the scale of the experiment was not so large. Since we noticed
their work just before the submission of our paper, we did not
have time to compare their method with our method in SMT.
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