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Abstract w; or fixate atw;. Models are evaluated on record-
ings of human reading obtained using eye tracking
Nilsson and Nivre (2009) introduced a tree- devices. The supervised prediction problem that we
based model of persons’ eye movements in  consider in this paper, also uses eye tracking data for
reading. The individual variation between learning models of eye movement.

readers reportedly made application across Nilsson and Nivre (2009) first introduced this su-
readers impossible. While a tree-based model

seems plausible for eye movements, we show perviged learning task and used the Dundee corpus
that competitive results can be obtained with {0 train and evaluate a tree-based model, essentially
a linear CRF model. Increasing the inductive  treating the problem of predicting eye movements in
bias also makes learning across readers pos- reading as transition-based dependency parsing.
sible. In fact we observe next-to-no perfor- We follow Hara et al. (2012) in modeling only
mance drop when evaluating models trained  forward saccades andot regressions and refix-
on gaze records of multiple readers on new  4iiong  \While Nilsson and Nivre (2009) try to
readers. model a subset of regressions and refixations, they
do not evaluate this part of their model focusing
1 Introduction only on fixation accuracy and distribution accuracy,
i.e., they evaluate how well they prediet set
When we read a text, our gaze does not mowef fixation points rather than a sequence of points in
smoothly and continuously along its lines. Rathemrder. This enables us to model eye movements in
our eyes fixate at a word, then skip a few wordsieading as a sequential problem of determining the
to jump to a new fixation point. Such rapid eyelength of forward saccades, increasing the inductive
movements are calleshccades. Sometimes we even bias of our learning algorithm in a motivated way.
jump backwards. Backward saccades are caled Note that because we work with visual input, we
gressions. Gaze can be recorded using eye trackdo not tokenize our input in our experiments, i.e.,
ing devices (Starr and Rayner, 2001). Since eysunctuation does not count as input tokens.
movements in reading give us important information
about what readers find complicated in a text, anEixample Figure 1 presents an example sentence
what readers find completely predictable, predictingnd gaze records from the Dundee corpus. The
eye movements on new texts has many practical apundee corpus contains gaze records of 10 readers
plications in text-to-text generation and human comin total. Note that there is little consensus on what
puter interaction, for example. words are skipped. 5/10 readers skip the first word.
The problem of predicting eye movements inGenerally, closed class items (prepositions, copulae,
reading is, for a reader; and a given sequence of quantifiers) seem to be skipped more open, but we
word tokensws ... w,, to predict a set of fixation do see a lot of individual variation. While others for
pointsF' C {wy,...,wy,}, i.e., the fixation points of this reason have refrained from evaluation across
r;'s gaze. For each token;, the reader; may skip readers (Nilsson and Nivre, 2009; Hara et al., 2012),
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Sentence
Are  tourists enticed by these attractions threathening ir thevery  existence?

1 Fixate Fixate Fixate Skip  Fixate Fixate Fixate Skip  Fixate ixake
9 Fixate Fixate Fixate Fixate Fixate Fixate Fixate Fixate aféx  Fixate
T3 Fixate Fixate Fixate Fixate Fixate Fixate Fixate Fixate pSki Fixate
T4 Skip  Fixate Fixate  Skip Fixate Fixate Fixate Fixate Fixate ixake
5 Skip  Fixate Fixate  Skip Fixate Fixate Fixate Skip  Fixate &€&
r6 Skip  Fixate Fixate  Skip Fixate Fixate Fixate Fixate  Skip e
r7 Skip Fixate Fixate Fixate Fixate Fixate Fixate Fixate Fixat Fixate
T8 Fixate Fixate Fixate Fixate Fixate Fixate Fixate Fixate aféx  Fixate
T9 Fixate Fixate Fixate Fixate Fixate Fixate Fixate Fixate aféx  Fixate
T10 Skip Fixate  Fixate Fixate Fixate Fixate Fixate Fixate  Skip ixake
# skips 5 0 0 4 0 0 0 2 3 0

Figure 1: The gaze records of the three first readers for thiestintence in the Dundee corpus.

we show that our model predicts gaze be#tienoss  plexity of bi- and trigrams. The features relating to
readers than a previously proposed model (Nilssorscreen position were the most predictive ones.

and Nivre, 2009) does training and evaluating on the

same readers. A final observation is that fixations2 Our approach

are very frequent at the word level — in fact, even

skilled readers make 94 fixations per 100 word)sNe use linear CRFs to model eye movements in

(Starr and Rayner, 2001) — which motivates usinc&la.admg' We follow Harg etal. (2012) in using small
: ! : indow sizes (at most five words) for extracting fea-
Fi-score of skips as metric. We follow Nilsson an

; ) . ures. Rather than using word forms, POS, etc.,

Nivre (2009) in reporting word-level accuracy, but .
o . ! . . we use only word length and the log probability of
find it particularly interesting that the simple model I
) words — both known to correlate well with likeli-
proposed here outperforms previous models by a - N
. . hood of fixation, as well as fixation times (McDon-

large margin in E-score over skips.

ald and Shillcock, 2012; Kliegl et al., 2004; Rein-
old et al., 2012). The model thus reflects a hy-
Pthesis that eye movements are largely unaffected
Yy semantic content, that eye movements depend on
e physical properties and frequency of words, and

Related work Below we use a sequential model?
rather than a tree-based model to bias our mod
toward predicting forward saccades. Nilsson an

Nivre (2009), in contrast, present a more expressiv, . . .
. .that there is a sequential dependence between fixa-
tree-based model for modeling eye movements, with . )
ion times. Tabel 1 gives the complete set of fea-

some constraints on the search space. The transitiqrd—res We also evaluated using word forms and POS

based model uses consecutive classification rather \ data, but this did not lead to improve-

than structured prediction. The features used mther'rﬁents. There is evidence for the impact of mor-

model are very simple. In particular, they use usehology on eye movements (Liversedge and Blythe,

word lengths and frequencies, like us, as well 007; Bertram, 2011), but we did not incorporate

distances between tokens (important in a transitiorghis into our model. Finally, we did not incorporate

gzz:i?o:?del)’ and, finally, the history of prewousfaredictability of tokens, although this is also known

to correlate with fixation times (Kliegl et al., 2004).
Hara et al. (2012) use a linear CRF model for th v Tixation | (Klieg )

G . (2012 lexity f to capt
same problem, like us, but they consider a slightl)(h?sra etal. (2012) use perplexity features to capture

different problem, namely that of predicting eye . . , . ,
. . We use a publicly available implementation of lin-
movement when reading text on a specific screen. : .
. ar CRF$ with default parameterslg-regularized,
They therefore use screen position as a feature. [n 1)
addition, they use word forms, POS, various mea-

sures of surprise of word length, as well as per- ‘*nttps://code.google.com/p/cripp/
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3 Predicting a reader’'s eye movements fixations for new, previously unobserved readers. In-

_ _ , terestingly we can predict the fixations of new read-
In this experiment we consider exactly the same Selys petter than Nilsson and Nivre (2009) predict fix-

up as Nilsson and Nivre (2009) considered. In thgsqns when the training and test data are produced
Dundee corpus, we have gaze data for 10 persong, i same reader. The results are presented in Ta-
The corpus consists of 2,379 sentences, 56,212 i 4. |n fact our skip Fscore is actually better than
kens and 9,776 types. The gaza data was recordgy, r first experiments. As already mentioned, this
using a Dr. Bouis Oculometer Eyetracker, samplingog it can probably be improved by using a subset of

the position of the right eye every miIIisecpnd. We aaders or by weighting training examples, e.g., by
use texts 1-16 (1911 sentences) for training, 17mortance weighting (Shimodaira, 2000). For now,
18 (237 sentences) for development and 19-20 (2345 is left for future work.
sentences) for testing.

Results are presented in Table 2 and are slightly Discussion

better than Nilsson and Nivre (2009), mainly be—O tributi in th o del f
cause of better predictions of skips. Our error re- ur contributions in this paper are: (i) a model for

duction over their model in terms of; Fover skips predicting areaders eye moyements that 's compet-
is 9.4%. The baseline model used in Nilsson anfive t0 state-of-the-art, but simpler, with a smaller
Nivre (2009), the E-Z Reader (Reichle et al., 1998)§earch space than Nilsson and Nivre (2009) and a

obtained a fixation accuracy of 57.7% smaller feature model than Hara et al. (2012), (ii)
o showing that the simpler model is robust enough to

4 Predicting across readers model eye movements across readers, and finally,
(iif) showing that even better models can be obtained
Hara et al. (2012) consider the problem of learningraining on records from multiple readers.
from the concatenation of the gaze data from the 10 It is interesting that a model without lexical infor-
persons in the Dundee corpus, but they also evaltmation is more robust across readers. This suggests
ate on data from these persons. In our second ethat deep processing has little impact on eye move-
periment, we consider the more difficult problem ofments. See Starr and Rayner (2001) for discussion.
learning from one person’s gaze data, but evaluathe features used in this study are well-motivated
ing on gaze data from another test person. This isand account as well for the phenomena as previously
more realistic scenario if we want to use our modgbroposed models. It would be interesting to incor-
to predict eye movements in reading on anyone biorate morphological features and perplexity-based
our test persons. This has been argued to be impostatures, but we leave this for future work.

ble in previous work (Nilsson and Nivre, 2009; Hara ]
etal., 2012). 7 Conclusion

Our results are presented in Table 3. Interestinglyhis study is, to the best of our knowledge, the first
results are very robust across reader pairs. In fagh consider the problem of learning to predict eye
only in 4/10 cases do we get the best results trainingiovements in reading across readers. We present
on gaze data from the reader we evaluate on. Nofevery simple model of eye movements in read-
also that the readers seem to form two groups — (a. g that performs a little better than Nilsson and
h,i,])and (c, d, e, f, g) — that provide good trainingNivre (2009) in terms of fixation accuracy, evaluated
material for each other. Training on concatenategn one reader at a time, but predicts skips signifi-
data from all members in each group may be benefgantly better. The true merit of the approach, how-

cial. ever, is its ability to predict eye movements across
. ] readers. In fact, it predicts the eye movements of
5 Learning from multiple readers new readers better than Nilsson and Nivre (2009) do

In our final experiment, we learn from the gazeWhen the training and test data are produced by the

records of nine readers and evaluate on the tent?f’?‘me reader.
This is a realistic evaluation of our ability to predict
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Feature Description

WordLength {L_9,L_1, Lo, L1, Lo} The number of letters for a token

WordProbability {P_i, Py, P} The log probability of a word (rounded) as
given in the Dundee data

Table 1: Feature template

Fixation Accuracy Fixations (F1) Skips (F1)
Reader| N&N Model N&N Model | N&N Model
70.0 70.2 71.8 70.0 | 674 70.3
66.5 66.2 74.1 712 | 75.0 58.8
70.9 70.4 77.3 74.7 | 59.4 64.4
78.9 76.5 84.7 81.3 | 65.9 68.5
71.8 70.5 73.5 69.9 | 69.9 71.0
67.9 66.4 76.8 72.8 | 47.7 55.8
56.6 65.1 61.7 61.8 | 49.9 67.8
66.9 67.7 72.7 70.3 | 58.2 64.6
69.1 71.5 74.1 73.9 | 60.7 68.8
i 76.3 74.6 82.0 77.3 | 65.2 71.1

[average] 695 699 | 752 723 | 626 66.1 |

—TQ 0D Q0T W

Table 2: Comparison between NNO9 and our model.

train/test| a b c d e f g h i ]

- 67.2| 67.6| 71.5| 69.7| 63.4| 64.9| 66.9| 70.7| 72.6
67.7| - 70.1| 76.9| 68.0| 65.7| 62.9| 67.1| 69.1| 72.8
69.3| 67.3| - 76.5| 69.7| 65.1 | 64.3| 67.4| 71.0| 74.2
69.0| 67.2] 70.0| - 69.1| 65.1] 63.9| 67.3] 70.1| 73.9
70.1| 66.6| 67.5| 71.2| - 63.8 | 64.7] 66.9| 70.9| 72.6
66.5| 65.9| 69.1| 76.7| 66.5| - 62.4| 66.8| 68.6| 71.4
69.7| 67.1| 67.2| 69.5| 69.6| 61.6 | - 67.8| 70.3| 70.3
70.5| 67.5| 69.3| 74.7| 70.5| 64.2 | 64.5 - 70.8| 74.2
70.9| 68.1| 69.6| 74.4| 70.7| 640 | 64.6| 68.0| - 74.2
70.7|1 68.0| 695 74.7| 70.4| 64.1| 64.7]| 68.2| 71.5| -

_——0Q —+~0O QO T YD

Table 3: Results learning across readers. Bold-faced nighiedter than when training on same reader

Fixation Accuracy Fixations (F1) Skips (F1)
Reader| N&N Model N&N Model | N&N Model
70.0 70.3 71.8 72.1 | 674 68.2
66.5 67.9 74.1 70.6 | 75.0 64.6
70.9 69.8 77.3 73.1 | 59.4 65.6
78.9 75.5 84.7 79.5 | 65.9 69.5
71.8 70.6 73.5 72.0 | 69.9 69.0
67.9 64.5 76.8 68.6 | 47.7 59.2
56.6 64.7 61.7 65.0 | 49.9 64.5
66.9 68.1 72.7 70.9 | 58.2 64.8
69.1 71.3 74.6 74.1 | 60.7 67.9
i 76.3 74.2 82.0 77.2 | 65.2 70.4

| average| 69.5 69.7 | 752 723 | 626 664 |

- 0TKQ -0 QO TO

Table 4: Comparison of NNO9 and our cross-reader modelgdaim nine readers
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