
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pages 758–768,
Seattle, Washington, USA, 18-21 October 2013. c©2013 Association for Computational Linguistics

Optimal Incremental Parsing via Best-First Dynamic Programming∗

Kai Zhao1 James Cross1

1Graduate Center
City University of New York

365 Fifth Avenue, New York, NY 10016
{kzhao,jcross}@gc.cuny.edu

Liang Huang1,2

2Queens College
City University of New York

6530 Kissena Blvd, Queens, NY 11367
huang@cs.qc.cuny.edu

Abstract

We present the first provably optimal polyno-
mial time dynamic programming (DP) algo-
rithm for best-first shift-reduce parsing, which
applies the DP idea of Huang and Sagae
(2010) to the best-first parser of Sagae and
Lavie (2006) in a non-trivial way, reducing
the complexity of the latter from exponential
to polynomial. We prove the correctness of
our algorithm rigorously. Experiments con-
firm that DP leads to a significant speedup
on a probablistic best-first shift-reduce parser,
and makes exact search under such a model
tractable for the first time.

1 Introduction

Best-first parsing, such as A* parsing, makes con-
stituent parsing efficient, especially for bottom-up
CKY style parsing (Caraballo and Charniak, 1998;
Klein and Manning, 2003; Pauls and Klein, 2009).
Traditional CKY parsing performs cubic time exact
search over an exponentially large space. Best-first
parsing significantly speeds up by always preferring
to explore states with higher probabilities.

In terms of incremental parsing, Sagae and Lavie
(2006) is the first work to extend best-first search to
shift-reduce constituent parsing. Unlike other very
fast greedy parsers that produce suboptimal results,
this best-first parser still guarantees optimality but
requires exponential time for very long sentences
in the worst case, which is intractable in practice.
Because it needs to explore an exponentially large
space in the worst case, a bounded priority queue
becomes necessary to ensure limited parsing time.

∗This work is mainly supported by DARPA FA8750-13-2-
0041 (DEFT), a Google Faculty Research Award, and a PSC-
CUNY Award. In addition, we thank Kenji Sagae and the
anonymous reviewers for their constructive comments.

On the other hand, Huang and Sagae (2010) ex-
plore the idea of dynamic programming, which is
originated in bottom-up constituent parsing algo-
rithms like Earley (1970), but in a beam-based non
best-first parser. In each beam step, they enable
state merging in a style similar to the dynamic pro-
gramming in bottom-up constituent parsing, based
on an equivalence relation defined upon feature val-
ues. Although in theory they successfully reduced
the underlying deductive system to polynomial time
complexity, their merging method is limited in that
the state merging is only between two states in the
same beam step. This significantly reduces the num-
ber of possible merges, because: 1) there are only
a very limited number of states in the beam at the
same time; 2) a lot of states in the beam with differ-
ent steps cannot be merged.

We instead propose to combine the idea of dy-
namic programming with the best-first search frame-
work, and apply it in shift-reduce dependency pars-
ing. We merge states with the same features set
globally to further reduce the number of possible
states in the search graph. Thus, our DP best-first al-
gorithm is significantly faster than non-DP best-first
parsing, and, more importantly, it has a polynomial
time complexity even in the worst case.

We make the following contributions:

• theoretically, we formally prove that our DP
best-first parsing reaches optimality with poly-
nomial time complexity. This is the first time
that exact search under such a probabilistic
model becomes tractable.

• more interestingly, we reveal that our dynamic
programming over shift-reduce parsing is in
parallel with the bottom-up parsers, except that
we have an extra order constraint given by the
shift action to enforce left to right generation of

758

input w0 . . . wn−1

axiom 0 : 〈0, ε〉: 0

sh
` : 〈j, S〉 : c

`+ 1 : 〈j + 1, S|wj〉 : c+ scsh(j, S)
j < n

rex
` : 〈j, S|s1|s0〉 : c

`+ 1 : 〈j, S|s1
xs0〉 : c+ screx(j, S|s1|s0)

rey
` : 〈j, S|s1|s0〉 : c

`+ 1 : 〈j, S|s1
ys0〉 : c+ screy(j, S|s1|s0)

Figure 1: Deductive system of basic non-DP shift-reduce
parsing. Here ` is the step index (for beam search), S is
the stack, c is the score of the precedent, and sca(x) is
the score of action a from derivation x. See Figure 2 for
the DP version.

partial trees, which is analogous to Earley.

• practically, our DP best-first parser is only ∼2
times slower than a pure greedy parser, but is
guaranteed to reach optimality. In particular,
it is ∼20 times faster than a non-DP best-first
parser. With inexact search of bounded prior-
ity queue size, DP best-first search can reach
optimality with a significantly smaller priority
queue size bound, compared to non-DP best-
first parser.

Our system is based on a MaxEnt model to meet
the requirement from best-first search. We observe
that this locally trained model is not as strong as
global models like structured perceptron. With that
being said, our algorithm shows its own merits in
both theory and practice. To find a better model for
best-first search would be an interesting topic for fu-
ture work.

2 Shift-Reduce and Best-First Parsing

In this section we review the basics of shift-reduce
parsing, beam search, and the best-first shift-reduce
parsing algorithm of Sagae and Lavie (2006).

2.1 Shift-Reduce Parsing and Beam Search
Due to space constraints we will assume some ba-
sic familiarity with shift-reduce parsing; see Nivre
(2008) for details. Basically, shift-reduce parsing
(Aho and Ullman, 1972) performs a left-to-right

scan of the input sentence, and at each step, chooses
either to shift the next word onto the stack, or to re-
duce, i.e., combine the top two trees on stack, ei-
ther with left as the root or right as the root. This
scheme is often called “arc-standard” in the litera-
ture (Nivre, 2008), and is the basis of several state-
of-the-art parsers, e.g. Huang and Sagae (2010). See
Figure 1 for the deductive system of shift-reduce de-
pendency parsing.

To improve on strictly greedy search, shift-reduce
parsing is often enhanced with beam search (Zhang
and Clark, 2008), where b derivations develop in
parallel. At each step we extend the derivations in
the current beam by applying each of the three ac-
tions, and then choose the best b resulting deriva-
tions for the next step.

2.2 Best-First Shift-Reduce Parsing
Sagae and Lavie (2006) present the parsing prob-
lem as a search problem over a DAG, in which each
parser derivation is denoted as a node, and an edge
from node x to node y exists if and only if the corre-
sponding derivation y can be generated from deriva-
tion x by applying one action.

The best-first parsing algorithm is an applica-
tion of the Dijkstra algorithm over the DAG above,
where the score of each derivation is the priority.
Dijkstra algorithm requires the priority to satisfy
the superiority property, which means a descendant
derivation should never have a higher score than its
ancestors. This requirement can be easily satisfied if
we use a generative scoring model like PCFG. How-
ever, in practice we use a MaxEnt model. And we
use the negative log probability as the score to sat-
isfy the superiority:

x ≺ y ⇔ x.score < y.score,

where the order x ≺ y means derivation x has a
higher priority than y.1

The vanilla best-first parsing algorithm inher-
its the optimality directly from Dijkstra algorithm.
However, it explores exponentially many derivations
to reach the goal configuration in the worst case.
We propose a new method that has polynomial time
complexity even in the worst case.

1For simplicity we ignore the case when two derivations
have the same score. In practice we can choose either one of
the two derivations when they have the same score.

759

3 Dynamic Programming for Best-First
Shift-Reduce Parsing

3.1 Dynamic Programming Notations
The key innovation of this paper is to extend best-
first parsing with the “state-merging” method of dy-
namic programming described in Huang and Sagae
(2010). We start with describing a parsing configu-
ration as a non-DP derivation:

〈i, j, ...s2s1s0〉,

where ...s2s1s0 is the stack of partial trees, [i..j] is
the span of the top tree s0, and s1s2... are the re-
mainder of the trees on the stack.

The notation fk(sk) is used to indicate the features
used by the parser from the tree sk on the stack. Note
that the parser only extracts features from the top
d+1 trees on the stack.

Following Huang and Sagae (2010), f̃(x) of a
derivation x is called atomic features, defined as the
smallest set of features s.t.

f̃(i, j, ...s2s1s0) = f̃(i, j, ...s′2s
′
1s
′
0)

⇔ fk(sk) = fk(s
′
k), ∀k ∈ [0, d].

The atomic feature function f̃(·) defines an equiv-
alence relation ∼ in the space of derivations D:

〈i, j, ...s2s1s0〉 ∼ 〈i, j, ...s′2s′1s′0〉

⇔ f̃(i, j, ...s2s1s0) = f̃(i, j, ...s′2s
′
1s
′
0)

This implies that any derivations with the same
atomic features are in the same equivalence class,
and their behaviors are similar in shift and reduce.
We call each equivalence class a DP state. More
formally we define the space of all states S as:

S ∆
= D/∼.

Since only the top d+1 trees on the stack are used
in atomic features, we only need to remember the
necessary information and write the state as:

〈i, j, sd...s0〉.

We denote a derivation x’s state as [x]∼. In the rest
of this paper, we always denote derivations with let-
ters x, y, and z, and denote states with letters p, q,
and r.

The deductive system for dynamic programming
best-first parsing is adapted from Huang and Sagae
(2010). (See the left of Figure 2.) The difference is
that we do not distinguish the step index of a state.

This deductive system describes transitions be-
tween states. However, in practice we use one state’s
best derivation found so far to represent the state.
For each state p, we calculate the prefix score, p.pre,
which is the score of the derivation to reach this
state, and the inside score, p.ins , which is the score
of p’s top tree p.s0. In addition we denote the shift
score of state p as p.sh ∆

= scsh(p), and the reduce

score of state p as p.re ∆
= scre(p). Similarly we

have the prefix score, inside score, shift score, and
reduce score for a derivation.

With this deductive system we extend the concept
of reducible states with the following definitions:

The set of all states with which a state p can
legally reduce from the right is denoted L(p), or left
states. (see Figure 3 (a)) We call any state q ∈ L(p)
a left state of p. Thus each element of this set would
have the following form:

L(〈i, j, sd...s0〉)
∆
={〈h, i, s′d...s′0〉 |

fk(s
′
k−1)=fk(sk), ∀k ∈ [1, d]} (1)

in which the span of the “left” state’s top tree ends
where that of the “right” state’s top tree begins, and
fk(sk) = fk(s

′
k−1) for all k ∈ [1, d].

Similarly, the set of all states with which a state p
can legally reduce from the left is denoted R(p), or
right states. (see Figure 3 (a)) For two states p, q,

p ∈ L(q)⇔ q ∈ R(p)

3.2 Algorithm 1
We constrain the searching time with a polynomial
bound by transforming the original search graph
with exponentially many derivations into a graph
with polynomial number of states.

In Algorithm 1, we maintain a chart C and a prior-
ity queue Q , both of which are based on hash tables.

Chart C can be formally defined as a function
mapping from the space of states to the space of
derivations:

C : S → D.
In practice, we use the atomic features f̃(p) as the
signature of state p, since all derivations in the same
state share the same atomic features.

760

sh

state p:

〈 , j, sd...s0〉: (c,)

〈j, j + 1, sd−1...s0, wj〉 : (c+ ξ, 0)
j < n PRED

〈 , j, A→ α.Bβ〉 : (c,)

〈j, j, B → .γ〉 : (c+s, s)
(B → γ) ∈ G

rex

state q:

〈k, i, s′d...s′0〉: (c′, v′)
state p:

〈i, j, sd...s0〉: (, v)

〈k, j, s′d...s′1, s′0
x
s0〉 : (c′+v+δ, v′+v+δ)

q ∈ L(p) COMP
〈k, i, A→α.Bβ〉 : (c′, v′) 〈i, j, B〉 : (, v)

〈k, j, A→ αB.β〉 : (c′+v, v′+v)

Figure 2: Deductive systems for dynamic programming shift-reduce parsing (Huang and Sagae, 2010) (left, omitting
rey case), compared to weighted Earley parsing (Stolcke, 1995) (right). Here ξ = scsh(p), δ = scsh(q) + screx(p),
s = sc(B → γ), G is the set of CFG rules, 〈i, j, B〉 is a surrogate for any 〈i, j, B → γ.〉, and is a wildcard that
matches anything.

. . .

L(p)

sh sh
. . .

R(p)p

. . .

L(p)

sh
. . .

T (p)p

(a) L(p) andR(p) (b) T (p) = R(L(p))

Figure 3: Illustrations of left states L(p), right states R(p), and left corner states T (p). (a) Left states L(p) is the set
of states that can be reduced with p so that p.s0 will be the right child of the top tree of the result state. Right states
R(p) is the set of states that can be reduced with p so that p.s0 will be the left child of the top tree of the result state.
(b) Left corner states T (p) is the set of states that have the same reducibility as shifted state p, i.e., ∀p′ ∈ L(p), we
have ∀q ∈ T (p), q ∈ R(p′). In both (a) and (b), thick sh arrow means shifts from multiple states; thin sh arrow means
shift from a single state.

We use C [p] to retrieve the derivation in C that
is associated with state p. We sometimes abuse this
notation to say C [x] to retrieve the derivation asso-
ciated with signature f̃(x) for derivation x. This is
fine since we know derivation x’s state immediately
from the signature. We say state p ∈ C if f̃(p) is
associated with some derivation in C . A derivation
x ∈ C if C [x] = x. Chart C supports operation
PUSH, denoted as C [x]← x, which associate a sig-
nature f̃(x) with derivation x.

Priority queue Q is defined similarly as C , except
that it supports the operation POP that pops the high-
est priority item.

Following Stolcke (1995) and Nederhof (2003),
we use the prefix score and the inside score as the
priority in Q :

x ≺ y ⇔ x.pre < y.pre or

(x.pre = y.pre and x.ins < y.ins), (2)

Note that, for simplicity, we again ignore the spe-
cial case when two derivations have the same prefix
score and inside score. In practice for this case we

can pick either one of them. This will not affect the
correctness of our optimality proof in Section 5.1.

In the DP best-first parsing algorithm, once a
derivation x is popped from the priority queue Q ,
as usual we try to expand it with shift and reduce.
Note that both left and right reduces are between
the derivation x of state p = [x]∼ and an in-chart
derivation y of left state q = [y]∼ ∈ L(p) (Line 10
of Algorithm 1), as shown in the deductive system
(Figure 2). We call this kind of reduction left expan-
sion.

We further expand derivation x of state p with
some in-chart derivation z of state r s.t. p ∈ L(r),
i.e., r ∈ R(p) as in Figure 3 (a). (see Line 11 of
Algorithm 1.) Derivation z is in the chart because it
is the descendant of some other derivation that has
been explored before x. We call this kind of reduc-
tion right expansion.

Our reduction with L andR is inspired by Neder-
hof (2003) and Knuth (1977) algorithm, which will
be discussed in Section 4.

761

Algorithm 1 Best-First DP Shift-Reduce Parsing.

Let LC (x)
∆
= C [L([x]∼)] be in-chart derivations of

[x]∼’s left states
Let RC (x)

∆
= C [R(p)] be in-chart derivations of

[x]∼’s right states
1: function PARSE(w0 . . . wn−1)
2: C ← ∅ . empty chart
3: Q ← {INIT} . initial priority queue
4: while Q 6= ∅ do
5: x← POP(Q)
6: if GOAL(x) then return x . found best parse
7: if [x]∼ 6∈ C then
8: C [x]← x . add x to chart
9: SHIFT(x,Q)

10: REDUCE(LC (x), {x},Q) . left expansion
11: REDUCE({x},RC (x),Q) . right expansion
12: procedure SHIFT(x,Q)
13: TRYADD(sh(x),Q) . shift
14: procedure REDUCE(A,B,Q)
15: for (x, y) ∈ A×B do . try all possible pairs
16: TRYADD(rex(x, y),Q) . left reduce
17: TRYADD(rey(x, y),Q) . right reduce
18: function TRYADD(x, Q)
19: if [x]∼ 6∈ Q or x ≺ Q[x] then
20: Q[x]← x . insert x into Q or update Q[x]

3.3 Algorithm 2: Lazy Expansion
We further improve DP best-first parsing with lazy
expansion.

In Algorithm 2 we only show the parts that are
different from Algorithm 1.

Assume a shifted derivation x of state p is a direct
descendant from derivation x′ of state p′, then p ∈
R(p′), and we have:

∀ys.t . [y]∼ = q ∈ REDUCE({p′},R(p′)), x ≺ y

which is proved in Section 5.1.
More formally, we can conclude that

∀ys.t . [y]∼ = q ∈ REDUCE(L(p), T (p)), x ≺ y

where T (p) is the left corner states of shifted state
p, defined as

T (〈i, i+1, sd...s0〉)
∆
={〈i, h, s′d...s′0〉 |

fk(s
′
k)=fk(sk), ∀k ∈ [1, d]}

which represents the set of all states that have the
same reducibility as a shifted state p. In other words,

T (p) = R(L(p)),

Algorithm 2 Lazy Expansion of Algorithm 1.

Let TC (x)
∆
= C [T ([x]∼)] be in-chart derivations of

[x]∼’s left-corner states
1: function PARSE(w0 . . . wn−1)
2: C ← ∅ . empty chart
3: Q ← {INIT} . initial priority queue
4: while Q 6= ∅ do
5: x← POP(Q)
6: if GOAL(x) then return x . found best parse
7: if [x]∼ 6∈ C then
8: C [x]← x . add x to chart
9: SHIFT(x,Q)

10: REDUCE(x.lefts, {x},Q) . left expansion
11: else if x.action is sh then
12: REDUCE(x.lefts, TC (x),Q) . right expan.
13: procedure SHIFT(x,Q)
14: y ← sh(x)
15: y.lefts ← {x} . initialize lefts
16: TRYADD(y,Q)
17: function TRYADD(x, Q)
18: if [x]∼ ∈ Q then
19: if x.action is sh then . maintain lefts
20: y ← Q[x]
21: if x ≺ y then Q[x]← x
22: Q[x].lefts ← y.lefts ∪ x.lefts
23: else if x ≺ Q[x] then
24: Q[x]← x

25: else . x 6∈ Q
26: Q[x]← x

which is illustrated in Figure 3 (a). Intuitively, T (p)
is the set of states that have p’s top tree, p.s0, which
contains only one node, as the left corner.

Based on this observation, we can safely delay the
REDUCE({x},RC (x)) operation (Line 11 in Algo-
rithm 1), until the derivation x of a shifted state is
popped out from Q . This helps us eliminate unnec-
essary right expansion.

We can delay even more derivations by extending
the concept of left corner states to reduced states.
Note that for any two states p, q, if q’s top tree q.s0

has p’s top tree p.s0 as left corner, and p, q share the
same left states, then derivations of p should always
have higher priority than derivations of q. We can
further delay the generation of q’s derivations until
p’s derivations are popped out.2

2We did not implement this idea in experiments due to its
complexity.

762

4 Comparison with Best-First CKY and
Best-First Earley

4.1 Best-First CKY and Knuth Algorithm

Vanilla CKY parsing can be viewed as searching
over a hypergraph(Klein and Manning, 2005), where
a hyperedge points from two nodes x, y to one node
z, if x, y can form a new partial tree represented by
z. Best-first CKY performs best-first search over
the hypergraph, which is a special application of the
Knuth Algorithm (Knuth, 1977).

Non-DP best-first shift-reduce parsing can be
viewed as searching over a graph. In this graph, a
node represents a derivation. A node points to all its
possible descendants generated from shift and left
and right reduces. This graph is actually a tree with
exponentially many nodes.

DP best-first parsing enables state merging on
the previous graph. Now the nodes in the hyper-
graph are not derivations, but equivalence classes of
derivations, i.e., states. The number of nodes in the
hypergraph is no longer always exponentially many,
but depends on the equivalence function, which is
the atomic feature function f̃(·) in our algorithms.

DP best-first shift-reduce parsing is still a special
case of the Knuth algorithm. However, it is more dif-
ficult than best-first CKY parsing, because of the ex-
tra topological order constraints from shift actions.

4.2 Best-First Earley

DP best-first shift-reduce parsing is analogous to
weighted Earley (Earley, 1970; Stolcke, 1995), be-
cause: 1) in Earley the PRED rule generates states
similar to shifted states in shift-reduce parsing; and,
2) a newly completed state also needs to check all
possible left expansions and right expansions, simi-
lar to a state popped from the priority queue in Al-
gorithm 1. (see Figure 2)

Our Algorithm 2 exploits lazy expansion, which
reduces unnecessary expansions, and should be
more efficient than pure Earley.

5 Optimality and Polynomial Complexity

5.1 Proof of Optimality

We define a best derivation of state [x]∼ as a deriva-
tion x such that ∀y ∈ [x]∼, x � y.

Note that each state has a unique feature signa-
ture. We want to prove that Algorithm 1 actually fills
the chart by assigning a best derivation to its state.
Without loss of generality, we assume Algorithm 1
fills C with derivations in the following order:

x0, x1, x2, . . . , xm

where x0 is the initial derivation, xm is the first goal
derivation in the sequence, and C [xi] = xi, 0 ≤ i ≤
m. Denote the status of chart right after xk being
filled as Ck. Specially, we define C−1 = ∅

However, we do not have superiority as in non-DP
best-first parsing. Because we use a pair of prefix
score and inside score, (pre, ins), as priority (Equa-
tion 2) in the deductive system (Figure 2). We have
the following property as an alternative for superior-
ity:

Lemma 1. After derivation xk has been filled into
chart, ∀x s.t. x ∈ Q , and x is a best derivation
of state [x]∼, then x’s descendants can not have a
higher priority than xk.

Proof. Note that when xk pops out, x is still in Q ,
so xk � x. Assume z is x’s direct descendant.

• If z = sh(x) or z = re(x,), based on the de-
ductive system, x ≺ z, so xk � x ≺ z.

• If z = re(y, x), y ∈ L(x), assume z ≺ xk.

z.pre = y.pre + y.sh + x.ins + x.re

We can construct a new derivation x′ ∼ x by
appending x’s top tree, x.s0 to y’s stack, and

x′.pre = y.pre + y.sh + x.ins < z.pre

So x′ ≺ z ≺ xk � x, which contradicts that x
is a best derivation of its state.

With induction we can easily show that any descen-
dants of x can not have a higher priority than xk.

We can now derive:

Theorem 1 (Stepwise Completeness and Optimal-
ity). For any k, 0 ≤ k ≤ m, we have the following
two properties:

∀x ≺ xk, [x]∼ ∈ Ck−1 (Stepwise Completeness)

∀x ∼ xk, xk � x (Stepwise Optimality)

763

Proof. We prove by induction on k.

1. For k = 0, these two properties trivially hold.

2. Assume this theorem holds for k = 2, ..., i−1.
For k = i, we have:

a) [Proof for Stepwise Completeness]

(Proof by Contradiction) Assume ∃x ≺ xi

s.t. [x]∼ 6∈ Ci−1.Without loss of generality we
take a best derivation of state [x]∼ as x. x must
be derived from other best derivations only.
Consider this derivation transition hypergraph,
which starts at initial derivation x0 ∈ Ci−1, and
ends at x 6∈ Ci−1.

There must be a best derivation x′ in this tran-
sition hypergraph, s.t. all best parent deriva-
tion(s) of x′ are in Ci−1, but not x′.

If x′ is a reduced derivation, assume x′’s best
parent derivations are y ∈ Ci−1, z ∈ Ci−1.
Because y and z are best derivations, and they
are in Ci−1, from Stepwise Optimality on k =
1, ..., i− 1, y, z ∈ {x0, x1, . . . , xi−1}. From
Line 7-11 in Algorithm 1, x′ must have been
pushed into Q when the latter of y, z is popped.

If x′ is a shifted derivation, similarly x′ must
have been pushed into Q .

As x′ 6∈ Ci−1, x′ must still be in Q when xi is
popped. However, from Lemma 1, none of x′’s
descendants can have a higher priority than xi,
which contradicts x ≺ xi.

b) [Proof for Stepwise Optimality]

(Proof by Contradiction) Assume ∃x ∼ xi

s.t. x ≺ xi. From Stepwise Completeness on
k = 1, ..., i, x ∈ Ci−1, which means the state
[xi]∼ has already been assigned to x, contra-
dicting the premise that xi is pushed into chart.

Both of the two properties have very intuitive
meanings. Stepwise Optimality means Algorithm 1
only fills chart with a best derivation for each state.
Stepwise Completeness means every state that has
its best derivation better than best derivation pi must
have been filled before pi, this guarantees that the

rex

〈h′′, h
′

k...i

〉 : (c′, v′) 〈h′, h

i...j

〉 : (, v)

〈h′′, h

k...j

〉 : (c′ + v + λ, v′ + v + λ)

Figure 4: Example of shift-reduce with dynamic pro-
gramming: simulating an edge-factored model. GSS
is implicit here, and rey case omitted. Here λ =
scsh(h

′′, h′) + screx(h′, h).

global best goal derivation is captured by Algo-
rithm 1.

More formally we have:

Theorem 2 (Optimality of Algorithm 1). The first
goal derivation popped off the priority queue is the
optimal parse.

Proof. (Proof by Contradiction.) Assume ∃x, x is
the a goal derivation and x ≺ xm. Based on Step-
wise Completeness of Theorem 1, x ∈ Cm−1, thus x
has already been popped out, which contradicts that
xm is the first popped out goal derivation.

Furthermore, we can see our lazy expansion ver-
sion, i.e., Algorithm 2, is also optimal. The key ob-
servation is that we delay the reduction of derivation
x′ and a derivation of right states R([x′]∼) (Line 11
of Algorithm 1), until shifted derivation, x = sh(x′),
is popped out (Line 11 of Algorithm 2). However,
this delayed reduction will not generate any deriva-
tion y, s.t. y ≺ x, because, based on our deduc-
tive system (Figure 2), for any such kind of reduced
derivations y, y.pre = x′.pre+x′.sh+y.re+y.ins ,
while x.pre = x′.pre + x′.sh .

5.2 Analysis of Time and Space Complexity

Following Huang and Sagae (2010) we present the
complexity analysis for our DP best-first parsing.

Theorem 3. Dynamic programming best-first pars-
ing runs in worst-case polynomial time and space,
as long as the atomic features function satisfies:

• bounded: ∀ derivation x, |̃f(x)| is bounded by
a constant.

• monotonic:

764

– horizontal: ∀k, fk(s) = fk(t) ⇒
fk+1(s) = fk+1(t), for all possible trees
s, t.

– vertical: ∀k, fk(s
ys′) = fk(t

yt′) ⇒
fk(s) = fk(t) and fk(s

xs′) = fk(t
xt′)⇒

fk(s
′) = fk(t

′), for all possible trees s, s′,
t, t′.

In the above theorem, boundness means we can
only extract finite information from a derivation, so
that the atomic feature function f̃(·) can only dis-
tinguish a finite number of different states. Mono-
tonicity requires the feature representation fk sub-
sumes fk+1. This is necessary because we use the
features as signature to match all possible left states
and right states (Equation 1). Note that we add the
vertical monotonicity condition following the sug-
gestion from Kuhlmann et al. (2011), which fixes
a flaw in the original theorem of Huang and Sagae
(2010).

We use the edge-factored model (Eisner, 1996;
McDonald et al., 2005) with dynamic programming
described in Figure 4 as a concrete example for com-
plexity analysis. In the edge-factored model the fea-
ture set consists of only combinations of informa-
tion from the roots of the two top trees s1, s0, and
the queue. So the atomic feature function is

f̃(p) = (i, j, h(p.s1), h(p.s0))

where h(s) returns the head word index of tree s.
The deductive system for the edge-factored model

is in Figure 4. The time complexity for this deduc-
tive system is O(n6), because we have three head
indexes and three span indexes as free variables in
the exploration. Compared to the work of Huang
and Sagae (2010), we reduce the time complexity
from O(n7) to O(n6) because we do not need to
keep track of the number of the steps for a state.

6 Experiments

In experiments we compare our DP best-first parsing
with non-DP best-first parsing, pure greedy parsing,
and beam parser of Huang and Sagae (2010).

Our underlying MaxEnt model is trained on the
Penn Treebank (PTB) following the standard split:
Sections 02-21 as the training set and Section 22 as
the held-out set. We collect gold actions at differ-
ent parsing configurations as positive examples from

model score accuracy # states time
greedy −1.4303 90.08% 125.8 0.0055
beam∗ −1.3302 90.60% 869.6 0.0331
non-DP −1.3269 90.70% 4, 194.4 0.2622

DP −1.3269 90.70% 243.2 0.0132

Table 1: Dynamic programming best-first parsing reach
optimality faster. *: for beam search we use beam size of
8. (All above results are averaged over the held-out set.)

gold parses in PTB to train the MaxEnt model. We
use the feature set of Huang and Sagae (2010).

Furthermore, we reimplemented the beam parser
with DP of Huang and Sagae (2010) for compari-
son. The result of our implementation is consistent
with theirs. We reach 92.39% accuracy with struc-
tured perceptron. However, in experiments we still
use MaxEnt to make the comparison fair.

To compare the performance we measure two sets
of criteria: 1) the internal criteria consist of the
model score of the parsing result, and the number
of states explored; 2) the external criteria consist of
the unlabeled accuracy of the parsing result, and the
parsing time.

We perform our experiments on a computer with
two 3.1GHz 8-core CPUs (16 processors in total)
and 64GB RAM. Our implementation is in Python.

6.1 Search Quality & Speed

We first compare DP best-first parsing algorithm
with pure greedy parsing and non-DP best-first pars-
ing without any extra constraints.

The results are shown in Table 1. Best-first pars-
ing reaches an accuracy of 90.70% in the held-out
set. Since that the MaxEnt model is locally trained,
this accuracy is not as high as the best shift-reduce
parsers available now. However, this is sufficient for
our comparison, because we aim at improving the
search quality and efficiency of parsing.

Compared to greedy parsing, DP best-first pars-
ing reaches a significantly higher accuracy, with ∼2
times more parsing time. Given the extra time in
maintaining priority queue, this is consistent with
the internal criteria: DP best-first parsing reaches a
significantly higher model score, which is actually
optimal, exploring twice as many as states.

On the other hand, non-DP best-first parsing also
achieves the optimal model score and accuracy.

765

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 10 20 30 40 50 60 70

a
v
g

.
p

a
rs

in
g
 t

im
e
 (

s
e

c
s
)

sentence length

non-DP
DP

beam

Figure 5: DP best-first significantly reduces parsing time.
Beam parser (beam size 8) guarantees linear parsing time.
Non-DP best-first parser is fast for short sentences, but
the time grows exponentially with sentence length. DP
best-first parser is as fast as non-DP for short sentences,
but the time grows significantly slower.

However, it explores∼17 times more states than DP,
with an unbearable average time.

Furthermore, on average our DP best-first parsing
is significantly faster than the beam parser, because
most sentences are short.

Figure 5 explains the inefficiency of non-DP best-
first parsing. As the time complexity grows expo-
nentially with the sentence length, non-DP best-first
parsing takes an extremely long time for long sen-
tences. DP best-first search has a polynomial time
bound, which grows significantly slower.

In general DP best-first parsing manages to reach
optimality in tractable time with exact search. To
further investigate the potential of this DP best-
first parsing, we perform inexact search experiments
with bounded priority queue.

6.2 Parsing with Bounded Priority Queue

Bounded priority queue is a very practical choice
when we want to parse with only limited memory.

We bound the priority queue size at 1, 2, 5, 10,
20, 50, 100, 500, and 1000, and once the priority
queue size exceeds the bound, we discard the worst
one in the priority queue. The performances of non-
DP best-first parsing and DP best-first parsing are
illustrated in Figure 6 (a) (b).

Firstly, in Figure 6 (a), our DP best-first pars-
ing reaches the optimal model score with bound

50, while non-DP best-first parsing fails even with
bound 1000. Also, in average with bound 1000,
compared to non-DP, DP best-first only needs to ex-
plore less than half of the number of states.

Secondly, for external criteria in Figure 6 (b), both
algorithms reach accuracy of 90.70% in the end. In
speed, with bound 1000, DP best-first takes ∼1/3
time of non-DP to parse a sentence in average.

Lastly, we also compare to beam parser with beam
size 1, 2, 4, 8. Figure 6 (a) shows that beam parser
fails to reach the optimality, while exploring signif-
icantly more states. On the other hand, beam parser
also fails to reach an accuracy as high as best-first
parsers. (see Figure 6 (b))

6.3 Simulating the Edge-Factored Model

We further explore the potential of DP best-first
parsing with the edge-factored model.

The simplified feature set of the edge-factored
model reduces the number of possible states, which
means more state-merging in the search graph. We
expect more significant improvement from our DP
best-first parsing in speed and number of explored
states.

Experiment results confirms this. In Figure 6 (c)
(d), curves of DP best-first diverge from non-DP
faster than standard model (Figure 6 (a) (b)).

7 Conclusions and Future Work

We have presented a dynamic programming algo-
rithm for best-first shift-reduce parsing which is
guaranteed to return the optimal solution in poly-
nomial time. This algorithm is related to best-first
Earley parsing, and is more sophisticated than best-
first CKY. Experiments have shown convincingly
that our algorithm leads to significant speedup over
the non-dynamic programming baseline, and makes
exact search tractable for the first-time under this
model.

For future work we would like to improve the per-
formance of the probabilistic models that is required
by the best-first search. We are also interested in
exploring A* heuristics to further speed up our DP
best-first parsing.

766

-1.45

-1.4

-1.35

-1.3

 0 100 200 300 400 500 600 700 800 900

a
v
g
.
m

o
d
e
l
s
c
o
re

 o
n
 h

e
ld

-o
u
t

of states

bound=50 bound=1000

beam=8

non-DP

DP

beam

-1.3269
 90

 90.2

 90.4

 90.6

 90.8

 0 0.01 0.02 0.03 0.04 0.05

a
v
g
.
a
c
c
u
ra

c
y
 (

%
)

o
n
 h

e
ld

-o
u
t

parsing time (secs)

bound=50

bound=1000

beam=8

non-DP

DP

beam

90.70

(a) search quality vs. # of states (b) parsing accuracy vs. time

-1.4

-1.36

-1.32

-1.28

-1.24

 0 100 200 300 400 500 600 700 800 900

a
v
g
.
m

o
d
e
l
s
c
o
re

 o
n
 h

e
ld

-o
u
t

of states

bound=20 bound=500 beam=8

non-DP

DP

beam

-1.2565
 89.8

 90

 90.2

 0 0.01 0.02 0.03 0.04 0.05

a
v
g
.
a
c
c
u
ra

c
y
 (

%
)

o
n
 h

e
ld

-o
u
t

parsing time (secs)

bound=20 bound=500

beam=8

non-DP

DP

beam

90.25

(c) search quality vs. # of states (edge-factored) (d) parsing accuracy vs. time (edge-factored)

Figure 6: Parsing performance comparison between DP and non-DP. (a) (b) Standard model with features of Huang
and Sagae (2010). (c) (d) Simulating edge-factored model with reduced feature set based on McDonald et al. (2005).
Note that to implement bounded priority queue we use two priority queues to keep track of the worst elements, which
introduces extra overhead, so that our bounded parser is slower than the unbounded version for large priority queue
size bound.

767

References
Alfred V. Aho and Jeffrey D. Ullman. 1972. The The-

ory of Parsing, Translation, and Compiling, volume I:
Parsing of Series in Automatic Computation. Prentice
Hall, Englewood Cliffs, New Jersey.

Sharon A Caraballo and Eugene Charniak. 1998. New
figures of merit for best-first probabilistic chart pars-
ing. Computational Linguistics, 24(2):275–298.

Jay Earley. 1970. An efficient context-free parsing algo-
rithm. Communications of the ACM, 13(2):94–102.

Jason Eisner. 1996. Three new probabilistic models for
dependency parsing: An exploration. In Proceedings
of COLING.

Liang Huang and Kenji Sagae. 2010. Dynamic program-
ming for linear-time incremental parsing. In Proceed-
ings of ACL 2010.

Dan Klein and Christopher D Manning. 2003. A* pars-
ing: Fast exact Viterbi parse selection. In Proceedings
of HLT-NAACL.

Dan Klein and Christopher D Manning. 2005. Pars-
ing and hypergraphs. In New developments in parsing
technology, pages 351–372. Springer.

Donald Knuth. 1977. A generalization of Dijkstra’s al-
gorithm. Information Processing Letters, 6(1).

Marco Kuhlmann, Carlos Gómez-Rodrı́guez, and Gior-
gio Satta. 2011. Dynamic programming algorithms
for transition-based dependency parsers. In Proceed-
ings of ACL.

Ryan McDonald, Koby Crammer, and Fernando Pereira.
2005. Online large-margin training of dependency
parsers. In Proceedings of the 43rd ACL.

Mark-Jan Nederhof. 2003. Weighted deductive pars-
ing and Knuth’s algorithm. Computational Linguis-
tics, pages 135–143.

Joakim Nivre. 2008. Algorithms for deterministic incre-
mental dependency parsing. Computational Linguis-
tics, 34(4):513–553.

Adam Pauls and Dan Klein. 2009. Hierarchical search
for parsing. In Proceedings of Human Language
Technologies: The 2009 Annual Conference of the
North American Chapter of the Association for Com-
putational Linguistics, pages 557–565. Association for
Computational Linguistics.

Kenji Sagae and Alon Lavie. 2006. A best-first proba-
bilistic shift-reduce parser. In Proceedings of ACL.

Andreas Stolcke. 1995. An efficient probabilistic
context-free parsing algorithm that computes prefix
probabilities. Computational Linguistics, 21(2):165–
201.

Yue Zhang and Stephen Clark. 2008. A tale of
two parsers: investigating and combining graph-based
and transition-based dependency parsing using beam-
search. In Proceedings of EMNLP.

768

