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Abstract

We present a novel vector space model for se-
mantic co-compositionality. Inspired by Gen-
erative Lexicon Theory (Pustejovsky, 1995),
our goal is a compositional model where
both predicate and argument are allowed to
modify each others’ meaning representations
while generating the overall semantics. This
readily addresses some major challenges with
current vector space models, notably the pol-
ysemy issue and the use of one represen-
tation per word type. We implement co-
compositionality using prototype projections
on predicates/arguments and show that this
is effective in adapting their word represen-
tations. We further cast the model as a
neural network and propose an unsupervised
algorithm to jointly train word representations
with co-compositionality. The model achieves
the best result to date (p = 0.47) on the
semantic similarity task of transitive verbs
(Grefenstette and Sadrzadeh, 2011).

1 Introduction

Vector space models of words have been very
successful in capturing the semantic and syntactic
characteristics of individual lexical items (Turney
and Pantel, 2010). Much research has addressed
the question of how to construct individual word
representations, for example distributional models
(Mitchell and Lapata, 2010) and neural models
(Collobert and Weston, 2008). These word repre-
sentations are used in various natural language pro-
cessing (NLP) tasks such as part-of-speech tagging,
chunking, named entity recognition, and semantic
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Figure 1: Here, we capture the semantics of run in run
company by projecting the original word representation
of run to the prototype space of company (and vice versa).

role labeling (Turian et al., 2010; Collobert et al.,
2011).

Recently, modeling of semantic compositionality
(Frege, 1892) in vector space has emerged as another
important line of research (Mitchell and Lapata,
2008; Mitchell and Lapata, 2010; Baroni and Zam-
parelli, 2010; Socher et al., 2012; Grefenstette and
Sadrzadeh, 2011; Van de Cruys et al., 2013). The
goal is to formulate how individual word represen-
tations ought to be combined to achieve phrasal or
sentential semantics.

The main questions for semantic compositionality
that we are concerned with are: (1) how can poly-
semy be handled by a single vector representation
per word type, learned by either a distributional or
neural model, and (2) how does composition resolve
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these ambiguities. To this end, we are inspired by
the idea of type coercion and co-compositionality
in Generative Lexicon Theory (Pustejovsky, 1995).
Co-compositionality advocates that instead of a
predicate-argument view of composition, both pred-
icate and argument influence/coerce each other to
generate the overall meaning. For example, consider
a polysemous word like run:

e (a) He runs the company.
e (b) He runs the marathon.

Run may have several senses, but the prototypical
verbs that select for company differ from those
that select for marathon, and thus the ambiguity
at the word level is resolved at the sentence level.
The same is true for the other direction, where the
predicate also coerces meaning to the argument to
fit expectation.

We believe that models for semantic com-
position ought to incorporate elements of co-
compositionality. We propose such a model here,
using what we call prototype projections. For each
predicate, we transform its vector representation by
projecting it into a latent space that is prototypical
of its argument. This projection is performed anal-
ogously for each argument as well, and the final
meaning is computed by composition of these trans-
formed vectors (Figure 1). In addition, the model is
cast as a neural network where word representations
could be re-trained or fine-tuned.!

Our contributions are two-fold:

1. We propose a novel model for semantic co-
compositionality. This model, based on
prototype projections, is easy to implement
and achieves state-of-the-art performance in
the sentence similarity dataset developed by
Grefenstette and Sadrzadeh (2011).

2. Our results empirically confirm that existing
word representations (eg., SDS and NLM in
Section 2) are sufficiently effective at capturing

"While we are inspired by co-compositionality, it is impor-
tant to note that our model does not implement qualia structure
and other important components of Generative Lexicon Theory.
We operate within the vector space model of distributional
semantics, so these ideas are implemented with matrix algebra,
which is a natural fit with neural networks.
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polysemy, as long as we have the proper mech-
anism to tease out the proper sense during com-
position. We further propose an unsupervised
neural network training algorithm that jointly
fine-tunes the word representations within the
co-composition model, resulting in even better
performance on the sentence similarity task.

We would like to emphasize the second contribu-
tion especially. Semantics research is divided in two
strands, one focusing on learning word represen-
tations without consideration for compositionality,
and the other focusing on compositional semantics
using the representations only as an input. But issues
are actually related from the linguistics perspective,
and even more so if we adopt a Generative Lexicon
perspective.  Our neural network model bridges
these two strands of research by modeling co-
compositionality and learning word representations
simultaneously. We note that methods using context
effects have been explored by Erk and Pad6 (2008;
2009) and Thater et al. (2010; 2011), but to the
best of our knowledge, ours is the first model to
perform co-compositionality and learning of word
representations jointly.

In the following, we first provide background to
the word representations employed here (Section 2).
We describe the model for co-compositionality in
Section 3 and the corresponding neural network in
Section 4. Evaluation and experiments are presented
in Sections 5 and 6. Finally, we end with related
work (Section 7) and conclusions (Section 8).

2  Word Vector Representations

2.1 Simple Distributional Semantic space
(SDS) word vectors

Word meaning is often represented in a high di-
mensional space, where each element corresponds to
some contextual element in which the word is found.
Mitchell and Lapata (2010) present a co-occurrence-
based semantic space called Simple Distributional
Semantic space (SDS). Their SDS model uses a con-
text window of five words on either side of the target
word and 2,000 vector components, representing the
most frequent context words (excluding a list of stop
words). These components v;(t) were set to the
ratio of the probability of the context word given the



target word to the probability of the context word
overall:

_pleilt)  frege, X fregiotal
i(t) = =
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where freqc, t, freqiotal, freq: and fregq., are the
frequencies of the context word c¢; with the target
word ¢, the total count of all word tokens, the
frequency of the target word ¢, and the frequency
of the context word c;, respectively.

2.2 Neural Language Model (NLM) word
embeddings

Another popular way to learn word representations
is based on the Neural Language Model (NLM)
(Bengio et al., 2003). In comparison with SDS,
NLM tend to be low-dimensional (e.g. 50 dimen-
sions) but employ dense features. These dense
feature vectors are usually called word embeddings,
and it has been shown that such vectors can cap-
ture interesting linear relationships, such as king —
man + woman =~ queen (Mikolov et al., 2013).
In this work, we adopt the model by Collobert
and Weston (2008). The idea is to construct a
neural network based on word sequences, where
one outputs high scores for n-grams that occur in a
large unlabeled corpus and low scores for nonsense
n-grams where one word is replaced by a random
word. This word representation with NLM has been
used to good effect, for example in (Turian et al.,
2010; Collobert et al., 2011; Huang et al., 2012)
where induced word representations are used with
sophisticated features to improve performance in
various NLP tasks.

Specifically, we first represent the word sequence
as a vector x = [d(w1);d(w2);. . .;d(wy,)], where
w; is 4y, word in the sequence, m is the win-
dow size, d(w) is the vector representation of
word w (an n-dimensional column vector) and
[d(w1);d(w2);...;d(wy)] is the concatenation of
word vectors as an input of neural network. Second,
we compute the score of the sequence,

score(x) = s1 (tanh(Wx + b)) )
where W e R" (M) and s € R are the first
and second layer weights of the neural network,
and b € R” is the bias unit of hidden layer. The
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superscript T represents transposition, and tanh is
applied element-wise. We also create a corrupted
sequence X, = [d(w1);d(w2);...;d(wy,")] where
wy,’ is chosen randomly from the vocabulary. We
compute the score of this implicit negative sequence
X, with the same neural network, score(x.) =
sT(tanh(Wx. + b)). Finally, we get the cost
function of this training algorithm as follow.

J = max(0,1 — score(x) + score(x.)) 3)
In order to minimize this cost function, we optimize
the parameters 6 = (s, W, b, x) via backpropagation
with stochastic gradient descent (SGD).

3 The Model

3.1 Prototype Projection

Generative Lexicon Theory (Pustejovsky, 1995)
makes a distinction between accidental polysemy
(homonyms, e.g. bank as financial institution vs.
as river side) and logical polysemy (e.g. figure and
ground meanings of door). Our model handles both
cases using the concept of projection to latent proto-
type space. The fundamental idea is that for each
word w and a syntactic/semantic (binary) relation
R (such as verb-object relation), w has a set of
prototype words with which it frequently occurs in
relation R. For example, if w is a word company,
and R is the object-verb relation, prototype words
should include start, build, and buy (Figure 1).
For each word-relation pair, we pre-compute the
latent semantic subspace spanned by these prototype
words.

Later, when we encounter a phrase expressing a
relation R between two words w1 and wo, each word
is first projected onto a latent subspace determined
by the other word and relation R. The projection
operation shifts the meaning of individual words in
accordance with context, and through this operation
we realize coercion/co-composition. And finally, the
meaning of the phrase is computed from the two
projected points in the semantic space.

Let us describe how to compute the latent sub-
space associated with a word wg and a relation R.
First, we collect from a corpus a set of prototype
words that occur frequently in relation R with target
word wg. So for example in Figure 1, if wy =



’ verb \ object

landmark H similarity(verb, landmark) \ similarity(projected verb, landmark) ‘

run | company | operate 0.40 0.70
meet | criterion satisfy 0.49 0.71
spell name write 0.04 0.50

Table 1: Examples of verb-object pairs. Original verb and landmark verb similarity, prototype projected verb and
landmark verb similarity, as measure by cosine using Collobert and Weston’s word embeddings. Meet has a abstract
meaning itself, but after prototype projection with matrix constructed by word vectors of W ( VerbOf, criterion), meet

is more close to meaning of satisfy.

company, and R = VerbOf is the object-verb

relation,
W (VerbOf, company) = {start, build, . . . ,buy}.

Now let W (R,wg) = {wi,wa, -, wy} be
the m prototype words we collected, and let d(w)
denote the n-dimensional (column) vector represen-
tation of word w (either by SDS or NLM representa-
tion). We make an m x n matrix C(g ) by stacking
the prototype word vectors, i.e.,

C(R,wo) = [d(w1),d(wa), - - ad(wm)]T “4)

and then apply Singular Value Decomposition
(SVD) to extract the latent space from this matrix:

~ T
Crwo) ® UrZk V. 5)
word vector dimension n k k n
word | (@@ - @ e ©0 00 o
word, . |00 00| 00 --@
. ~ m . T
: : 2, v,
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Figure 2: Graphical representation of SVD in our model.

Figure 2 shows the graphical representation of
this matrix factorization. In NLP tasks, SVD is
often applied to a term-document matrix, but in our
model, we apply SVD to the matrix consisting of
word vectors.

Intuitively, EkVZ represents the latent sub-
space formed by prototypical words W (R, wy) =
{wy,wa, -+ ,wy,}. We call this matrix the proto-
type space of word wq with respect to relation R.
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Note that the matrix of orthogonal projection
onto this prototype space is given by P (g ., =
(2xVD)T(Z,V]). Hence, when we observe a rela-
tion R(wp,w), the projected representation of word
w in this context is computed by Prpjp, ) (w)
defined as follows:

PIPJ(R,uwe) (W) = P (R d(w). (6)

Table 1 shows several examples of how meanings
change after prototype projection using word em-
beddings of Collobert and Weston (2008).2

3.2 Co-Compositionality

In order to model co-compositionality, we apply
prototype projection to both the verb and the object.
In particular, suppose verb is w, and object is w,,
C (Verbof.w,) 18 used to project wy and Copjof,uw,)
is used to project w,. The vector that represents
the overall meaning of verb-object with prototype
projection is computed by:

cocomp(wy, w,) =

f (prpj(VerbOf,wo) (wy), PTPJ(0bjof,w,) (wo)) (7

Function f can be a compositional computation like
simple addition or element-wise multiplication of
two vectors. This is graphically shown in Figure 1.

4 Unsupervised Learning of
Co-Compositionality

In this section, we propose a new neural language
model that learns word representations while jointly
accounting for compositional semantics. One cen-
tral assumption of our work (and many other works
in compositional semantics) is that a single vector

2ronan.collobert.com/senna/
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Figure 3: Compositional Neural Language Model (C-
NLM).

per word type sufficiently represents the multiple
meanings and usage patterns of a word.> That
means that for a polysemous word, its word vector
actually represents an aggregation of the distinctly
different contexts it occurs in. We will show that
such an assumption is quite reasonable under our
model, since the prototype projections successfully
tease out the proper semantics from these aggregate
representations.

However, it is natural to wonder whether one
can do better if one incorporates the compositional
model into the training of the word representations
in the first place. To do so, we formulate a nov-
el model called Compositional Neural Language
Model (Section 4.1). This model is a combination
of an unsupervised training algorithm with basic
compositionality (addition/multiplications). Then,
we extend this model with the projection idea in
section 3.2 to formulate a Co-Compositional Neural
Language Model (Section 4.2).

4.1 Compositional Neural Language Model
(C-NLM)

Compositional Neural Language Model (C-NLM)
is a combination of a word representation learning
method and compositional rule. In contrast to other
compositional models based on machine learning,
our model has no complex parameters for model-
ing composition. Composition is modeled using
straightforward vector addition/multiplications; in-
stead, what is learned is the word representation.
Figure 3 shows the C-NLM. The learning al-
gorithm is unsupervised, and works by artificially
3There are works on multiple representations, e.g.,

(Reisinger and Mooney, 2010); we focus on single represen-
tation here.
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Figure 4: Co-Compositional Neural Language Model
(CoC-NLM) is C-NLM with prototype projection.

generating negative examples in a fashion analogous
to the NLM learning algorithm of (Collobert and
Weston, 2008) and contrastive estimation (Smith
and FEisner, 2005). First, given some initial word
representations and raw sentences, we compute the
compositional vector with function f (in this sec-
tion, we will assume that we will be using the
addition operator). Second, in order to obtain the
score of compositional vector, we compute the dot
product with vector s € R" (n is the dimension of
the word vector space): verb vector v = d(w, ) and
object vector o = d(wy).

®)

score(v,0) = st f(v,0) =sT(v+o0)

We also create a corrupted pair by substituting a ran-
dom verb wyep’. The cost function J = max (0,1 —
score(v,0) + score(ve,0)), where v, is the word
vector of wyerp', encourages that the score of correct
pair is higher than the score of the corrupt pair. Let
z = v + o, our model parameters are § = (s, z, V).
The optimization is divided into two steps:

1. Optimize s and z via SGD.

2. Let z,¢y be the updated z via step 1. The new
verb vector vy, trained within additive composi-
tionality is just Ve, = Znew — 0. Note that if we
also want to optimize o, we may want to also corrupt
the object and run SGD in step 2 as well.

4.2 Co-Compositional Neural Language Model
(CoC-NLM)

We now add prototype projection into C-NLM,
making our final model: Co-Compositional Neural



Language Model (CoC-NLM). We define the score
function as dot product of s and additional vector of
prototype projected vectors (Figure 4). Let Py, =

P (vervot,w,) and Pyers = P objofw,)

SCOTG(V7 0) = ST(Poij + Pverbo)‘ &)
Let x = Pyv,y = Pyepo and z = x + y.
Our model parameters are § = (s,z,v). The

optimization algorithm of CoC-NLM is divided into
three steps like C-NLM. First, we optimize s and
z. Second, the projected verb vector is updated
as Xpew = Znew — Y. Finally we optimize v to
minimize the Euclidean distance between X;,,, and
Py v, where A is a regularization hyper-parameter:

1 A
J(v) = §\|Xnew — POijH2 + §VTV (10)

5 Evaluation

5.1 Dataset

In order to evaluate the performance of our new
co-compositional model with prototype projection
and word representation learning algorithm, we
make use of the disambiguation task of transitive
sentences developed by Grefenstette and Sadrzadeh
(2011). This is an extension of the two words
phrase similarity task defined in Mitchell and Lapata
(2008), and constructed according to similar guide-
lines. The dataset consists of similarity judgments
between a landmark verb and a triple consisting of
a transitive target verb, subject and object extracted
from the BNC corpus. Human judges give scores
between 1 to 7, with higher scores implying higher
semantic similarity. For example, Table 2 shows
some examples from the data: we see that the verb
meet with subject system and object criterion is
judged similar to the landmark verb satisfy but not
visit. The dataset contains a total of 2500 similarity
judgements, provided by 25 participants.* The
task is to have the model produce a score for each
pair of landmark verb and verb-subject-object triple.
Models are evaluated by computing the Spearman’s
p correlation between its similarity scores and that
of the human judgments.

‘http://www.cs.ox.ac.uk/
people/edward.grefenstette/
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| verb | subj obj landmark | sim |
meet | system | criterion satisfy 6
meet | system | criterion visit 1
write | student | name spell 7
write | student | paper spell 2

Table 2: Examples from the disambiguation task de-
veloped by Grefenstette and Sadrzadeh (2011). Human
judges give scores between 1 to 7, with higher scores
implying higher semantic similarity. Verb meet with
subject system and object criterion is judged similar to
the landmark verb satisfy but not visit.

5.2 Baselines

We compare our model against multiple baselines
for semantic compositionality:

1. Mitchell and Lapata’s (2008) additive and
element-wise multiplicative model as simplest
baselines.

2. Grefenstette and Sadrzadeh’s (2011) model
based on the abstract categorical framework
(Coecke et al., 2010). This model computes
the outer product of the subject and object
vector, the outer product of the verb vector
with itself, and then the element-wise product
of both results.

3. Erk and Padé’s (2008) model, which adapts the
word vectors based on context and is the most
similar in terms of motivation to ours.

4. Van de Cruy et al. (2013) multi-way interaction
model based on matrix factorization. This
achieves the best result for this task to date.

A detailed explanation of these models will be
provided in Section 7. For the underlying word rep-
resentations, we experiment with sparse 2000-dim
SDS and dense 50-dim NLM. These are provided
by Blacoe and Lapata (2012)° and trained on the
British National Corpus (BNC). We are interested
in knowing how sensitive each model is to the
underlying word representation. In general, this is
a challenging task: the upper-bound of p = 0.62 is
the inter-annotator agreement.

Shttp://homepages.inf.ed.ac.uk/
s1066731/index.php?page=resources



5.3 Implementation details

In terms of implementation detail, our model and our
re-implementation of Erk and Pado’s model make
use of the ukWaC corpus (Baroni et al., 2009).° This
corpus is a two billion word corpus automatically
harvested from the web and parsed by the Malt-
Parser (Nivre et al., 2006). We use ukWaC corpus
to collect W (VerbOf, w,) and W (ObjOf, w,) for
prototype projections. We also extract about 5000
verb-object pairs that relevant for testdata from this
corpus to train our neural network learning algorith-
m. In our co-compositional model, the contribution
ratio of SVD is set to 80% (i.e. automatically
fixing k£ in SVD to include 80% of the top singular
values). We set the number of prototype vectors
to be m = 20, where W (VerbOf,w,) is filtered
with high frequency words and W (ObjOf, w,) is
filtered with both high frequency and high similarity
words. In our model, we output the scores for SVO
triple sentence dataset as (subject=ws, verb=w,,
object=w,, f = Addition/Multiplication):

cocomp(Ws, Wy, W) =

f(d(ws)7 Cocomp(wv, wo)) (11)

6 Results and Discussion

6.1 Main Results: The Correlation

Table 3 shows the correlation scores of various
models. Our observations are as follows:

1. The best reported result for this task (Van de
Cruys et al, 2013) is p = 0.37. Our
model (with NLM as word representation and
f=Addition as operator) achieves p = 0.44,
outperforming it by a large margin. To the best
of our knowledge, this is now state-of-the-art
result for this task.

2. Our model is not very sensitive to the underly-
ing word representation. With f=Addition, we
have p = 0.41 for SDS vs p = 0.44 for NLM.
With f=Multiply, we have p = 0.37 for SDS
vs. p = 0.35 for NLM. This implies that the
prototype projection is robust to the underlying
word representation, which is a desired charac-
teristic of compositional models.

®http://wacky.sslmit.unibo.it/
doku.php?id=corpora
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| Model \ p

Grefenstette and Sadrzadeh (2011) 0.21
Add (SDS) 0.31
Add (NLM) 0.31
Multiply (SDS) 0.35
Multiply (NLM) 0.30
Van de Cruys et al. (2013) 0.37
Erk and Padé (SDS) 0.39
Erk and Pad6 (NLM) 0.03
Co-Comp with f=Add (SDS) 0.41
Co-Comp with f=Add (NLM) 0.44
Co-Comp with f=Multiply (SDS) 0.37
Co-Comp with f=Multiply (NLM) 0.35
] Upper bound \ 0.62

Table 3: Results of the different compositionality models
on the similarity task. The number of prototype words
m = 20 in all our models. Our model (f=Addition and
NLM) achieves the new state-of-the-art performance for
this task (p = 0.44).

3. The contextual model of Erk and Padd (SDS)
also performed relatively well (p = 0.39),
in fact outperforming the Van de Cruy et al.
(2013) result as well. This means that the
general idea of adapting word representations
based on context is a very powerful one. How-
ever, Erk and Padé’s model using the NLM rep-
resentation is extremely poor (p = 0.03). The
reason is that it uses a product operation under-
the-hood to adapt the vectors, which inherently
assumes a sparse representation. In this sense,
our projection approach is more robust.

The state-of-the-art result for our model in Table
3 does not yet make use of the training algorithm
described in Section 4. It is simply implementing
the co-compositionality idea using prototype projec-
tions (Section 3.2). Next in Section 6.2 we will show
additional gains using unsupervised learning.

6.2 Improvements from unsupervised learning

In this experiment, we examine how much gain is
possible by re-training the word representation of
verbs using the unsupervised algorithm described
in Section 4. We focus on the additive model
of Compositional NLM, both basic and prototype
projection. The initial word representation is from



model original representation \ re-trained ‘
C-NLM 0.31 0.38
CoC-NLM 0.44 0.47

Table 4: Results of re-training the word representation
for C-NLM and CoC-NLM. Learning rate o« = 0.01,
regularization A\ = 10~% and iteration = 20. One iteration
is one run through the dataset of 5000 verb-object pairs
which we made from the ukWaC corpus.

NLM. Table 4 shows the gains in correlation score.

This result shows that our learning model suc-
cessfully captures good representation within co-
compositionality of additive model. In contrast to
other previous compositional models, our model
does not require estimating a large number of pa-
rameters for computation of compositional vectors
and word representation itself is more suitable for
it. Furthermore, learning is very fast, taking about
10 minutes for C-NLM on a standard machine with
Intel Core i7 2.93Ghz CPU and 8GB of RAM.

6.3 The number of prototype words

The number of prototype words (m in Figure 1) we
use to generate the prototype space is one hyper-
parameter that our model has. Here, we analyze the
effect of the choice of m. Figure 5 shows the rela-
tion of m and the performance of co-compositional
model with prototype projections using either SDS
or NLM representations. In general, both NLM
and SDS show relatively smooth and flat curves
across m, indicating the relative robustness of the
approach. Nevertheless, results do degrade for large
m, due to increase in noise from non-prototype
words. Further, it does appear that NLM has a slow-
er drop in correlation with increasing m compared
with SDS. This suggests that NLM is more robust,
which is possibly attributable to the dense and low-
dimensional distributed features.

6.4 Variations in model configuration

We have presented a compositional model of the
form d(ws) + cocomp(w,, w,), where prototype
projections are performed on both w, and w, and
wg 18 composed as is without projection. In general,
we have the freedom to choose what to project
and what not to project under this co-compositional
framework. Here in Table 5 we show the results of
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Figure 5: The relation between the number of prototype
words and correlation of SDS or NLM. In general, NLM
has higher correlation than SDS and is more robust across
the m.

| Subj | Verb | Obj [ NLM p | SDS p |

prpj | prpj | prpj 0.39 0.37
+ pPrpj | prpj 0.44 0.41
pIpj | prpj 0.45 0.41

+ pIpj + 0.43 0.38
pIpj + 0.43 0.38

+ + + 0.31 0.31

Table 5: Variants of the full co-compositional model,
based on how subject, verb, and object vector repre-
sentations are included. prpj indicates that prototype
projection is used. + indicates that the vector is added
without projection first. Blank indicates that the vector is
not used in the final compositional score.

these variants, using f =Addition and SDS/NLM
representations without re-training. We note that
our positive results mainly come from the verb
projections. Subject information actually does not
help. We believe this best configuration is task-
dependent; in this test collection, the subjects appear
to have little contribution to the landmark verb.

7 Related work

In recent years, several sophisticated vector space
models have been proposed for computing compo-
sitional semantics. Mitchell and Lapata (2010), Erk
(2012) and Baroni et al. (2013) are recommended
survey papers.



One of the first approaches is the vector ad-
dition/multiplication idea of Mitchell and Lapata
(2008). The appeal of this kind of simple approach
is its intuitive geometric interpretation and its ro-
bustness to various datasets. However, it may not
be sufficiently expressive to represent the various
factors involved in compositional semantics, such
as syntax and context. To this end, Baroni and
Zamparelli (2010) present a compositional model
for adjectives and nouns. In their model, an adjective
is a matrix operator that modifies the noun vector
into an adjective-noun vector. Zanzotto et al. (2010)
and Guevara (2010) also proposed linear transfor-
mation models for composition and address the issue
of estimating large matrices with least squares or
regression techniques. Socher et al. (2012) extend
this linear transformation approach with the more
powerful model of Matrix-Vector Recursive Neural
Networks (MV-RNN). Each node in a parse tree is
assigned both a vector and a matrix. The vector
captures the actual meaning of the word itself, while
the matrix is modeled as a operator that modify the
meaning of neighboring words and phrases. This
model captures semantic change phenomenon like
not bad is similar to good due to a composition
of the bad vector with a meaning-flipping not ma-
trix. But this MV-RNN also need to optimize all
matrices of words from initial value (identity plus
a small amount of Gaussian noise) with supervised
dataset like movie reviews. Our prototype projection
model is similar to these models as a matrix-vector
operation, except that the matrix is not learned and
computed from prototype words. In future work,
we can imagine integrating the two models, using
these prototype projection matrices as initial values
for MV-RNN training (Socher et al., 2012).

Another approach is exemplified by Coecke et
al. (2010). In their mathematical framework u-
nifying categorical logic and vector space models,
the sentence vector is modeled as a function of the
Kronecker product of its word vectors. Grefenstette
and Sadrzadeh (2011) implement this based on un-
supervised learning of matrices for relational words
and apply them to the vectors of their arguments.
Their idea is that words with relational types, such as
verbs, adjectives, and adverbs are matrices that act
as a filter on their arguments. They also developed
a new semantic similarity task based on transitive
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] Composition Operator \ Parameter ‘
Add: wiu + wov wy,we € R
Multiply: u** @ v*2 wi,wy € R
FullAdd: Wyu + Wav Wy, Wy € R
LexFunc: A v A, € Rxn
FullLex: o([W1A,v, WaAyu]) | Ay, A, € R?*7

Wi, Wy € R7*n
Ours (Add): Pgyu + Ppuyv | SVD’s (m, k)
Ours (Mult): P(g.,yu © P(ryv | SVD’s (m, k)

Table 6: Comparison of composition operators that com-
bine two word vector representations, u,v € R™ and
their learning parameters. Our model only needs two
hyper-parameters: the number of prototype words m and
dimensional reduction k in SVD

verbs, which is the dataset we used here. The pre-
vious state-of-the-art result for this task comes from
the model of Van de Cruys et al. (2013). They model
compositionality as a multi-way interaction between
latent factors, which are automatically constructed
from corpus data via matrix factorization.

Comprehensive evaluation of various existing
models are reported in (Blacoe and Lapata, 2012; D-
inu et al., 2013). Blacoe and Lapata (2012) highlight
the importance of jointly examining word represen-
tations and compositionality operators. However,
two out of three composition methods they evaluate
are parameter-free, so that they can side-step the
issue of parameter estimation. Dinu et al. (2013) de-
scribe the relation between word vector and compo-
sitionality in more detail with free parameters. Table
6 summarizes some ways to compose the meaning
of two word vectors (u,v), following (Dinu et al.,
2013). These range from simple operators (e.g. Add
and Multiply) to expressive models with many free
parameters (e.g. LexFunc, FullLex). Many of these
models need to optimize n X n parameters, which
may be large. On the other hand, our model only
needs two hyper-parameters: the number of proto-
type words m and dimensional reduction k£ in SVD
(Table 6). Furthermore, our model performance with
neural language model word embeddings is robust to
variations in m.

Most closely related to our work is the work by
Erk and Padé (2008; 2009) and Thater et al. (2010;
2011), which falls under the research theme of
computing word meaning in context. Both methods
are characterized by the use of selectional prefer-



ence information for subjects, verbs, and objects in
context; our prototype word vectors are essentially
equivalent to this idea. The main difference is in
how we modify the target word representation v
using this information: whereas we project v onto
a latent subspace formed by collection of prototype
vectors, Erk and Padé (2008; 2009) and Thater
et al. (2010; 2011) use the prototype vectors to
directly modify the elements of v, i.e. by element-
wise product with the centroid prototype vector.
Intuitively, both our method and theirs essentially
delete part of a word vector representation to adapt
the meaning in context. We believe the projection
is more robust to the underlying word representation
(and this is shown in the results for SDS vs. NLM
representations), but we note that we may be able
to borrow some of more sophisticated ways to find
prototype vectors from Erk and Padé (2008; 2009)
and Thater et al. (2010; 2011).

8 Conclusion and Future Work

We began this work by asking how it is possible to
handle polysemy issues in compositional semantics,
especially when adopting distributional semantics
methods that construct only one representation per
word type. After all, the different senses of the
same word are all conflated into a single vector
representation. We found our inspiration in Gen-
erative Lexicon Theory (Pustejovsky, 1995), where
ambiguity is resolved due to co-compositionality of
the words in the sentence, i.e., the meaning of an
ambiguous verb is generated by the properties the
object it takes, and vice versa. We implement this
idea in a novel neural network model using proto-
type projections. The advantages of this model is
that it is robust to the underlying word representation
used and that it enables an effective joint learning
of word representations. The model achieves the
current state-of-the-art performance (p = 0.47)
on the semantic similarity task of transitive verbs
(Grefenstette and Sadrzadeh, 2011).
Directions for future research include:

e Experiments on other semantics tasks, such
as paraphrase detection, word sense induction,
and word meaning in context.

e Extension to more holistic sentence-level com-
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position using a matrix-vector recursive frame-
work like (Socher et al., 2012).

e Explore further the potential synergy between
Distributional Semantics and the Generative
Lexicon.
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