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Abstract

When reviewing scientific literature, it would

be useful to have automatic tools that iden-

tify the most influential scientific articles as

well as how ideas propagate between articles.

In this context, this paper introduces topical

influence, a quantitative measure of the ex-

tent to which an article tends to spread its

topics to the articles that cite it. Given the

text of the articles and their citation graph, we

show how to learn a probabilistic model to re-

cover both the degree of topical influence of

each article and the influence relationships be-

tween articles. Experimental results on cor-

pora from two well-known computer science

conferences are used to illustrate and validate

the proposed approach.

1 Introduction

Scientific articles are not created equal. Some ar-

ticles generate entire disciplines or sub-disciplines

of research, or revolutionize how we think about

a problem, while others contribute relatively little.

When we are first introduced to a new area of scien-

tific study, it would be useful to automatically find

the most important articles, and the relationships of

influence between articles. Understanding the im-

pact of scientific work is also crucial for hiring deci-

sions, allocation of funding, university rankings and

other tasks that involve the assessment of scientific

merit. If scientific works stand on the shoulders of

giants, we would like to be able to find the giants.

The importance of a scientific work has previ-

ously been measured chiefly through metrics derived

from citation counts, such as impact factors. How-

ever, citation counts are not the whole story. Many

citations are made in passing, are relevant to only

one section of an article, or make no impact on a

work but are referenced out of “politeness, policy

or piety” (Ziman, 1968). In reality, scientific impact

has many dimensions. Some articles are important

because they describe scientific discoveries that alter

our understanding of the world, while some develop

essential tools and techniques which facilitate future

research. Other articles are influential because they

introduce the seeds of new ideas, which in turn in-

spire many other articles.

In this work we introduce topical influence, a

quantitative metric for measuring the latter type of

scientific influence, defined in the context of an un-

supervised generative model for scientific corpora.

The model posits that articles “coerce” the articles

that cite them into having similar topical content to

them. Thus, articles with higher topical influence

have a larger effect on the topics of the articles that

cite them. We model this influence mechanism via

a regression on the parameters of the Dirichlet prior

over topics in an LDA-style topic model. We show

how the models can be used to recover meaningful

influence scores, both for articles and for specific ci-

tations. By looking not just at the citation graph but

also taking into account the content of the articles,

topical influence can provide a better picture of sci-

entific impact than simple citation counts.

2 Background

Bibliometrics, the quantitative study of scientific lit-

erature, has a long history. One example of a widely-

used bibliometric measure of interest is the impact

factor of a publication venue for a given year, de-

fined to be the average number of times articles from
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that venue, published in the previous two years, were

cited in that year. However, the quality of articles

in a given publication venue can vary wildly, and it

is difficult to compare impact factors between dif-

ferent disciplines of study. The number of cita-

tions an article receives is an indication of impor-

tance, but this is confounded by the unknown func-

tion of each citation. Measures of importance such

as PageRank (Brin and Page, 1998) can be derived

recursively from the citation graph. Such graph-

based measures do not in general make use of the

textual content of the articles, although it is possible

to apply them to graphs where the edges between ar-

ticles are determined based on the similarity of their

content instead of the citation graph (Lin, 2008).

A variety of methods have previously been pro-

posed for analyzing text and citation links together,

such as modeling connections between words and

citations Cohn and Hofmann (2001), classifying ci-

tation function (Teufel et al., 2006), and jointly

modeling citation links and document content

(Chang and Blei, 2009). However, these methods do

not directly measure article importance or influence

relationships between articles given their citations.

More closely related to the present work,

Dietz et al. (2007) proposed the citation influence

model (CIM). Building on the latent Dirichlet al-

location (LDA) framework, CIM assumes that each

word is drawn by first selecting either (a) the distri-

bution over topics of a cited article (with probability

proportional to the influence weight of that article

on the present article) or (b) a novel topic distribu-

tion, and drawing a topic from the selected distribu-

tion, then finally drawing the word from the chosen

topic.1 In their approach, every word is assigned an

extra latent variable, namely the cited article whose

topic distribution the topic was drawn from. For the

model proposed in this paper, we do not need to in-

troduce these additional latent variables, which leads

to a simpler latent representation and fewer variables

to sample during inference. Dietz et al. (2007) also

assume that the citation graph is bipartite, consist-

ing of one set of citing articles and one set of cited

articles—in contrast, our proposed models can han-

dle arbitrary citation graphs in the form of directed

1A somewhat similar model was also proposed by

He et al. (2009)

acyclic graphs (DAGs). While both the CIM and our

approach can identify the influence of specific cita-

tions between articles, our model can also infer how

influential each article is overall, and provides a flex-

ible modeling framework which can handle different

assumptions about influence.

Another related method is due to

Shaparenko and Joachims (2009), who propose

a mixture modeling approach for the detection of

novel text content. Nallapati et al. (2011) intro-

duced TopicFlow, a PLSA-based model for the flow

of topics in a document network. In their model,

citing articles “vote” on each cited article’s topic

distribution in retrospect, via a network flow model.

Since this voting occurs in time-reversed order, it

does not describe an influence mechanism and is

not a generative model that can simulate or predict

new documents.

Finally, the document influence model of

Gerrish and Blei (2010) can be viewed as orthogo-

nal to this work, in that it models the impact of doc-

uments on topics over time (specifically, how topics

change over time) rather than how articles influence

the specific articles that cite them.

3 Topical Influence Regression

Scientific research is seldom performed in a vacuum.

New research builds on the research that came be-

fore it. Although there are many aspects by which

the importance of a scientific article can be judged,

in this work we are interested in the extent to which a

given article has or will have subsequent articles that

build upon it or are otherwise inspired by its ideas.

We begin by defining topical influence, a quantita-

tive measure for this type of influence.

3.1 Topical Influence

It is not immediately obvious how one might quan-

tify such a notion of “idea-based” influence. How-

ever, the mechanism used in the scientific commu-

nity for giving credit to prior work is citation. The

presence of a citation from article b to article a there-

fore indicates that article b may have been influenced

by the ideas in article a, to some unknown extent.

We hypothesize that the extent of this influence man-

ifests itself in the language of b. Using latent Dirich-

let allocation (LDA) topics as a concrete proxy for
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the vague notion of “ideas”, we define the topical

influence of a to be the extent to which article a

coerces the documents which cite it to have simi-

lar topic distributions to it. Topical influence will be

made precise in the context of a generative model for

scientific corpora, conditioned on the citation graph,

called topical influence regression (TIR).

The proposed model extends the LDA framework

of Blei et al. (2003). In LDA, each word w
(d)
i of

each document d is assigned to one of K latent top-

ics, z
(d)
i . Each topic Φ(k) is a discrete distribution

over words. Document d has a distribution over top-

ics θ(d), which can be viewed as a “location in topic

space” summarizing its thematic content. The θ(d)’s

have a Dirichlet prior distribution with parameters

α = [α1, α2, . . . , αK ]⊺. Although the αk’s are often

set to be equal, representing a relatively uninforma-

tive prior over the θ’s, a unique α(d) for each doc-

ument can also be used to encode prior information

such as the effect of other variables on the topics

of that document (Mimno and McCallum, 2008). In

our case, we want to model the influence that a docu-

ment has on the topic distributions of the documents

that cite it. A natural way to encode such influence,

then, is to allow documents to affect the value of α(d)

for each document d that cites them.

Accordingly, we model each article d as having

a latent, non-negative “topical influence” value l(d).

Let n(d) be number of words in article d, n
(d)
k

be the

number of words assigned to topic k, and let C(d) be

the set of articles that d cites. We model α(d) as

α(d) =
∑

c∈C(d)

l(c)z̄(c) + α , (1)

where z̄(c) = 1
n(c) [n

(c)
1 , . . . , n

(c)
K ]⊺ is the normalized

histogram of topic counts for document c, and α is

a constant for smoothing. Since the z̄(c)’s sum to

one, the topical influence l(c) of article c can be in-

terpreted as the number of words of precision that

it adds to the prior of the topic distributions of each

document that cites it. As we increase l(c), the arti-

cles that cite c become more likely to have similar

topic proportions to it. Thus, l(c) encodes the degree

to which article c influences the topics of each of the

articles that cite it.

From another perspective, marginalizing out θ(d),

we can view the topic counts (in the standard LDA

z
(d)
i

w
(d)
i

n(d)

θ(d) α(d)

l(d)

Articles that a cites

z
(a)
iw

(a)
i

n(d)

θ(a) α(a)

l(a)Article a

z
(d)
iw

(d)
i

n(d)

θ(d) α(d)

l(d)

Articles that cite a

β

K
Φ

(k)

Articles that d cites

Articles that cite d

λ

Figure 1: The graphical model for the portion of the TIR

model connected to article a (the links from the z’s and

l’s to the α(d)’s are deterministic).

model) for document d as being drawn from a Polya

urn scheme with α
(d)
k (possibly fractional) balls of

each color k ∈ {1, . . . ,K} initially in the urn. For

each word, a ball is drawn randomly from the urn

and the topic assignment is determined according to

its color k. The ball is replaced in the urn, along

with a new ball of color k. In our model, for each

article c cited by article d we place l(c) balls, with

colors distributed according to z̄(c), into article d’s

urn initially. Thus, article d’s topic assignments are

more likely to be similar to those of the more influ-

ential articles that it cites. The total number of balls

that d added to other articles’ urns,

T (d) ,
∑

b:d∈C(b)

l(d) = l(d)
∣

∣

∣
{b : d ∈ C(b)}

∣

∣

∣
(2)

measures the total impact (in a topical sense) of the

article. We refer to this as total topical influence.

3.2 Generative Model for Topical Influence

Regression

The full assumed generative process for articles in

this model begins with a directed acyclic citation

graph G = {V,E}. Intuitively, citation graphs are

typically DAGs because articles can normally only

cite articles that precede them in time. We assume

that G is a DAG so that influence relationships are
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consistent with some temporal ordering of the arti-

cles, and so that the resulting model is a Bayesian

network. Here, each vertex vi corresponds to an ar-

ticle di, edge e = (v1, v2) ∈ E IFF d1 is cited by d2,

and vertices (articles) are numbered in a topological

ordering with respect to G. Such an ordering ex-

ists because G is a DAG. We model each article d’s

word vector w(d) as being generated in topological

sequence, similarly to LDA but with its prior over

topic distribution being Dirichlet(α(d)), as given by

Equation 1. Note that each α(d) is a function of the

topics of the documents that it cites, parameterized

by their topical influence values. We therefore call

this model topical influence regression (TIR).

The TIR model provides us with topical influ-

ence scores for each article, but it does not tell us

about topical influence relationships between spe-

cific pairs of cited and citing articles. To model such

relationships, we can consider a hierarchical exten-

sion to TIR, with edge-wise topical influences l(c,d)

for each edge (c, d) of the citation graph, l(c,d) ∼
TruncGaussian(l(c), σ, l(c,d) ≥ 0). In this case,

α(d) =
∑

c∈C(d)

l(c,d)z̄(c) + α . (3)

This hierarchical setup allows us to continue to infer

article-level topical influences, and provides a mech-

anism for sharing statistical strength between influ-

ences associated with one cited article. We shall re-

fer to the model with influences on just the nodes (ar-

ticles) as TIR, and the hierarchical extension with in-

fluences on the edges as TIRE. The graphical model

for TIR is given in Figure 1, and the generative pro-

cess is detailed in the following pseudocode:

• For each topic k

• Sample the topic Φ(k) ∼ Dirichlet(β)

• For each document d, in topological order

• Sample an influence weight,

l(d) ∼ Exponential(λ)
• If using the TIRE model

• For each cited document c ∈ C(d)

• Draw edge influence weight,

l(c,d) ∼
TruncGauss(l(c), σ, l(c,d) ≥ 0)

• Assign a prior over topics via

α(d) =
∑

c∈C(d) l(c)z̄(c) + α (TIR), or

α(d) =
∑

c∈C(d) l(c,d)z̄(c) + α (TIRE)

• Sample a distribution over topics,

θ(d) ∼ Dirichlet(α(d))
• For each word i in document d

• Sample a topic

z
(d)
i ∼ Discrete(θ(d))

• Sample a word

w
(d)
i ∼ Discrete(Φ(z

(d)
i

))

3.3 Relationship to Dirichlet-Multinomial

Regression

The TIR model can be viewed as an adaption of the

Dirichlet-multinomial regression (DMR) framework

of Mimno and McCallum (2008) to model topical

influence. DMR also endows each document with its

own unique α(d), but with α
(d)
k = exp(x(d)⊺λk) be-

ing a function of the observed feature vector x(d) pa-

rameterized by regression coefficients λ. The DMR

model can also be applied to text corpora with ci-

tation information, by setting the feature vectors to

be binary indicators of the presence of a citation to

each article. TIR differs in that the functional form

of the regression is parameterized in a way that di-

rectly models influence, and also differs in that the

regression takes advantage of the content of the cited

articles via their topic assignments.

Because an article’s prior over topic distributions

depends on the topic assignments of the articles

that it cites, TIR induces a network of dependencies

between the topic assignments of the documents.

Specifically, if we collapse out Θ, the dependencies

between the z’s of each document form a Bayesian

network whose graph is the citation graph. In con-

trast, DMR treats the documents as conditionally in-

dependent given their citations, and does not exploit

their content in the regression.

To illustrate this, Figure 2 shows an example ci-

tation graph and the resulting Bayesian network. In

the figure, an edge in (a) from c to d corresponds

to a citation of c by d. Conditioned on the topics,

the dependence relationships between z nodes in (b)

follow the same structure as the citation graph.

4 Inference

We perform inference using a Markov chain

Monte Carlo technique. We use a col-

lapsed Gibbs sampling approach analogous to

Griffiths and Steyvers (2004), integrating out Θ and
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Figure 2: (a) An example citation network. (b) Graphical

model for TIR on the example network, collapsing out

Θ but retaining topics Φ. Influence variables and hyper-

parameters not shown for simplicity.

Φ. The update equation for the topic assignments is

Pr(z
(d)
i = k|z−(d,i), . . .)

∝ (n
(d)−(d,i)
k + α

(d)
k )

n
(w

(d)
i

)−(d,i)
k + β

w
(d)
i

n
−(d,i)
k

+
∑

w βw

×

∏

d′:d∈C(d′)

Polya(z(d
′)|α(d′) : z

(d)
i = k, z−(d,i), l)

(4)

where the nk’s are the counts of the occurrences

of topic k over all of the entries determined by the

superscript. The −(d, i) superscript indicates ex-

cluding the current assignment for z
(d)
i . The up-

date equation is similar to the update equations of

Griffiths and Steyvers, but with a different α for

each document d, and with multiplicative weights

for each document that cites it. These weights

Polya(z(d)|α(d)) are the likelihood for a multivariate

Polya (a.k.a. Dirichlet-multinomial) distribution,

Polya(z(d)|α(d)) =

Γ(
∑

k α
(d)
k )

Γ(n(d) +
∑

k α
(d)
k

)

∏

k

Γ(n
(d)
k + α

(d)
k )

Γ(α
(d)
k

)
.

In the case of TIR, in the collapsed model the full

conditional posterior for the topical influence values

l is Pr(l|z, λ) ∝ Pr(z|l)Pr(l|λ). Here, Pr(z|l) =
∏D

d=1 Polya(z(d)|lC
(d)

, zC
(d)

). The topical influence

values l can be sampled using Metropolis-Hastings

updates, or slice sampling. An alternative is to per-

form stochastic EM, optimizing the likelihood or

the posterior probability of l, interleaved within the

Gibbs sampler, as in Mimno and McCallum (2008)

and Wallach (2006). In experiments on synthetic

data we found that maximum likelihood updates on

l, obtained via gradient ascent, resulted in the lowest

L1 error from the true l, so we use this strategy for

the experimental results in this paper. The deriva-

tive of the log-likelihood with respect to the topical

influence l(a) of article a is

dPr(z|l)

dl(a)
=

∑

d:a∈C(d)

(

Ψ(
∑

k

∑

c∈C(d)

l
(c)

z̄
(c)
k

+ Kα)

−Ψ(
∑

k

∑

c∈C(d)

l
(c)

z̄
(c)
k

+ Kα + n
(d))

)

+
∑

d:a∈C(d)

K
∑

k=1

z̄
(a)
k

(

Ψ(
∑

c∈C(d)

l
(c)

z̄
(c)
k

+ α + n
(d)
k

)

−Ψ(
∑

c∈C(d)

l
(c)

z̄
(c)
k

+ α)
)

,

where Ψ(.) is the digamma function. For TIRE,

the likelihood decomposes across documents and we

can optimize the incoming edge weights for each

document separately. We have

dPr(z(d)|l)

dl(a,d)
=Ψ(

∑

k

∑

c∈C(d)

l(c,d)z̄
(c)
k

+ Kα)

−Ψ(
∑

k

∑

c∈C(d)

l(c,d)z̄
(c)
k + Kα + n(d))

+
K

∑

k=1

z̄
(a)
k

(

Ψ(
∑

c∈C(d)

l(c,d)z̄
(c)
k

+ α + n
(d)
k

)

−Ψ(
∑

c∈C(d)

l(c,d)z̄
(c)
k

+ α)
)

.
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We optimize the node-level l’s in TIRE

via the least squares estimate (LSE),

l̂(a) = 1
|{d:a∈C(d)}|

∑

d:a∈C(d) l(a,d). Although

the LSE for the mean of a truncated Gaussian is

biased, it is widely used as it is more robust than the

MLE (A’Hearn, 2004).

5 Experimental Analysis

In this section we experimentally investigate the

properties of TIR and TIRE. We consider two sci-

entific corpora: a collection of 3286 of articles

from the Association for Computational Linguis-

tics (ACL) conference2 (Radev et al., 2009) pub-

lished between 1987 and 2011, and a corpus of ar-

ticles from the Neural Information Processing Sys-

tems (NIPS) conference3 containing 1740 articles

from 1987 to 1999. The corpora both contained

a small number (53, and 14, respectively) of cita-

tion graph loops due to insider knowledge of simul-

taneous publications. Some loops were removed

by manual deletion of “insider knowledge” edges,

and others were removed by deleting edges in the

loop uniformly at random. For computational ef-

ficiency, we performed approximate Gibbs updates

where we drop the multiplicative Polya likelihood

terms in Equation 4. This corresponds to only trans-

mitting influence information downward in the cita-

tion DAG, but not transmitting “reverse influence”

information upwards. Preliminary experiments on

synthetic data indicated that this did not significantly

impact the ability of the model to recover the topical

influence weights. As one might expect, LDA is al-

ready capable of inferring topic distributions which

are good enough to perform the regression on, with-

out fully exploiting the additional feedback from the

regression. This algorithm has a similar running

time to the standard collapsed Gibbs sampler for

LDA, as the regression step is not a bottleneck.

In all experiments, we set the hyper-parameters

to α = 0.1, β = 0.1 and the σ parameter for the

truncated Gaussian in TIRE to be 1. We interleaved

regression steps every 10 Gibbs iterations. For ex-

ploratory data analysis experiments the models were

2
http://clair.eecs.umich.edu/aan/

3http://www.arbylon.net/resources.html,

published by Gregor Heinrich and based on an earlier collection

due to Sam Roweis.
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Figure 3: Topical influence per edge versus number of

times cited by the citing article (NIPS). Several articles

had zero in-text citations due to author or dataset errors.

trained for 500 burn-in iterations, and the samples

from the final iterations were used for the analysis.

5.1 Model Validation using Metadata

It is not immediately obvious how to best validate an

unsupervised model of citation influence. Ground

truth is not well-defined and human evaluation re-

quires extensive knowledge of the individual papers

in the corpora. With this in mind, we explore how

topical influence scores relate to document meta-

data, which serves as a proxy for ground truth.

In many cases, if article c is repeatedly cited in the

text of article d it may indicate that d builds heavily

on c. We would therefore expect to see an associa-

tion between repeated citations and edge-wise topi-

cal influence l(c,d). For each of the 106 papers in the

NIPS corpus with at least three distinct references,

we counted the number of repeated citations for the

most influential and least influential references ac-

cording to the TIRE model (Figure 3). Overall, the

“most influential” references were cited 171 times in

the text of their citing articles, while the “least influ-

ential” references were cited 128 times. Of the 45

articles where the counts were not tied, the most in-

fluential references had the higher citation counts 33

times. A sign test rejects the null hypothesis that the

median difference in citation counts between least

and most influential references is zero at α = 0.05,

with p-value ≈ 5× 10−4.
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Self-citations, where at least one author is in com-

mon between cited and citing articles, are also infor-

mative (Figure 4). Authors often build upon their

own work, so we would expect self-citations to have

higher edge-wise topical influence on average. For

ACL the mean topical influence for a self citation

edge is 2.80 and for a non-self citation is 1.40. For

NIPS the means are 5.05 (self) and 3.15 (non-self).

A two-sample t-test finds these differences are both

significant at α = 0.05.

5.2 Prediction Experiments

We also used a document prediction task to explore

whether the posited latent structure is predictively

useful. We selected roughly 10% of the articles in

each corpus (170 and 330 documents for NIPS and

ACL, respectively) for testing, chosen among the ar-

ticles that made at least one citation. We held out

a randomly selected set of 50% of their words and

evaluated the log probability of the held out partial

documents under each model. This is equivalent

to evaluating on a set of new documents with the

same set of references as the held out set. Evaluation

was performed using annealed importance sampling

(Neal, 2001), as in Wallach et al. (2009) except we

used multiple samples per likelihood computation.

The TIR models were compared to LDA and

an “additive” version of DMR with link function

α
(d)
k = x(d)⊺λk + α, where the λs were con-

strained to be positive and given an exponential

prior with mean one. For DMR, binary feature vec-

tors encoded the presence or absence of each pos-

sible citation. For each algorithm, we burned in

for 250 iterations, then executed 1000 iterations,

optimizing topical influence weights/DMR param-

eters every 10th iteration. Held-out log proba-

bility scores were computed by performing AIS

with every 100th sample, and averaging the re-

sults to estimate the posterior predictive probability

Pr(held out article|training set, citations, model).

It was found that all of the regression methods had

superior predictive performance to LDA on these

corpora, demonstrating that topical influence has

predictive value (Table 1). Although DMR per-

formed slightly better than TIR predictively, TIR

was competitive despite the fact that it has a factor of

K less regression parameters. Note that DMR does

not provide an interpretable notion of influence.

5.3 Exploring Topical Influence

In this section we explore the inferred topical influ-

ence scores l(d), total topical influence scores T (d)

and edgewise topical influence scores l(c,d) (recall

their definitions in Equations 1, 2 and 3, respec-

tively). Table 2 shows the most influential articles in

the ACL corpus, according to citation counts, top-

ical influence and total topical influence (the latter

two inferred with the TIR model). The most fre-

quently cited paper within the ACL corpus, written

by Papineni et al., introduces BLEU, a technique for

evaluating machine translation (MT) systems.4 This

paper is of great importance to the computational

linguistics community because the method that it

introduces is widely used to validate MT systems.

However, the BLEU article has a relatively low top-

ical influence value of 0.58, consistent with the fact

that most of the papers that cite it use the technique

as part of their methodology but do not build upon

its ideas. We emphasize that topical influence mea-

sures a specific dimension of scientific importance,

namely the tendency of an article to influence the

ideas (as mediated by the topics) of citing articles;

papers with low topical influence such as the BLEU

article may be important for other reasons.

Ranking papers by their influence weights l(d)

(Table 2, middle) has the opposite difficulty to rank-

ing by citation counts — the papers with the highest

topical influence were typically cited only once, by

the same authors. This makes sense, given what the

model is designed to do. The lone citing papers were

certainly topically influenced by these articles.

A more useful metric, however, is the total top-

ical influence T (d) (the bottom sub-table in Table

2). This is the total number of words of prior con-

centration, summed over all of its citers, that the

article has contributed, and is a measure of the to-

tal corpus-wide topical influence of the paper. This

metric ranks the BLEU paper at 5th place, down

from 1st place by citation count. The ACL paper

with the highest total topical influence, by David

Chiang, won the ACL best paper award in 2005.

The behavior of the different metrics is echoed

in the NIPS corpus (Table 3). The most

cited paper, “Handwritten Digit Recognition,” by

4Citations within the corpora are of course only a small frac-

tion of the total set of citations for many of these papers.
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Figure 4: Topical influence for self and non-self citation edges. Left: ACL. Right: NIPS.

ACL NIPS

Wins Losses Average Wins Losses Average

Improvement Improvement

TIR 297 33 65.7 150 20 38.2

TIRE 276 54 63.0 148 22 38.7

DMR 302 28 79.1 157 13 48.4

Table 1: Wins, losses and average improvement for log probabilities of held-out articles, versus LDA. Each “Win”

corresponds to the model assigning a higher log probability score for the test portion of a held-out document than LDA

assigned to that document.

Le Cun et al. (1990), is an early successful applica-

tion of neural networks. The paper does not in-

troduce novel models or algorithms, but rather, in

the authors’ words, “show[s] that large back propa-

gation (BP) networks can be applied to real image

recognition problems.” Thus, although it is has an

important role as a landmark neural network success

story, it does not score highly in terms of topical in-

fluence. This paper is ranked 13th according to total

topical influence, with a score of 1.6. The top two-

ranked papers according to total topical influence,

on Gaussian Process Regression and POMDPs re-

spectively, were both seminal papers that spawned

large bodies of related work. An interesting case is

the third-ranked paper in the NIPS corpus, by Wang

et al., on the theory of early stopping. It is only ref-

erenced three times, but has a very high topical in-

fluence of 19.3 words. All three citing papers are

also on the theory of early stopping, and one of the

papers, by Wang and Venkatesh, directly extends a

theoretical result of this paper. Although it is easy

to see why this paper scores highly on topical in-

fluence, in this case the metric has perhaps over-

stated its importance. A limitation of topical influ-

ence is that it can potentially give more credit than

is due when an article is cited by a small number of

topically similar papers, due to overfitting. This is

likely to be an issue for any topic-based approach

for modeling scientific influence. However, topics

help to absorb lexical ambiguity and author-specific

idiosyncracies, mitigating the problem relative to

word-based approaches.

Using the TIRE model, we can also look at in-

fluence relationships between pairs of articles. Ta-

bles 4 and 5 show the most and least topically influ-

ential references, and the most and least influenced

citing papers, for three example articles from ACL

and NIPS, respectively. The model correctly assigns

higher influence scores along the edges to and from

relevant documents. For the ACL papers, the BLEU

algorithm’s article is inferred to have zero topical in-

fluence on Chiang’s paper, consistent with its role
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Top 5 Articles by Citation Count

140 BLEU: a Method for Automatic Evaluation of Machine Translation. K. Papineni, S. Roukos, T. Ward, W. Zhu.

105 Minimum Error Rate Training in Statistical Machine Translation. F. Och.

64 A Hierarchical Phrase-Based Model for Statistical Machine Translation. D. Chiang.

64 Accurate Unlexicalized Parsing. D. Klein, C. Manning.

59 Unsupervised Word Sense Disambiguation Rivaling Supervised Methods. D. Yarowsky.

Top 5 articles by Topical Influence

11.38 Refining Event Extraction through Cross-document Inference. H. Ji, R. Grishman.

11.37 Bayesian Learning of Non-compositional Phrases with Synchronous Parsing. H. Zhang, C. Quirk, R. Moore, D. Gildea.

10.48 A Plan Recognition Model for Clarification Subdialogues. D. Litman, J. Allen.

10.38 PCFGs with Syntactic and Prosodic Indicators of Speech Repairs. J. Hale et al.

10.30 Referring as Requesting, P. Cohen

Top 5 Articles by Total Topical Influence

111.46 (1.74 × 64) A Hierarchical Phrase-Based Model for Statistical Machine Translation. D. Chiang.

101.12 (6.74 × 15) Maximum Entropy Based Phrase Reordering Model for Statistical Machine Translation. D. Xiong, Q. Liu, S. Lin.

98.56 (5.80 × 17) A Logical Semantics for Feature Structures. R. Kasper, W. Rounds.

85.15 (2.18 × 39) Discriminative Training and Maximum Entropy Models for Statistical Machine Translation. F. Och, H. Ney

81.82 (0.58 × 140) BLEU: a Method for Automatic Evaluation of Machine Translation, K. Papineni, S. Roukos, T. Ward, and W. Zhu.

Table 2: Most influential articles in the ACL Conference corpus, according to citation counts (top), topical influence

l(d) inferred by TIR (middle), and total topical influence T (d) inferred by TIR (bottom). For total topical influence,

the breakdown of T (d) = l(d)× citation count is shown in parentheses.

Top 5 Articles by Citation Count

26 Handwritten Digit Recognition with a Back-Propagation Network. Y. Le Cun, et al.

19 Optimal Brain Damage. Y. Le Cun, J. Denker, S. Solla.

17 A New Learning Algorithm for Blind Signal Separation. S. Amari, A. Cichocki, H. Yang.

17 Efficient Pattern Recognition Using a New Transformation Distance. P. Simard, Y. Le Cun, J. Denker.

14 The Cascade-Correlation Learning Architecture. S. Fahlman, C. Lebiere.

Top 5 articles by Topical Influence

29.7 Synchronization and Grammatical Inference in an Oscillating Elman Net. B. Baird, T. Troyer, F. Eeckman.

26.3 Learning the Solution to the Aperture Problem for Pattern Motion with a Hebb Rule. M. Sereno.

25.9 ALVINN: An Autonomous Land Vehicle in a Neural Network. D. Pomerleau.

25.1 Some Estimates of Necessary Number of Connections and Hidden Units for Feed-Forward Networks. A. Kowalczyk.

24.7 Complex- Cell Responses Derived from Center-Surround Inputs: The Surprising Power of Intradendritic Computation.

B. Mel, D. Ruderman, K. Archie.

Top 5 Articles by Total Topical Influence

84.7 (10.6 × 8) Gaussian Processes for Regression. C. Williams, C. Rasmussen.

63.9 (7.1 × 9) Reinforcement Learning Algorithm for Partially Observable Markov Decision Problems. T. Jaakkola, S. Singh, M. Jordan.

57.9 (19.3 × 3) Optimal Stopping and Effective Machine Complexity in Learning. C. Wang, S. Venkatesh, J. Judd.

54.7 (10.9 × 5) Links Between Markov Models and Multilayer Perceptrons. H. Bourlard, C. Wellekens.

51.2 (3.7 × 14) The Cascade-Correlation Learning Architecture. S. Fahlman, C. Lebiere.

Table 3: Most influential articles in the NIPS corpus, according to citation counts (top), topical influence l(d) inferred

by TIR (middle), and total topical influence T (d) inferred by TIR (bottom).

A Hierarchical Phrase-Based Model for Statistical Machine Translation. D. Chiang.

Most influential reference 1.48 Discriminative Training and Maximum Entropy Models for Statistical Machine Translation. F. Och and H. Ney.

Least influential reference 0.00 BLEU: a Method for Automatic Evaluation of Machine Translation. K. Papineni, S. Roukos, T. Ward, W. Zhu.

Most influenced citer 2.54 Toward Smaller, Faster, and Better Hierarchical Phrase-based SMT. M. Yang, J. Zheng.

Least influenced citer 0.60 An Optimal-time Binarization Algorithm for Linear Context-Free Rewriting Systems with Fan-out Two.

C. Gmez-Rodrguez, G. Satta.

Unsupervised Word Sense Disambiguation Rivaling Supervised Methods. D. Yarowsky.

Most influential reference 2.52 Subject-dependent Co-occurrence and Word Sense Disambiguation. J. Guthrie, L. Guthrie, Y. Wilks, H. Aidinejad.

Least influential reference 0.53 Word-sense Disambiguation using Statistical Methods. P. Brown, S. Della Pietra, V. Della Pietra, R. Mercer.

Most influenced citer 1.81 Discriminating Image Senses by Clustering with Multimodal Features. N. Loeff, C. Alm, D. Forsyth.

Least influenced citer 0.00 Semi-supervised Convex Training for Dependency Parsing. Q. Wang, D. Schuurmans, D. Lin.

Accurate Unlexicalized Parsing. D. Klein, C. Manning.

Most influential reference 3.87 Parsing with Treebank Grammars: Empirical Bounds, Theoretical Models, and the Structure of the Penn Treebank.

D. Klein and C. Manning.

Least influential reference 0.81 Efficient Parsing for Bilexical Context-Free Grammars and Head Automaton Grammars. J. Eisner, G. Satta.

Most influenced citer 1.67 Evaluating the Accuracy of an Unlexicalized Statistical Parser on the PARC DepBank. T. Briscoe, J. Carroll.

Least influenced citer 0.00 Finding Contradictions in Text. M. de Marneffe, A. Rafferty, C. Manning.

Table 4: Least and most influential references and citers, and the influence weights along these edges, inferred by the

TIRE model for three example ACL articles.
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Feudal Reinforcement Learning. P. Dayan, G. Hinton

Most influential reference 5.47 Memory-based Reinforcement Learning: Efficient Computation with Prioritized Sweeping. A. Moore, C. Atkeson.

Least influential reference 0.00 A Delay-Line Based Motion Detection Chip. T. Horiuchi, J. Lazzaro, A. Moore, C. Koch.

Most influenced citer 3.36 The Parti-Game Algorithm for Variable Resolution Reinforcement Learning in Multidimensional State-Spaces. A. Moore.

Least influenced citer 1.71 Multi-time Models for Temporally Abstract Planning. D. Precup, R. Sutton.

Optimal Brain Damage. Y. Le Cun, J. Denker , S. Solla.

Most influential reference 2.82 Comparing Biases for Minimal Network Construction with Back-Propagation. S. Hanson, L. Pratt.

Least influential reference 0.15 Skeletonization: A Technique for Trimming the Fat from a Network via Relevance Assessment. M. Mozer, P. Smolensky.

Most influenced citer 3.08 Structural Risk Minimization for Character Recognition. I. Guyon, V. Vapnik, B. Boser, L. Bottou, S. Solla.

Least influenced citer 0.64 Structural and Behavioral Evolution of Recurrent Networks. G. Saunders, P. Angeline, J. Pollack.

An Input Output HMM Architecture. Y. Bengio, P. Frasconi.

Most influential reference 5.29 Credit Assignment through Time: Alternatives to Backpropagation. Y. Bengio, P. Frasconi.

Least influential reference 0.00 Induction of Multiscale Temporal Structure. M. Mozer

Most influenced citer 2.66 Learning Fine Motion by Markov Mixtures of Experts. M. Meila, M. Jordan.

Least influenced citer 1.47 Recursive Estimation of Dynamic Modular RBF Networks. V. Kadirkamanathan, M. Kadirkamanathan.

Table 5: Least and most influential references and citers, and the influence weights along these edges, inferred by the

TIRE model for three example NIPS articles.

in the paper as an evaluation technique. The paper

most topically influenced by Chiang’s paper, written

by Yang and Zheng, aims to improve upon the ideas

in that paper. In the NIPS corpus, the article by Ben-

gio and Frasconi, on recurrent neural network archi-

tectures, extends previous work by the same authors,

which is correctly assigned the highest topical influ-

ence. A particularly interesting case is the paper by

Dayan and Hinton, which is heavily influenced by

a paper by Moore, and in turn strongly influences

a later paper by Moore, thus illustrating the inter-

play of scientific influence between authors along

the citation graph. These three papers were on re-

inforcement learning, while the lowest scoring ref-

erence and citer were on other subjects.

6 Conclusions / Discussion

This paper introduced the notion of topical influ-

ence, a quantitative measure of scientific impact

which arises from a latent variable model called top-

ical influence regression. The model builds upon the

ideas of Dirichlet-multinomial regression to encode

influence relationships between articles along the ci-

tation graph. By training TIR, we can recover topi-

cal influence scores that give us insight into the im-

pact of scientific articles. The model was applied to

two scientific corpora, demonstrating the utility of

the method both quantitatively and qualitatively.

In future work, the proposed framework could

readily be extended to model other aspects of sci-

entific influence, such as the effects of authors and

journals on topical influence, and to exploit the con-

text in which citations occur. From an exploratory

analysis perspective, it would be instructive to com-

pare topical influence trajectories over time for dif-

ferent papers. This could be further facilitated by ex-

plicitly modeling the dynamics of each article’s top-

ical influence score. The TIR framework could po-

tentially also be applicable to other application do-

mains such as modeling how interpersonal influence

affects the spread of memes via social media.

To complement TIR, it would be useful to also

have systems for identifying articles which are im-

portant for alternative reasons, such as providing

methodological tools and/or demonstrating impor-

tant facts. Ultimately a suite of such tools could feed

into a system such as Google Scholar or Citeseer.

We envision that this line of work will also be useful

for building visualization tools to help researchers

explore scientific corpora.

Acknowledgments

Supported by the Intelligence Advanced Research

Projects Activity (IARPA) via Department of In-

terior National Business Center contract number

D11PC20155. The U.S. government is authorized to

reproduce and distribute reprints for Governmental

purposes notwithstanding any copyright annotation

thereon. Disclaimer: The views and conclusions

contained herein are those of the authors and should

not be interpreted as necessarily representing the of-

ficial policies or endorsements, either expressed or

implied, of IARPA, DoI/NBC, or the U.S. Govern-

ment.

122



References

[A’Hearn2004] B. A’Hearn. 2004. A restricted max-

imum likelihood estimator for truncated height sam-

ples. Economics & Human Biology, 2(1):5–19.

[Blei et al.2003] D.M. Blei, A.Y. Ng, and M.I. Jordan.

2003. Latent Dirichlet allocation. The Journal of Ma-

chine Learning Research, 3:993–1022.

[Brin and Page1998] S. Brin and L. Page. 1998. The

anatomy of a large-scale hypertextual web search en-

gine. Computer networks and ISDN systems, 30(1-

7):107–117.

[Chang and Blei2009] J. Chang and D. Blei. 2009. Rela-

tional topic models for document networks. In Artifi-

cial Intelligence and Statistics, pages 81–88.

[Cohn and Hofmann2001] D. Cohn and T. Hofmann.

2001. The missing link-a probabilistic model of docu-

ment content and hypertext connectivity. In Advances

in Neural Information Processing Systems, pages 430–

436.

[Dietz et al.2007] L. Dietz, S. Bickel, and T. Scheffer.

2007. Unsupervised prediction of citation influences.

In Proceedings of the 24th International Conference

on Machine Learning, pages 233–240.

[Gerrish and Blei2010] S. Gerrish and D.M. Blei. 2010.

A language-based approach to measuring scholarly

impact. In Proceedings of the 26th International Con-

ference on Machine Learning, pages 375–382.

[Griffiths and Steyvers2004] T.L. Griffiths and

M. Steyvers. 2004. Finding scientific topics.

Proceedings of the National Academy of Sciences of

the United States of America, 101(Suppl 1):5228.

[He et al.2009] Q. He, B. Chen, J. Pei, B. Qiu, P. Mitra,

and L. Giles. 2009. Detecting topic evolution in sci-

entific literature: how can citations help? In Proceed-

ings of the 18th ACM Conference on Information and

Knowledge Management, pages 957–966. ACM.

[Le Cun et al.1990] B.B. Le Cun, JS Denker, D. Hender-

son, RE Howard, W. Hubbard, and LD Jackel. 1990.

Handwritten digit recognition with a back-propagation

network. In Advances in Neural Information Process-

ing Systems, pages 396–404.

[Lin2008] J. Lin. 2008. Pagerank without hyper-

links: Reranking with pubmed related article networks

for biomedical text retrieval. BMC bioinformatics,

9(1):270.

[Mimno and McCallum2008] D. Mimno and A. McCal-

lum. 2008. Topic models conditioned on arbitrary

features with Dirichlet-multinomial regression. In Un-

certainty in Artificial Intelligence, pages 411–418.

[Nallapati et al.2011] R. Nallapati, D. McFarland, and

C. Manning. 2011. Topicflow model: Unsupervised

learning of topic-specific influences of hyperlinked

documents. In International Conference on Artificial

Intelligence and Statistics, pages 543–551.

[Neal2001] R.M. Neal. 2001. Annealed importance sam-

pling. Statistics and Computing, 11(2):125–139.

[Radev et al.2009] D. R. Radev, P. Muthukrishnan, and

V. Qazvinian. 2009. The ACL anthology network cor-

pus. In Proceedings, ACL Workshop on Natural Lan-

guage Processing and Information Retrieval for Digi-

tal Libraries, pages 54–61, Singapore.

[Shaparenko and Joachims2009] B. Shaparenko and

T. Joachims. 2009. Identifying the original con-

tribution of a document via language modeling. In

Machine Learning and Knowledge Discovery in

Databases, pages 350–365. Springer.

[Teufel et al.2006] S. Teufel, A. Siddharthan, and D. Tid-

har. 2006. Automatic classification of citation func-

tion. In Proceedings of the 2006 Conference on

Empirical Methods in Natural Language Processing,

pages 103–110. Association for Computational Lin-

guistics.

[Wallach et al.2009] H.M. Wallach, I. Murray,

R. Salakhutdinov, and D. Mimno. 2009. Evalu-

ation methods for topic models. In Proceedings of

the 26th Annual International Conference on Machine

Learning, pages 1105–1112. ACM.

[Wallach2006] H.M. Wallach. 2006. Topic modeling:

beyond bag-of-words. In Proceedings of the 23rd In-

ternational Conference on Machine Learning, pages

977–984. ACM.

[Ziman1968] J.M. Ziman. 1968. Public knowledge:

an essay concerning the social dimension of science.

Cambridge University Press.

123


