
Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural
Language Learning, pages 1038–1047, Jeju Island, Korea, 12–14 July 2012. c©2012 Association for Computational Linguistics

Forest Reranking through Subtree Ranking

Richárd Farkas, Helmut Schmid
Institute for Natural Language Processing

University of Stuttgart
{farkas,schmid}@ims.uni-stuttgart.de

Abstract

We propose the subtree ranking approach to
parse forest reranking which is a general-
ization of current perceptron-based reranking
methods. For the training of the reranker,
we extract competing local subtrees, hence
the training instances (candidate subtree sets)
are very similar to those used during beam-
search parsing. This leads to better param-
eter optimization. Another chief advantage
of the framework is that arbitrary learning to
rank methods can be applied. We evaluated
our reranking approach on German and En-
glish phrase structure parsing tasks and com-
pared it to various state-of-the-art reranking
approaches such as the perceptron-based for-
est reranker. The subtree ranking approach
with a Maximum Entropy model significantly
outperformed the other approaches.

1 Introduction

Reranking has become a popular technique for
solving various structured prediction tasks, such
as phrase-structure (Collins, 2000) and depen-
dency parsing (Hall, 2007), semantic role labeling
(Toutanova et al., 2008) and machine translation
(Shen et al., 2004). The idea is to (re)rank candi-
dates extracted by a base system exploiting a rich
feature set and operating at a global (usually sen-
tence) level. Reranking achieved significant gains
over the base system in many tasks because it has
access to information/features which are not com-
putable in the base system. Reranking also outper-
forms discriminative approaches which try to han-
dle the entire candidate universe (cf. Turian et al.

(2006)) because the base system effectively and ef-
ficiently filters out many bad candidates and makes
the problem tractable.

The standard approach for reranking is the n-best
list ranking procedure, where the base system ex-
tracts its top n global-level candidates with associ-
ated goodness scores that define an initial ranking.
Then the task is to rerank these candidates by us-
ing a rich feature set. The bottleneck of this ap-
proach is the small number of candidates consid-
ered. Compared to n-best lists, packed parse forests
encode more candidates in a compact way. For-
est reranking methods have been proposed, which
can exploit the richer set of candidates and they
have been successfully applied for phrase-structure
(Huang, 2008), dependency (Hayashi et al., 2011)
parsing and machine translation (Li and Khudanpur,
2009) as well.

Huang (2008) introduced the perceptron-based
forest reranking approach. The core of the algo-
rithm is a beam-search based decoder operating on
the packed forest in a bottom-up manner. It follows
the assumption that the feature values of the whole
structure are the sum of the feature values of the lo-
cal elements and they are designed to the usage of
the perceptron update. Under these assumptions a
1-best Viterbi or beam-search decoder can be effi-
ciently employed at parsing and training time. Dur-
ing training, it decodes the 1-best complete parse
then it makes the perceptron update against the or-
acle parse, i.e. the perceptron is trained at the global
(sentence) level.

We propose here a subtree ranker approach
which can be regarded as a generalization of this for-

1038



est reranking procedure. In contrast to updating on
a single (sub)tree per sentence using only the 1-best
parse (perceptron-based forest reranking), the sub-
tree ranker exploits subtrees of all sizes from a sen-
tence and trains a (re)ranker utilising several deriva-
tions of the constituent in question. During parsing
we conduct a beam-search extraction by asking the
ranker to select the k best subtrees among the pos-
sible candidates of each forest node. The chief mo-
tivation for this approach is that in this way, train-
ing and prediction are carried out on similar local
candidate lists which we expect to be favorable to
the learning mechanism. We empirically prove that
the trained discriminative rankers benefit from hav-
ing access to a larger amount of subtree candidates.
Moreover, in this framework any kind of learning
to rank methods can be chosen as ranker, including
pair-wise and list-wise classifiers (Li, 2011).

The contributions of this paper are the following:

• We extend the perceptron-based forest
rerankers to the subtree ranker forest reranking
framework which allows to replace the per-
ceptron update by any kind of learning to rank
procedure.

• We report experimental results on German
and English phrase-structure parsing compar-
ing subtree rerankers to various other rerankers
showing a significant improvement over the
perceptron-based forest reranker approach.

2 Related Work

Our method is closely related to the work of Huang
(2008), who introduced forest-based reranking for
phrase structure parsing. The proposed frame-
work can be regarded as an extension of this ap-
proach. It has several advantages compared with
the perceptron-based forest reranker. In this paper
we focus on the most important one – and briefly
discuss two others in Section 5 – which is enabling
the use of any kind of learning to rank approaches.
While the perceptron is fast to train, other machine
learning approaches usually outperform it. Most of
the existing learning to rank approaches are built on
linear models and evaluate the candidates indepen-
dently of each other (such as MaxEnt (Charniak and
Johnson, 2005), SVMRank (Joachims, 2002), Soft-
Rank (Guiver and Snelson, 2008)). Thus the choice

of the learning method does not influence parsing
time. We believe that the real bottleneck of parsing
applications is parsing time and not training time.
On the other hand, they can learn a better model
(at the cost of higher training time) than the Per-
ceptron. In theory, we can imagine learning to rank
approaches which can not be reduced to the indi-
vidual scoring of candidates at prediction time, for
instance a decision tree-based pairwise ranker. Al-
though such methods would also fit into the general
subtree framework, they are not employed in prac-
tice (Li, 2011).

The subtree ranking approach is a generalization
of the perceptron-based approach. If the ranking
algorithm is the Averaged Perceptron, the parsing
algorithm reduces to perceptron-based forest pars-
ing. If the “selection strategy” utilizes the base sys-
tem ranking and training starts with a filtering step
which keeps only candidate sets from the root node
of the forest we get the offline version of the training
procedure of the perceptron-based forest reranker of
Huang (2008).

As our approach is based on local ranking (local
update in the online learning literature), it is highly
related to early update which looks for the first lo-
cal decision point where the oracle parse falls out
from the beam. Early update was introduced by
Collins and Roark (2004) for incremental parsing
and adopted to forest reranking by Wang and Zong
(2011).

Besides phrase structure parsing, the forest
reranking approach was successfully applied for de-
pendency parsing as well. Hayashi et al. (2011) in-
troduced a procedure where the interpolation of a
generative and a forest-based discriminative parser
is exploited.

From the algorithmic point of view, our approach
is probably most closely related to Searn (Daumé
et al., 2009) and Magerman (1995) as we also em-
ploy a particular machine learned model for a se-
quence of local decisions. The topological order of
the parse forest nodes can form the “sequence of
choices” of Searn. The biggest differences between
our approach and Searn are that we propose an ap-
proach employing beam search and the “policy” is a
ranker in our framework instead of a multiclass clas-
sifier as there are no “actions” here, instead we have
to choose from candidate sets in the forest reranking

1039



framework. In a wider sense, our approach can be
regarded – like Searn – as an Inverse Reinforcement
Learning approach where “one is given an environ-
ment and a set of trajectories and the problem is to
find a reward function such that an agent acting opti-
mally with respect to the reward function would fol-
low trajectories that match those in the training set”
(Neu and Szepesvári, 2009). Neu and Szepesvári
(2009) introduced the top-down parsing Markov De-
cision Processes and experiment with several inverse
reinforcement learning methods. The forest rerank-
ing approaches are bottom-up parsers which would
require a new (non-straightforward) definition of a
corresponding Markov Decision Process.

3 Subtree Ranking-based Forest
Reranking

A packed parse forest is a compact representation
of possible parses for a given sentence. A forest has
the structure of a hypergraph, whose nodes V are the
elementary units of the underlying structured predic-
tion problem and the hyperedges E are the possible
deductive steps from the nodes. In this paper we
experimented with phrase-structure parse reranking.
In this framework nodes correspond to constituents
spanning a certain scope of the input sentence and a
hyperedge e links a parent node head(e) to its chil-
dren tails(e) (i.e. a hyperedge is a CFG rule in con-
text).

The forest is extracted from the chart of a base
PCFG parser, usually employing a heavy pruning
strategy. Then the goal of a forest reranker is to find
the best parse of the input sentence exploiting a fea-
ture representation of (sub)trees.

We sketch the parsing procedure of the subtree
ranker in Algorithm 1. It is a bottom-up beam-
search parser operating on the hypergraph. At each
node v we store the k best subtrees S(v) headed by
the node. The S(v) lists contain the k top-ranked
subtrees by the ranker R among the candidates in the
beam. The set of candidate subtrees at a node is the
union of the candidates at the different hyperedges.
The set of candidate subtrees at a certain hyperedge,
in turn, is formed by the Cartesian product ⊗S(vi)
of the k-best subtrees stored at the child nodes vi.
The final output of forest ranking is the 1-best sub-
tree headed by the goal node S1(vgoal).

Algorithm 1 Subtree Ranking
Require: 〈V,E〉 forest, R ranker

for all v ∈ V in bottom-up topological order do
C ← ∅
for all e ∈ E, head(e) = v do

C ← C ∪ (⊗S(vi)) , vi ∈ tails(e)
end for
S(v)← Rk(C)

end for
return S1(vgoal)

For training the ranker we propose to extract lo-
cal candidate lists from the forests which share the
characteristics of the candidates at parsing time. Al-
gorithm 2 depicts the training procedure of the sub-
tree ranker.

As forests sometimes do not contain the gold stan-
dard tree, we extract an oracle tree instead, which
is the closest derivable tree in the forest to the gold
standard tree (Collins, 2000). Then we optimize the
parser for ranking the oracle tree at the top. This pro-
cedure is beneficial to training since the objective is
a reachable state. In Algorithm 2, we extract the ora-
cle tree from the parses encoded in the forest 〈V,E〉i
for the ith training sentence, which is the tree with
the highest F-score when compared to the gold stan-
dard tree yi. For each of the training sentences we
calculate the oracle subtrees for each node {Ov} of
the corresponding parse forest. We follow the dy-
namic programming approach of Huang (2008) for
the extraction of the forest oracle. The goal of this
algorithm is to extract the full oracle tree, but as a
side product it calculates the best possible subtree
for all nodes including the nodes outside of the full
oracle tree as well.

After computing the oracle subtrees, we crawl
the forests bottom-up and extract a training instance
〈C, Ov〉 at each node v which consists of the candi-
date set C and the oracle Ov at that node. The cre-
ation of candidate lists is exactly the same as it was
at parsing time. Then we create training instances
from each of the candidate lists and form the set of
subtrees S(v) which is stored for candidate extrac-
tion at the higher levels of the forest (later steps in
the training instance extraction).

A crucial design question is how to form the S(v)
sets during training, which is the task of the selection

1040



Algorithm 2 Subtree Ranker Training
Require: {〈V,E〉i, yi}N1 , SS selection strategy

T ← ∅
for all i← 1...N do

O ← oracle extractor(〈V,E〉i, yi)
for all v ∈ Vi in bottom-up topological order
do

C ← ∅
for all e ∈ E, head(e) = v do

C ← C ∪ (⊗S(vj)) , vj ∈ tails(e)
end for
T ← T ∪ 〈C, Ov〉
S(v)← SS(C, Ov)

end for
end for
R← train reranker(T )
return R

strategy SS. One possible solution is to keep the k
best oracle subtrees, i.e. the k subtrees closest to the
gold standard parse, which is analogous to using the
gold standard labels in Maximum Entropy Markov
Models for sequence labeling problems (we refer
this selection strategy as ’oracle subtree’ later on).
The problem with this solution is that if the rankers
have been trained on the oracle subtrees potentially
leads to a suboptimal performance as the outputs of
the ranker at prediction time are noisy. Note that
this approach is not a classical beam-based decod-
ing anymore as the “beam” is maintained according
to the oracle parses and there is no model which in-
fluences that. An alternative solution – beam-based
decoding – is to use a ranker model to extract the
S(v) set in training time as well. In the general
reranking approach, we assume that the ranking of
the base parser is reliable. So we store the k best
subtrees according to the base system in S(v) (the
’base system ranking’ selection strategy). Note that
the general framework keeps this question open and
lets the implementations define a selection strategy
SS.

After extracting the training instances T we can
train an arbitrary ranker R offline. Note that the
extraction of candidate lists is exactly the same in
Algorithm 1 and 2 while the creation of Sv can be
different.

4 Experiments

We carried out experiments on English and German
phrase-structure reranking. As evaluation metric, we
used the standard evalb implementation of PAR-
SEVAL on every sentence without length limitation
and we start from raw sentences without gold stan-
dard POS tagging. As the grammatical functions of
constituents are important from a downstream ap-
plication point of view – especially in German – we
also report PARSEVAL scores on the conflation of
constituent labels and grammatical functions. These
scores are shown in brackets in Table 2.

4.1 Datasets

We used the Wall Street Journal subcorpus of the
Ontonotes v4.0 corpus (Weischedel et al., 2011)1 for
English. As usual sections 2-21, 23 and 24 served as
training set (30,060 sentences), test set (1,640 sen-
tences), and development set (1,336 sentences), re-
spectively. Using the Ontonotes version enables us
to assess parser robustness. To this end, we eval-
uated our models also on the weblog subcorpus of
the Ontonotes v4.0 corpus which consists of 15,103
sentences.

For German we used the Tiger treebank (Brants
et al., 2002). We take the first 40,474 sentences of
the Tiger treebank as training data, the next 5,000
sentences as development data, and the last 5,000
sentences as test data.

4.2 Implementation of the Generic Framework

We investigate the Averaged Perceptron and a Maxi-
mum Entropy ranker as the reranker R in the subtree
ranking framework. The Maximum Entropy ranker
model is optimized with a loss function which is
the negative log conditional likelihood of the ora-
cle trees relative to the candidate sets. In the case of
multiple oracles we optimize for the sum of the ora-
cle trees’ posterior probabilities (Charniak and John-
son, 2005).

In our setup the parsing algorithm is identical
to the perceptron-based forest reranker of Huang
(2008) because both the Averaged Perceptron and
the Maximum Entropy rankers score the local sub-
tree candidates independently of each other using

1Note that it contains less sentences and a slightly modified
annotation schema than the Penn Treebank.

1041



a linear model. There is no need to compute the
global normalization constant of the Maximum En-
tropy model because we only need the ranking and
not the probabilities. Hence the difference is in how
to train the ranker model.

We experimented with both the ’oracle subtree’
and the ’base system ranking’ selection strategies
(see Section 3).

4.3 Five Methods for Forest-based Reranking
We conducted comparative experiments employing
the proposed subtree ranking approach and state-of-
the-art methods for forest reranking. Note that they
are equivalent in parsing time as each of them uses
beam-search with a linear classifier, on the other
hand they are radically different in their training.

• The original perceptron-based forest reranker
of Huang (2008) (’perceptron with global train-
ing’).

• The same method employing the early-update
updating mechanism instead of the global up-
date. Wang and Zong (2011) reported a signif-
icant gain using this update over the standard
global update (’perceptron with early update’).

• Similar to learning a perceptron at the global
level and then applying it at local decisions,
we can train a Maximum Entropy ranker at the
global level utilizing the n-best full parse can-
didates of the base parser, then use this model
for local decision making. So we train the
standard n-best rerankers (Charniak and John-
son, 2005) and then apply them in the beam-
search-based Viterbi parser (’n-best list train-
ing’). Applying the feature weights adjusted in
this approach in the forest-based decoding out-
performs the standard n-best list decoding by
an F-score of 0.3 on the German dataset.

• The subtree ranker method using the Averaged
Perceptron reranker. This is different from the
’perceptron with global training’ as we conduct
updates at every local decision point and we do
offline training (’subtree ranking by AvgPer’).

• The subtree ranker method using Maximum
Entropy training (’subtree ranking by Max-
Ent’).

We (re)implemented these methods and used the
same forests and the same feature sets for the com-
parative experiments.

4.4 Implementation Details

We used the first-stage PCFG parser of Charniak
and Johnson (2005) for English and BitPar (Schmid,
2004) for German. BitPar employs a grammar engi-
neered for German (for details please refer to Farkas
et al. (2011)). These two parsers are state-of-the-art
PCFG parsers for English and German, respectively.
For German the base parser and the reranker oper-
ate on the conflation of constituent labels and gram-
matical functions. For English, we used the forest
extraction and pruning code of Huang (2008). The
pruning removes hyperedges where the difference
between the cost of the best derivation using this hy-
peredge and the cost of the globally best derivation
is above some threshold. For German, we used the
pruned parse forest of Bitpar (Schmid, 2004). Af-
ter computing the posterior probability of each hy-
peredge given the input sentence, Bitpar prunes the
parse forest by deleting hyperedges whose posterior
probability is below some threshold. (We used the
threshold 0.01).

We employed an Averaged Perceptron (for ’per-
ceptron with global training’, ’perceptron with early
update’ and ’subtree ranking by AvgPer’) and a
Maximum Entropy reranker (for ’subtree ranking
by MaxEnt’ and ’n-best list training’). For the per-
ceptron reranker, we used the Joshua implementa-
tion2. The optimal number of iterations was deter-
mined on the development set. For the Maximum
Entropy reranker we used the RankMaxEnt imple-
mentation of the Mallet package (McCallum, 2002)
modified to use the objective function of Charniak
and Johnson (2005) and we optimized the L2 regu-
larizer coefficient on the development set.

The beam-size were set to 15 (the value suggested
by Huang (2008)) during parsing and the training
of the ’perceptron with global training’ and ’percep-
tron with early update’ models. We used k = 3 for
training the ’subtree ranking by AvgPer’ and ’sub-
tree ranking by MaxEnt’ rankers (see Section 5 for
a discussion on this).

In the English experiments, we followed (Huang,

2http://joshua.sourceforge.net/Joshua/

1042



Tiger test WSJ dev WSJ test WB
base system (1-best) 76.84 (65.91) 89.29 88.63 81.86
oracle tree 90.66 (80.38) 97.31 97.30 94.18

Table 1: The lower and upper bounds for rerankers on the four evaluation datasets. The numbers in brackets refers to
evaluation with grammatical function labels on the German dataset.

Tiger test WSJ dev WSJ test WB
perceptron with global training 78.39 (67.79) 90.58 89.60 82.87
perceptron with early update 78.83 (68.05) 90.81† 90.01 83.03†
n-best list training 78.75 (68.04) 90.89 90.11 83.55
subtree ranking by AvgPer 78.54† (67.97†) 90.65† 89.97 83.04†
subtree ranking by MaxEnt 79.36 (68.72) 91.14 90.32 83.83

Table 2: The results achieved by various forest rerankers. The difference between the scores marked by † and the
’perceptron with global training’ were not statistically significant with p < 0.005 according to the the McNemar test.
All other results are statistically different from this baseline.

2008) and selectively re-implemented feature tem-
plates from (Collins, 2000) and Charniak and John-
son (2005). For German we re-implemented the
feature templates of Versley and Rehbein (2009)
which is the state-of-the-art feature set for German.
It consists of features constructed from the lexical-
ized parse tree and its typed dependencies along
with features based on external statistical informa-
tion (such as the clustering of unknown words ac-
cording to their context of occurrence and PP attach-
ment statistics gathered from the automatically POS
tagged DE-WaC corpus, a 1.7G words sample of the
German-language WWW). We filtered out rare fea-
tures which occurred in less than 10 forests (we used
the same non-tuned threshold for the English and
German training sets as well).

We also re-implemented the oracle extraction pro-
cedure of Huang (2008) and extended its convolu-
tion and translation operators for using the base sys-
tem score as tie breaker.

4.5 Results

Table 1 shows the results of the 1-best parse of the
base system and the oracle scores – i.e. the lower
and upper bounds for the rerankers – for the four
evaluation datasets used in our experiments. The
German and the weblog datasets are more difficult
for the parsers.

The following table summarizes the characteris-
tics of the subtree ranker’s training sample of the

German and English datasets by employing the ’or-
acle subtree’ selection strategy:

Tiger train WSJ train
#candidate lists 266,808 1,431,058
avg. size of cand. lists 3.2 5.7
#features before filtering 2,683,552 22,164,931
#features after filtering 94,164 858,610

Table 3: The sizes of the subtree ranker training datasets
at k = 3.

Using this selection strategy the training dataset
is smaller than the training dataset of the n-best list
rankers – where offline trainers are employed as well
– as the total number of candidates is similar (and
even less in the Tiger corpus) while there are fewer
firing features at the subtrees than at full trees.

Table 2 summarizes the results achieved by vari-
ous forest rerankers. Both subtree rankers used the
oracle subtrees as the selection strategy of Algo-
rithm 2. The ’subtree ranking by MaxEnt’ method
significantly outperformed the perceptron-based for-
est reranking algorithms at each of the datasets and
seems to be more robust as its advantage on the out-
domain data ’WB’ is higher compared with the in-
domain ’WSJ’ datasets. The early update improves
the perceptron based forest rerankers which is in line
with the results reported by Wang and Zong (2011).
The ’n-best list training’ method works surprisingly
well. It outperforms both perceptron-based forest

1043



rerankers on the English datasets (while achieving a
smaller F-score than the perceptron with early up-
date on the Tiger corpus) which demonstrates the
potential of utilizing larger candidate lists for dis-
criminative training of rerankers. The comparison of
the ’subtree ranking by AvgPer’ row and the ’subtree
ranking by MaxEnt’ row shows a clear advantage of
the Maximum Entropy training mechanism over the
Averaged Perceptron.

Besides the ’oracle subtree’ selection strategy we
also experimented with the ’base system ranking’
selection strategy with subtree Maximum Entropy
ranker. Table 4 compares the accuracies of the two
strategies. The difference between the two strate-
gies varies among datasets. In the German dataset,
they are competitive and the prediction of grammati-
cal functions benefits from the ’base system ranking’
strategy, while it performs considerably worse at the
English datasets.

Tiger test WSJ test WB
oracle SS 79.36 (68.72) 90.32 83.83
base sys SS 79.34 (68.84) 89.97 83.34

Table 4: The results of the two selection strategies. Using
the oracle trees proved to be better on each of the datasets.

Extracting candidate lists from each of the local
decision points might seem to be redundant. To gain
some insight into this question, we investigated the
effect of training instance filtering strategies on the
Tiger treebank. We removed the training instances
from the training sample T where the F-score of
the oracle (sub)tree against the gold standard tree is
less than a certain threshold (this data selection pro-
cedure was inspired by Li and Khudanpur (2008)).
The idea behind this data selection is to eliminate
bad training examples which might push the learner
into the wrong direction. Figure 1 depicts the results
on the Tiger treebank as a function of this data se-
lection threshold.

With this data selection strategy we could further
gain 0.22 F-score percentage points achieving 79.58
(68.87) and we can conclude that omitting candidate
sets far from the gold-standard tree helps training.
Figure 1 also shows that too strict filtering hurts the
performance. The result with threshold=90 is worse
than the result without filtering. We should note
that similar data selection methods can be applied

0 20 40 60 8079
.2

5
79

.3
5

79
.4

5
79

.5
5

data filtering threshold (F−score)

P
A

R
S

E
V

A
L 

F
−

sc
or

e

Figure 1: The effect of data selection on the Tiger test set.

to each of the baseline systems and the comparison
to them would be fair with conducting that. Thus
we consider our results without data selection to be
final.

5 Discussion

We experimentally showed in the previous section
that the subtree forest reranking approach with Max-
imum Entropy models significantly outperforms the
perceptron-based forest reranking approach. This
improvement must be the result of differences in the
training algorithms because there is no difference
between the two approaches at parse time, as we dis-
cussed in Section 4.2.

There are two sources of these improvements.
(i) We use local subtrees as training instances in-
stead of using the global parses exclusively. The
most important difference between the training of
the perceptron-based forest reranker and the subtree
forest reranker is that we train on subtrees (extract
candidate sets) outside of the Viterbi parses as well,
i.e. our intuition is that the training of the discrimi-
native model can benefit from seeing good and bad
subtrees far from the best parses as well. (ii) The
subtree ranker framework enables us to employ the
Maximum Entropy ranker on multiple candidates,
which usually outperforms the Averaged Perceptron.

The results of Table 2 can be considered as two
paths from the ’perceptron with global training’
to the ’subtree ranking by MaxEnt’ applying these

1044



sources of improvements. If we use (i) and stay with
the Averaged Perceptron as learning algorithm we
get ’subtree ranking by AvgPer’. If we additionally
replace the Averaged Perceptron by Maximum En-
tropy – i.e. follow (ii) – we arrive at ’subtree ranking
by MaxEnt’. On the other hand, the ’n-best training’
uses global trees and Maximum Entropy for train-
ing, so the reason of the difference between ’per-
ceptron with global training’ and ’n-best training’ is
(ii). Then we arrive at ’subtree ranking by MaxEnt’
by (i). This line of thoughts and the figures of Ta-
ble 2 indicate that the added value of (i) and (ii) are
similar in magnitude.

5.1 Error Analysis

For understanding the added value of the proposed
subtree ranking method, we manually investigated
sentences from the German development set and
compared the parses of the ’perceptron with global
training’ with the ’subtree ranking by MaxEnt’. We
could not found any linguistic phenomena which
was handled clearly better by the subtree ranker3,
but it made considerably more fixes than errors in
the following cases:

• the attachment of adverbs,

• the unary branching verbal phrases and

• extremely short sentences which does not con-
tain any verb (fragments).

5.2 Novel Opportunities with the Subtree
Ranking Framework

A generalization issue of the subtree ranking ap-
proach is that it allows to use any kind of feature
representation and arbitrary aggregation of local
features. The basic assumption of training on the
global (sentence) level in the perceptron reranking
framework is that the feature vector of a subtree is
the sum of the feature vectors of the children and
the features extracted from the root of the subtree
in question. This decomposability assumption pro-
vides a fine framework in the case of binary features
which fire if a certain linguistic phenomenon occurs.
On the other hand, this is not straightforward in the

3We believe that this might be the case only if we would
introduce new information (e.g. features) for the system.

presence of real valued features. For example, Ver-
sley and Rehbein (2009) introduce real-valued fea-
tures for supporting German PP-attachment recogni-
tion – the mutual information of noun and preposi-
tion co-occurrence estimated from a huge unlabeled
corpus – and this single feature template (about 80
features) could achieve a gain of 1 point in phrase
structure parsing accuracy while the same improve-
ment can be achieved by several feature templates
and millions of binary features. The aggregation of
such feature values can be different from summing,
for instance the semantics of the feature can demand
averaging, minimum, maximum or introducing new
features etc. Another opportunity for extending cur-
rent approaches is to employ utility functions on top
of the sum of the binary feature values. Each of these
extensions fits into the proposed framework.

The subtree ranking framework also enables the
usage of different models at different kinds of
nodes. For example, different models can be trained
for ranking subtress headed by noun phrases and for
verb phrases. This is not feasible in the perceptron-
based forest ranker which sums up features and up-
dates feature weights at the sentence level while the
ranker R in Algorithm 2 can refer to several models
because we handle local decisions separately. This
approach would not hurt parsing speed as one par-
ticular model is asked at each node, but it multiplies
memory requirements. This is an approach which
the subtree ranking framework allows, but which
would not fit to the global level updates of the per-
ceptron forest rerankers.

As a first step in this direction of research we ex-
perimented with training three different Maximum
Entropy models using the same feature representa-
tion, the first only on candidate lists extracted from
noun phrase nodes, the second on verb phrase nodes
and the third on all nodes (i.e. the third model is
equivalent to the ’subtree MaxEnt’ model). Then at
prediction time, we ask that model (out of the three)
which is responsible for ranking the candidates of
the current type of node. This approach performed
worse than the single model approach achieving an
F-scores of 79.24 (68.46) on the Tiger test dataset.
This negative results – compared with 79.36 (68.72)
achieved by a single model – is probably due to data
sparsity problems. The amount of training samples
for noun phrases is 6% of the full training sample

1045



and it seems that a better model can be learned from
a much bigger but more heterogeneous dataset.

5.3 On the Efficiency of Subtree Ranking

In subtree ranking, we extract a larger number
of training instances (candidate lists) than the
perceptron-based approach which extracts exactly
one instance from a sentence. Moreover, the can-
didate lists are longer than the perceptron-based ap-
proach (where 2 “candidates” are compared against
each other). Training on this larger set (refer Table 3
for concrete figures) consumes more space and time.

In our implementation, we keep the whole train-
ing dataset in the memory. With this implementation
the whole training process (feature extraction, can-
didate extraction and training the Maximum Entropy
ranker) takes 3 hours and uses 10GB of memory at
k = 1 and it takes 20 hours and uses 60GB of mem-
ory at k = 3 ((Huang, 2008) reported 5.3 and 27.3
hours at beam-sizes of 1 and 15 respectively but it
used only 1.2GB of memory). The in-depth investi-
gation of the effect of k is among our future plans.

6 Conclusions

We presented a subtree ranking approach to parse
forest reranking, which is a generalization of current
reranking methods. The main advantages of our ap-
proach are: (i) The candidate lists used during train-
ing are very similar to those used during parsing,
which leads to better parameter optimization. (ii)
Arbitrary ranking methods can be applied in our ap-
proach. (iii) The reranking models need not to be
decomposable.

We evaluated our parse reranking approach on
German and English phrase structure parsing tasks
and compared it to various state-of-the-art rerank-
ing approaches such as the perceptron-based for-
est reranker (Huang, 2008). The subtree reranking
approach with a Maximum Entropy model signifi-
cantly outperformed the other approaches.

We conjecture two reasons for this result: (i) By
training on all subtrees instead of Viterbi parses or
n-best parses only, we use the available training
data more effectively. (ii) The subtree ranker frame-
work allows us to use a standard Maximum Entropy
learner in parse-forest training instead of the Percep-
tron, which is usually superior.

Acknowledgements

We thank Liang Huang to provide us the modi-
fied version of the Charniak parser, which output a
packed forest for each sentence along with his forest
pruning code.

This work was founded by the Deutsche
Forschungsgemeinschaft grant SFB 732, project D4.

1046



References

Sabine Brants, Stefanie Dipper, Silvia Hansen, Wolfgang
Lezius, and George Smith. 2002. The TIGER tree-
bank. In Proceedings of the Workshop on Treebanks
and Linguistic Theories, pages 24–41.

Eugene Charniak and Mark Johnson. 2005. Coarse-to-
fine n-best parsing and maxent discriminative rerank-
ing. In Proceedings of the 43rd Annual Meeting on
Association for Computational Linguistics, ACL ’05,
pages 173–180.

Michael Collins and Brian Roark. 2004. Incremental
parsing with the perceptron algorithm. In Proceedings
of the 42nd Meeting of the Association for Computa-
tional Linguistics (ACL’04), Main Volume, pages 111–
118.

Michael Collins. 2000. Discriminative reranking for nat-
ural language parsing. In Proceedings of the Seven-
teenth International Conference on Machine Learning,
ICML ’00, pages 175–182.

Hal Daumé, III, John Langford, and Daniel Marcu. 2009.
Search-based structured prediction. Machine Learn-
ing, 75(3):297–325, June.

Richàrd Farkas, Bernd Bohnet, and Helmut Schmid.
2011. Features for phrase-structure reranking from
dependency parses. In Proceedings of the 12th Inter-
national Conference on Parsing Technologies, pages
209–214.

John Guiver and Edward Snelson. 2008. Learning to
rank with softrank and gaussian processes. In Pro-
ceedings of the 31st annual international ACM SIGIR
conference on Research and development in informa-
tion retrieval, SIGIR ’08, pages 259–266.

Keith Hall. 2007. K-best spanning tree parsing. In Pro-
ceedings of the 45th Annual Meeting of the Association
of Computational Linguistics, pages 392–399, June.

Katsuhiko Hayashi, Taro Watanabe, Masayuki Asahara,
and Yuji Matsumoto. 2011. Third-order varia-
tional reranking on packed-shared dependency forests.
In Proceedings of the 2011 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1479–1488.

Liang Huang. 2008. Forest reranking: Discriminative
parsing with non-local features. In Proceedings of
ACL-08: HLT, pages 586–594.

T. Joachims. 2002. Optimizing search engines using
clickthrough data. In ACM SIGKDD Conference on
Knowledge Discovery and Data Mining (KDD), pages
133–142.

Zhifei Li and Sanjeev Khudanpur. 2008. Large-scale
discriminative n-gram language models for statistical
machine translation. In Proceedings of the 8th AMTA
conference, pages 133–142.

Z. Li and S. Khudanpur, 2009. GALE book chapter on
”MT From Text”, chapter Forest reranking for machine
translation with the perceptron algorithm.

Hang Li. 2011. Learning to Rank for Information Re-
trieval and Natural Language Processing. Synthesis
Lectures on Human Language Technologies. Morgan
& Claypool Publishers.

David M. Magerman. 1995. Statistical decision-tree
models for parsing. In Proceedings of the 33rd Annual
Meeting of the Association for Computational Linguis-
tics, pages 276–283, June.

Andrew Kachites McCallum. 2002. Mal-
let: A machine learning for language toolkit.
http://mallet.cs.umass.edu.

Gergely Neu and Csaba Szepesvári. 2009. Training
parsers by inverse reinforcement learning. Machine
Learning, 77(2–3):303–337.

Helmut Schmid. 2004. Efficient parsing of highly am-
biguous context-free grammars with bit vectors. In
Proceedings of Coling 2004, pages 162–168.

Libin Shen, Anoop Sarkar, and Franz Josef Och. 2004.
Discriminative reranking for machine translation. In
Daniel Marcu Susan Dumais and Salim Roukos, ed-
itors, HLT-NAACL 2004: Main Proceedings, pages
177–184.

Kristina Toutanova, Aria Haghighi, and Christopher D.
Manning. 2008. A global joint model for semantic
role labeling. Computational Linguistics, 34(2):161–
191.

Joseph P. Turian, Benjamin Wellington, and I. Dan
Melamed. 2006. Scalable discriminative learning for
natural language parsing and translation. In NIPS,
pages 1409–1416.

Yannick Versley and Ines Rehbein. 2009. Scalable dis-
criminative parsing for german. In Proceedings of the
11th International Conference on Parsing Technolo-
gies (IWPT’09), pages 134–137.

Zhiguo Wang and Chengqing Zong. 2011. Parse rerank-
ing based on higher-order lexical dependencies. In
Proceedings of 5th International Joint Conference on
Natural Language Processing, pages 1251–1259.

Ralph Weischedel, Eduard Hovy, Martha Palmer, Mitch
Marcus, Robert Belvin, Sameer Pradhan, Lance
Ramshaw, and Nianwen Xue, 2011. Handbook of Nat-
ural Language Processing and Machine Translation.,
chapter OntoNotes: A Large Training Corpus for En-
hanced Processing.

1047


