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Abstract text into EDUs (known asliscourse segmentation)
S and (ii) linking the EDUs into a labeled hierarchical
We propose a complete probabilistic discrim- tree structure (known afiscourse parsing).

inative framework for performing sentence-

level discourse analysis. Our framework com-

prises a discourse segmenter, based on a bi- 1
nary classifier, and a discourse parser, which OO lanalysts say
applies an optimal CKY-like parsing algo-

rithm to probabilities inferred from a Dynamic
Conditional Random Field. We show on two
corpora that our approach outperforms the Figure 1: Discourse structure of a sentence in RST-DT.

state-of-the-art, often by a wide margin.

ATTRIBUTION

[The bank was hamstrung i it eforts] [t face th challenges of  changing market by s ks to the govemment |,

Previous studies on discourse analysis have been
quite successful in identifying what machine learn-
ing approaches and what features are more useful for
Automatic discourse analysis has been shown #mutomatic discourse segmentation and parsing (Sori-
be critical in several fundamental Natural Lan-cutand Marcu, 2003; Subba and Eugenio, 2009; du-
guage Processing (NLP) tasks including text gene¥erle and Prendinger, 2009). However, all the pro-
ation (Prasad et al., 2005), summarization (Marcyposed solutions suffer from at least one of the fol-
2000b), sentence compression (Sporleder and Lapwing two key limitations: first, they make strong
ata, 2005) and question answering (Verberne et alndependence assumptions on the structure and the
2007). Rhetorical Structure Theory (RST) (Manrabels of the resulting DT, and typically model the
and Thompson, 1988), one of the most influentiatonstruction of the DT and the labeling of the rela-
theories of discourse, posits a tree representation tidns separately; second, they apply a greedy, sub-
a discourse, known as a Discourse Tree (DT), asptimal algorithm to build the structure of the DT.
exemplified by the sample DT shown in Figure 1. In this paper, we propose a nesentence-level
The leaves of a DT correspond to contiguous atomidiscourse parser that addresses both limitations. The
text spans, also called Elementary Discourse Unitgucial component is a probabilistic discriminative
(EDUs) (three in the example). The adjacent EDUparsing model, expressed as a Dynamic Conditional
are connected by ehetorical relation (e.g., ELAB- Random Field (DCRF) (Sutton et al., 2007). By
ORATION), and the resulting larger text spans areepresenting thatructure and therelation of each
recursively also subject to this relation linking. Adiscourse tree constituent jointly and by explicitly
span linked by a rhetorical relation can be eithecapturing thesequential andhierarchical dependen-

a NUCLEUS or a SATELLITE depending on howcies between constituents of a discourse tree, our
central the message is to the author. Discourse an8ICRF model does not make any independence as-
ysis in RST involves two subtasks: (i) breaking thesumption among these properties. Furthermore, our

1 Introduction
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parsing model supports a bottom-up parsing algdterarchical dependencies between the constituents
rithm which is non-greedy and provably optimal. in the parsing model. Furthermore, SPADE relies
The discourse parser assumes that the input textly on lexico-syntactic features, and it follows a
has been already segmented into EDUs. As an addjenerative approach to estimate the model param-
tional contribution of this paper, we propose a novetters for the segmentation and the parsing models.
discriminative approach to discourse segmentatidBPADE was trained and tested on the RST-DT cor-
that not only achieves state-of-the-art performanceus (Carlson et al., 2002), which contains human-
but also reduces the time and space complexities laynotated discourse trees for news articles.
using fewer features. Notice that the combination Subsequent research addresses the question of
of our segmenter with our parser forms a completeow much syntax one really needs in discourse
probabilistic discriminative framework for perform- analysis. Sporleder and Lapata (2005) focus on
ing sentence-level discourse analysis. discourse chunking, comprising the two subtasks
Our framework was tested in a series of experief segmentation and non-hierarchical nuclearity as-
ments. The empirical evaluation indicates that ousignment. More specifically, they examine whether
approach to discourse parsing outperforms the statieatures derived via part of speech (POS) and chunk
of-the-art by a wide margin. Moreover, we show thigaggers would be sufficient for these purposes. Their
to be the case on two very different genres: news aresults on RST-DT turn out to be comparable to
ticles and instructional how-to-do manuals. SPADE without using any features from the syntac-
In the rest of the paper, after discussing relatetic tree. Later, Fisher and Roark (2007) demonstrate
work, we present our discourse parser. Then, wever 4% absolute “performance gain” in segmenta-
describe our segmenter. The experiments and thien, by combining the features extracted from the
corpora we used are described next, followed by syntactic tree with the ones derived via taggers. Us-
discussion of the key results and some error analysigg quite a large number of features in a binary log-
linear model they achieve the state-of-the-art seg-
2 Related work mentation performance on the RST-DT test set.

L . . . On the different genre ainstructional manuals,
Automatic discourse analysis has a long hlstoryS

see (Stede, 2011) for a detailed overview. Sorl-Ubba and Eugenio (2009) propose a shift-reduce
' ) o garser that relies on a classifier to find the appro-
cut and Marcu (2003) present the publicly availabl fate relation between two text seaments. Their
SPADE system that comes with probabilistic mod-Prate ek . -9 ) .
els for sentence-levdl discourse seamentation anchaSS|f|er is based on Inductive Logic Programming
. . gm ILP), which learns first-order logic rules from a
parsing based on lexical and syntactic features d

rived from the lexicalized syntactic tree of a sen.arge set of features including the linguistically rich

. . . X compositional semantics coming from a semantic
tence. Their parsing algorithm finds the most proba- .
arser. They show that the compositional seman-

ble DT for a sentence, where the probabilities of th . e

. ) . . cs improves the classification performance. How-

constituents are estimated by their parsing mOdee!fver their discourse parser implements a areedy an-
A constituent (e.g., ATTRIBUTION-NS[(1,2),3] in roa’ch (hence not o I?imal) angtheirclassgierdi)s/re?
Figure 1) in a DT has two components, first, the P P

bel denoting the relation and second, fEucture gards the sequence and hierarchical dependencies.

indicating which spans are being linked by the rela; Using RST-DT, Hemault et al. (2010) present

) ; tlhe HILDA system that comes with a segmenter
tion. The nuclearity statuses of the spans are bu'tnd 2 parser based on Support Vector Machines
into the relation labels (e.g., NS[(1,2),3] means th P bp

span (1.2) is the NUCLEUS and it comes beforg2 /0% | 108 SSOMPTET B 2 700 B0 BECe
span 3 which is the SATELLITE). SPADE is limited y

) . tures used in SPADE, but with more context. The
in several ways. It makes an independence assump-

tion between the label and the structure while mo Jiscourse parser builds a DT iteratively utilizing two

eling a constituent. and it ianores the sequential a VM classifiers in each iteration: (i) a binary classi-
g ’ 9 d ler decides which of the two adjacent spans to link,

Thitp:/iwww.isi.edu/licensed-sw/spade/ and (ii) a multi-class classifier then connects the se-

905



lected spans with the appropriate relation. They usamong the candidate discourse trees.
a very large set of features in their parser. How- _
ever, taking a radically-greedy approach, they mod&l  Parsing Model
structure and relations separately, and ignore the s&-DT can be represented as a set of constituents
guence dependencies in their models. of the form R[i, m, j], which denotes a rhetorical
Recently, there has been an explosion of interegglation R that holds between the span containing
in Conditional Random Fields (CRFs) (Lafferty etEDUs: throughm, and the span containing EDUs
al., 2001) for solving structured output classificationn+1 throughj. For example, the DT in Figure 1
problems, with many successful applications in NLRan be written as{ELABORATION-NS[1,1,2],
including syntactic parsing (Finkel et al., 2008), synATTRIBUTION-NS[1,2,3];. Notice that a rela-
tactic chunking (Sha and Pereira, 2003) and digion R also indicates the nuclearity assignments
course chunking (Ghosh et al., 2011) in Penn Digf the spans being connected, which can be one
course Treebank (Prasad et al., 2008). CRFs beinh NUCLEUS-SATELLITE (NS), SATELLITE-
discriminative approach to sequence modeling (i.eNUCLEUS (SN) and NUCLEUS-NUCLEUS (NN).
directly models the conditionaly|x, ©)), have sev- ~ Given the model parameter® and a candi-
eral advantages over its generative counterparts sudate DT 7', for all the constituents: in 7', our
as Hidden Markov Models (HMMs) and Markov parsing model estimates tte@nditional probabil-
Random Fields (MRFs), which first model the jointity P(c|C,©), which specifies the joint probabil-
p(y, x|©), then infer the conditional(y|x, ©)). Key ity of the relation R and the structurei,m, j]
advantages include the ability to incorporate arbiassociated with the constituemt given thatc
trary overlapping local and global features, and thbas a set of sub-constituents. For instance,
ability to relax strong independence assumptions. for the DT shown in Figure 1, our model
has been advocated that CRFs are generally momuld estimateP(R'[1,1,2]|©), P(R'[2,2,3]|©),
accurate since they do not “waste effort” modeling?(R'[1,2, 3]|R"[1,1,2],©) etc. for all R’ and R”
complex distributions (i.e.p(x)) that are not rele- ranging on the set of relations. In what follows we

vant for the target task (Murphy, 2012). describe our probabilistic parsing model to compute
all these conditional probabilitie®(c|C,0). We
3 The Discourse Parser will demonstrate how our approach not only models

the structure and the relation jointly, but it also cap-

Assuming that a sentence is already segmented ini@reslinear sequence dependencies andhierarchical
asequence of EDUs, e, . .. e,, manually or by an dependencies between constituents of a DT.
automatic segmenter (see Section 4), the discourseQur novel parsing model is the Dynamic Condi-
parsing problem is to decide which spans to cortional Random Field (DCRF) (Sutton et al., 2007)
nect (i.e.,structure of the DT) and which relations shown in Figure 2. A DCRF is a generalization
(i.e., labels of the internal nodes) to use in the pro-of linear-chain CRFs to represent complex interac-
cess of building the hierarchical DT. To build thetion between labels, such as when performing mul-
DTs effectively, a common assumption is that theyiple labeling tasks on the same sequence. diire
arebinary trees (Soricut and Marcu, 2003; duVerleserved nodesWV; in the figure are the text spans.
and Prendinger, 2009). That is, multi-nuclear reA text span can be either an EDU or a concatena-
lations (e.g., LIST, JOINT, SEQUENCE) involving tion of a sequence of EDUs. Ttsiructure nodes
more than two EDUs are mapped to a hierarchis;e{0, 1} in the figure represent whether text spans
cal right-branching binary tree. For example, a flatv;_; andW; should be connected or not. The
LIST(e1,e2,e3,¢4) is mapped to a right-branching lation nodesR; {1 ... M} denote the discourse re-
binary treeL1ST(e1, LIST (e2, LIST (e3,€4))). lation between spari§’;_; andW;, given that)/ is

Our discourse parser has two components. Ttlike total number of relations in our relation set. No-
first component, thparsing model, assigns a proba- tice that we now model the structure and the relation
bility to every possible DT. The second componenipintly and also take the sequential dependencies be-
the parsing algorithm, finds the most probable DT tween adjacent constituents into consideration.
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rwion  quence to which we apply our DCRF model.
" We obtain the probabilities of the constituents
Structure R[1,1,2], R[2,2,3] andR[3, 3, 4] by computing the
™ posterior marginalsP (R, S2=1le1, €2, €3, €4, ©),
Span seque- P(Rs, S3=1le1, ez, e3,€4,0) and P(Ry, Sy=1e,
reeatleeli o9 e3,e4,0), respectively. At the second level
(Figure 4(b)), there are three possible sequences
Figure 2: A Dynamic CRF as a discourse parsing modet.61:2’€3’64), (e1,e9:3,e4) and(eq, es,€3.4). When
the DCRF model is applied to the sequence

(e1:2,€e3,€e4), We obtain the probabilities of the
the constituents (i.e.P(c|C,0)) of all candidate const'ituentR[1,2,3] by computing t_he posterior
DTs for a sentence by applying the DCRF parslarginalP(Rs, S3=1|e1:2, e3, 4, ©). Likewise, the
ing model recursively at different levels, and byPCSteror marginalsP (R, Sz3=ller, €23, €4, 0)
computing the posterior marginals of the relation@Nd’ (14, Sa=1le1, €23, e4, ©) in the DCRF model
structure pairs. To illustrate, consider the exampl@PPlied to the sequenceey, ez, ¢4) represents
sentence in Figure 1 where we have three EDUSE Probabiliies of the constituents[1, 1, 3]

¢1.¢o and e, The DCRF model for the first 21d R[2,3,4], respectively. — Similarly, we at-
level is shown in Figure 3(a), where the (observeogIn the probabilities of the ponstltuem[z, 2,4]
EDUs are the spans in the span sequence. GivER™M the DCRF model applied to the sequence
this model, we obtain the probabilities of the cond €1, €2, €3:4) by computing the posterior marginal
stituentsR[1, 1, 2] and R[2, 2, 3] by computing the P(Rs4, S3:4=1le1, e2,€3.4,0). At the third level
posterior marginalsP(Rs, So=1e1, e, ¢3,0) and (Figure 4(c)), there are three poss@le sequences
P(Rs, S3=1|ey, e2, e3, ©), respectively. At the sec- (€13, €4), (€1, €2.4) @nd(e1:2, €3.4), to which we ap-
ond level (see Figure 3(b)), there are two possPIy our model and acquire the probabilities of the
ble span sequencés;.o, e3) and(ey, ea:3). In the const|tu_entsR[_1,3,4], R_[1’1’4] and R[1’27_4] by

first sequence, EDUs; and e, are linked into computing their respective posterior marginals.

a larger span, and in the second one, EDids
and eg are connected into a larger span. We ap-
ply our DCRF model to the two possible span se-
guences and obtain the probabilities of the con
stituents R[1,2,3] and R[1,1,3] by computing
the posterior marginal®B(R3, Ss=1|e1.2, e3, ©) and

P(Ry.3, S2.3=1|e1, e2.3, ©), respectively. (=) Q y
A4 6%
&)

A | A B DU G O0C
/OR) | /O f&
3 a e @ e e @ Figure 4: DCRF model applied to the sequences at differ-
@) (b)

ent levels of a discourse tree. (a) A sequence at the first
level, (b) Three possible sequences at the second level,
Figure 3: DCRF model applied to the sequences at diffefe) Two possible sequences at the third level.
ent levels in the example in Fig. 1. (a) A sequence at the
first level (b) Two possible sequences at the second level. Our DCRF model is designed using MALLET
(McCallum, 2002). In order to avoid overfitting we
To further clarify the process, let us as-regularize the DCRF model with, regularization
sume that the sentence contains four EDUand learn the model parameters using the limited-
e1,e9,e3 and eq. At the first level (Fig- memory BFGS (L-BFGS) fitting algorithm. Since
ure 4(a)), there is only one possible span sexact inference can be intractable in DCRF models,

We can obtain the conditional probabilities of
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we perform approximate inference (to compute thempirically acquired lexical N-gram dictionary is
posterior marginals) using tree-based reparametemore effective than a fixed list of connectives, since
zation (Wainwright et al., 2002). this approach is domain independent and capable
of capturing non-lexical cues such as punctuations.
To build thelexical N-gram dictionary empirically
Crucial to parsing performance is the set of feafrom the training corpus we consider the first and
tures used, as summarized in Table 1. Note th#st N tokens (Ve{1,2}) of each span and rank
these features are defined on two consecutive spahem according to their mutual informatfmvith
W;—1 andW; of a span sequence. Most of the feathe two labels Sructure and Relation. Intuitively,
tures have been explored in previous studies. Howke most informative cues are not only the most fre-
ever, we improve some of these as explained belowuent, but also the ones that are indicative of the la-
Organizational features encode useful informa-bels in the training data (Blitzer, 2008). In addition
tion about the surface structure of a sentence &s the lexical N-grams we also encoB®S tags of
shown by (duVerle and Prendinger, 2009). We medhe first and lastV tokens (Ve{1, 2}) as features.
sure the length of the spans in terms of the number of
EDUs andtokens in it. However, in order to better 2 S'“V'\
adjust to the length variations, rather than comput-
ing their absolute numbers in a span, we choose to ;

3.1.1 Features Used in the Parsing Model

S (hamstrung) N ! N‘P \/‘P :
H
NNS VBP

VP

measure theirelative numbers with respect to their ~ /\ [ anabstssay g
total numbers in the sentence. For example, in a sef- " ** /VP\
tence containing three EDUs, a span containing tw: ven ’ 7

W Ihptefors] ™

of these EDUs will have a relative EDU number of v e
; PRPSits) NNS (efforts)[S (to) |y ,L,P PP
0.67. We also measure thdistances of the Spans mevmcwshmsngnks ety Jp AAN

Y
from the beginning and to the end of the sentence in 10 /v‘v & W
B

AN
N
terms of the number of EDUs. W e
DT%NS IN/;\“’
// Tﬁﬁ N\

[to face the challenges of a” changing market by its links to the government]z

8 organizational features

Relative number of EDUs igpan 1 andspan 2.

Relative number of tokens #pan 1 andspan 2.

Distances of span 1 in EDUs to theginning and to theend.
Distances of span 2 in EDUs to theginning and to theend.
8 N-gram features

Beginning andend lexical N-grams in span 1.

Beginning andend lexical N-grams in span 2.

D = { ((1, efforts/NP) > (2, to/S)), ((3, say/S) > (1, hamstrung/S)) }

Figure 5: A discourse segmented lexicalized syntactic
tree. Boxed nodes form the dominance Bet

Beginning andend POS N-grams in span 1.
Beginning andend POS N-grams in span 2.

5 dominance set features

Syntactic labels of theead node and thattachment node.
Lexical heads of théead node and thattachment node.
Dominance relationship between the two text spans.

2 contextual features

Previous andnext feature vectors.

2 substructure features

Root nodes of théeft andright rhetorical subtrees.

Table 1: Features used in the DCRF parsing model.

Discourse connectives (e.gpecause, but), when
present, signal rhetorical relations between two tex . . .
segments (Knott and Dale, 1994: Marcu, ZOOOaEance relationship between the EDUs involved. The

However, previous studies (e.g., Hernault et al

Dominance seextracted from the Discourse Seg-
mented Lexicalized Syntactic Tree (DS-LST) (Sori-
cut and Marcu, 2003) has been shown to be a very
effective feature in SPADE. Figure 5 shows the DS-
LST for our running example (see Figure 1 and 3).
Ina DS-LST, each EDU except the one with the root
node must have bead node Ny that is attached to
anattachment node V4 residing in a separate EDU.
A dominance seb (shown at the bottom of Figure 5
for our example) contains theatachment points of
the EDUs in a DS-LST. In addition to the syntactic
and lexical information of the head and attachment
n[odes, each element i also represents a domi-

DU with N4 dominates the EDU wittVg. In or-

(2010), Biran and Rambow (2011)) suggest that an Z2In contrast, HILDA ranks the N-grams by frequencies.
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der to extract dominance set features for two conseprobability of a constituenR[i, m, j], wherem =
utive spans;.; ande; 1., we first computeD from  argmaz j<i<; P(R[i, k, j]).
the DS-LST of the sentence. We then extract the In contrast to HILDA which implements a greedy
element fromD that holds across the EDUsand algorithm, our approach finds a DT that is glob-
j + 1. In our running example, for the spasisand ally optimal. Our approach is also different from
ez (Figure 3(a)), the relevant dominance set eleme®PADE'’s implementation. SPADE first finds the
is (1, effortyNP)>(2, to/S). We encode the syntac- tree structure that is globally optimal, then it assigns
tic labels and lexical heads &f; and N4 and the the most probableelations to the internal nodes.
dominance relationship (i.e., which of the two span®ore specifically, the celli, j| in SPADE's DPT
is dominating) as features in our model. stores the probability of a constitueit|:, m, j],
We also incorporate momntextualinformation wherem = argmaz ;<ix<;P([i, k, j]). Disregard-
by including the above features computed for théng the relation labeR while building the DPT, this
neighboring span pairs in the current feature vectoapproach may find a tree thatist globally optimal.
We incorporatehierarchical dependencies be-
tween constituents in a DT by means of theb- 4 The Discourse Segmenter

structure features. For the two adjacent spans _ .
and e; .., we extract the roots of the rhetoricalQUr discourse parser above assumes that the input

subtrees spanning ovey,; (left) ande;. 1. (right). sgnter_lces have been already _segmented into ED_Us.
In our example (see Figure 1 and Figure 3 (b))_§|nce it has been shown that discourse segmentation

the root of the rhetorical subtree spanning oves is a primary source of inaccuracy for discourse pars-

is ELABORATION-NS. However, this assumes theld (Sericut and Marcu, 2003), we have developed
presence of a labeled DT which is not the case whefHl OWn segmenter, that not only achieves state-of-
we apply the parser to a new sentence. This probleffié-art performance as shown later, but also reduces
can be easily solved by looping twice through build!h€ time complexity by using fewer features.

ing the model and the parsing algorithm (described OUr segmenter implements a binary classifier to
below). We first build the model without consideringdecide for each word (except the last word) in a sen-
the substructure features. Then we find the optim&"Ce, whether to put an EDU boundafyer that
DT employing our parsing algorithm. This interme-Word. We use a Logistic Regression (LR) (i.., dis-
diate DT will now provide labels for the substruc-¢riminative) model with/; regularization and learn
tures. Next we can build a new, more accurate mod#}€ model parameters using the L-BFGS algorithm,
by including the substructure features, and run agafhich gives quadratic convergence rate. To avoid

the parsing algorithm to find the final optimal DT. overfitting, we use 5-fold cross validation to learn
the regularization strength parameter from the train-

3.2 Parsing Algorithm ing data. We also use a simpbagging technique

Our parsing model above assigns a conditional pro§Breiman, 1996) to deal with the sparsity lajund-
ability to every possible DT constituent for a sen@'y t2gs. Note that, our first attempt at this task im-
tence, the job of the parsing algorithm is to find th@lemented a linear-chain CRF model to capture the

most probable DT. Formally, this can be written as S€duence dependencies between the tags in a dis-
DT* = argmaz prP(DT|O) criminative way. However, the binary LR classifier,

Our discourse parser implements a probabilistitSing the same features, not only outperforms the
CKY-like bottom-up algorithm for computing the CRF model, but also reduces the space complexity.

most likely parse of a sentence using dynamic pro- . .
gramming: see (Jurafsky and Martin, 2008) for a4'l Features Used in the Segmentation Model
description. Specifically, witm number of EDUs Our set of features for discourse segmentation are
in a sentence, we use the upper-triangular porostly inspired from previous studies but used in a
tion of the n x n Dynamic Programming Table novel way as we describe below.

(DPT). The cell[i,j] in the DPT represents the Our first subset of features which we c&8RADE

span containing EDUS$ through j and stores the features, includes the lexico-syntactic patterns ex-
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tracted from the lexicalized syntactic tree for thementation accuracy on the development set, they
given sentence. These features replicates the famere excluded from our final set of features.

tures used in SPADE, but used in a discriminative _

way. To decide on an EDU boundary after a toke® EXperiments

wy, we find the lowest constituent in the IeX|caI|zed5_l Corpora

syntactic tree that spans over tokens .. w; such .
thati<k<j. The production that expands this Con_To demonstrate the generality of our model, we ex-

stituent in the tree and its different variations, fornP€"iMent with two different genres. First, we use the
the feature set. For example in Figure 5, the produé—tandarCRST'DT corpus (Carlson et al., 2002) that

tion NP(efforts)—PRPHits)NNS(efforts)1 (to) and contains discourse annotations &85 Wall Street

its different variations depending on whether the;ﬁ'oumal news articles from the Penn Treebgnk (Mar-
include the lexical heads and how many nonCUS €tal., 1994). Second, we use thetructional

terminals (up to two) to consider before and afteForpu_S deyeloped by SUbb"’_‘ and E“‘Jenio (2_009) that
the potential EDU boundaryl), are used to de- contains discourse annotations 1gi6 instructional

termine the existence of a boundary after the wor@W-t0-do manuals on home-repair. - o
efforts (see (Fisher and Roark, 2007) for details). '€ RST-DT corpus is partitioned into a training

SPADE uses these features in a generative wa%Pt 0f347 documents{673 sentences) and a test set

meaning that, it inserts an EDU boundary if the rela0f 38 documents491 sentences), an& documents

tive frequency (i.e., Maximum Likelihood Estimate (1208 sentences) have been (doubly) annotated by

(MLE)) of a potential boundary given the productiontWO human annotators, based on which we compute

in the training corpus is greater thars. If the pro- the human agreement. We use the human-annotated

duction has not been observed frequently enough,ﬁY”taCtic tre_es from P_enn Treebank to train_ SPAD_E
uses its other variations to perform further smoothll! OUr experiments using RST-DT as done in (Sori-
ing. In contrast, we compute the MLE estimates fofut and Marcu, 2003). We extracted a sentence-level

a production and its other variations, and use thodg! from & document-level DT by finding the subtree
as features with/without binarizing the values.  that exactly spans over the sentence. By our count,

Shallow syntactic parse (@hunk) andPOStags 7321 sentences in the training set)1 sentences
in the test set and114 sentences in the doubly-
have been shown to possess valuable cues for dis- )
P notated set have a well-formed DT in RST-DT.

course segmentation (Fisher and Roark, 2007). F E . . .
e Instructional corpus contaifg30 sentences in

example, it is less likely that an EDU boundary oc- )
o total, out of which3032 have a well-formed DT.

curs within a chunk. We, therefore, annotate the to- . .

kens of a sentence with chunk and POS tags byQI:_thls forms our sentence-level corpora for discourse

state-of-the-art taggéand encode these as feature arsing. However, '.[he eX|sf[ence of a weII-formed
. . DT in not a necessity for discourse segmentation,
EDUs are normally multi-word strings. Thus, a

ST .’ “therefore, we do not exclude any sentence in our dis-
token near the beginning or end of a sentence is un- . .
urse segmentation experiments.

likely to be the end of a segment. Therefore, for eac%O
token we include itselative position in the sentence 52 Experimental Setup

anddistancesto the beginning and end as features. . .
We perform our experiments on discourse pars-

It isd ur_llri1kely thst tV\éo .consecut_ive tokens A€ng in RST-DT with thel18 coarser relations (see
tagged with EDU boundaries. We incorporate- Figure 6) defined in (Carlson and Marcu, 2001)

textual information for a token by including the and also used in SPADE and HILDA. By attach-
above features computed for its neighboring token]v,hg the nuclearity statuses (i.e., NS .SN NN) to

We also experimented with different N-gramyese relations we get9 distinct relation$. Our
(Ve{l,2,3}) features extracted from the token Seqyperiments on the Instructional corpus consider

quence, POS sequence and chunk sequence. HQWs same26 primary relations (e.g., GOAL:ACT,
ever, since such features did not improve the seg-anysSE:-EFFECT GENERAL-SPECIFIC) used in

3http://cogcomp.cs.illinois.edu/page/software “Not all relations take all the possible nuclearity statuses.
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(Subba and Eugenio, 2009) and also treat the rever 10-folds with the results reported in Subba and
versals of non-commutative relations as separate reugenio (S&E) (2009) on a test 8etgiving ab-
lations. That is, PREPARATION-ACT and ACT- solute F-score improvements af8%, 15.5% and
PREPARATION are two different relations. Attach-10.6% in span, nuclearity and relations, respectively.
ing the nuclearity statuses to these relations gives Our parser reduces the errors &%6%, 54.6% and
distinct relations in the Instructional corpus. 28.6% in span, nuclearity and relations, respectively.
We use SPADE as our baseline model and apply _
the same modifications to its default setting as de RSTDT Instructional
. . - : ) Test set 10-fold | Doubly | S&E | 10-fold
scribed in (Fisher and Roark, 2007), which delivers{scoresl SP I DCRE | DCRE | Human| ILP | DCRE
improved performance. Specifically, in testing, we | Span | 935] 94.6 | 93.7 | 957 | 929 97.7
replace the Charniak parser (Charniak, 2000) with g Nuc. | 858 86.9 | 852 | 904 | 71.8| 87.2
; : Rel. |67.6| 77.1 | 754 | 83.0 | 63.0| 736
more accurate reranking parser (Charniak and Joh
son, 2005). We use the reranking parser in all our Table 2: Parsing results usimganual segmentation.
models to generate the syntactic trees. This parser
was trained on the sections of the Penn Treebank nots e compare the performance of our model on

included in the test set. For a fair comparison, we agpe wwo corpora, we see that our model is more accu-
ply the same canonical lexical head projection rulegyie in finding the right tree structure (see Span) on
(Magerman, 1995; Collins, 2003) to lexicalize thee |nstructional corpus. This may be due to the fact
syntactic trees as done in SPADE and HILDA. Notgy ¢ sentences in the Instructional domain are rela-

that, all the previous works described in Section Zjyely short and contain fewer EDUs than sentences
report their models’ performance on a particular tesh the News domain, thus making it easier to find
set of a specific corpus. To compare our results Witle right tree structure. However, when we compare
the previous studies, we test our models on thosge performance on the relation labeling task, we ob-
specific test sets. In addition, we show more genergh e a decrease on the Instructional corpus. This
performance based drii-fold cross validation. may be due to the small amount of data available for
training and the imbalanced distribution of a large
number of discourse relations in this corpus.
First, we present the results of our discourse parserTo analyze the features, Table 3 presents the pars-
based ormanual segmentation. The parsing perfor-ing results on the RST-DT test set using different
mance is assessed using the unlabeled (i.e., spaapsets of features. Every new subset of features
and labeled (i.e., nuclearity, relation) precision, reappears to improve the accuracy. More specifically,
call and F-score as described in (Marcu, 2000b, pag¢hen we add therganizational features with the
143). For brevity, we report only the F-scores in Tagominance set features (se€s), we get abou%
ble 2. Notice that, our parser (DCRF) consistenthabsolute improvement in nuclearity and relations.
outperforms SPADE (SP) on the RST-DT tesPset With N-gram features §5), the gain is even higher;
Especially, on relation labeling, which is the hardest% in relations and.5% in nuclearity, demonstrat-
among the three tasks, we get an absolute F-scdrgy the utility of the N-gram features. This is con-
improvement 0f9.5%, which represents a relative sistent with the findings of (duVerle and Prendinger,
error rate reduction o£9.3%. Our F-score off7.1 ~ 2009; Schilder, 2002). Including tf@ontextual fea-
in relation labeling is also close to the human agreaures ©,), we get further3% and 2.2% improve-
ment (i.e., F-score d§3.0) on the doubly-annotated ments in nuclearity and relations, respectively. No-
data. Our results on the RST-DT test set are conice that, adding theubstructure features §5) does
sistent with the mean scores over 10-folds, when weot help much in sentence-level parsing, giving only
perform 10-fold cross. validation on RST-DT. ~ SSubba and Eugenio (2009) report their results based on an
The improvement is even larger on the INStruCzpitrary spiit between a training set and a test set. We asked the
tional corpus, where we compare our mean resultsithors for their particular split. However, since we could not

- obtain that information, we compare our model's performance
>The improvements are statistically significapt< 0.01). based on 10-fold cross validation with their reported results.

5.3 Parsing based on Manual Segmentation
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an improvement af.8% in relations. Therefore, one by the reranking parser. Our model delivers abso-
may choose to avoid using this computationally extute F-score improvements 8f8% and8.1% on the
pensive feature in time-constrained scenarios. HoViRST-DT and the Instructional corpora, respectively,
ever, in the future, it will be interesting to see its im-which is statistically significant in both cases <p
portance in document-level parsing with large trees3.0e-06). However, when we compare our results on
the two corpora, we observe a substantial decrease in
Scores S1 | S | S5 | Si | S5 performance on the Instructional corpus. This could
Eﬂilr;amy 3;:2 :gé Zg:g gg:g Zg:g be due to a smaller amount of data i this corpus and
Relation | 66.2| 68.11 74.11 76.3| 77.1 the inaccuracies in the syntactic parser and taggers,

which are trained on news articles.
Table 3: Parsing results based on manual segmentation
using different subsets of features on RST-DT test se

Feature subsef$; = {Dominance sét S, = {Dominance Test Set 10-fold | 10fold | 10-fold

o= ) X HIL| SP[F&R| LR | SP] LR | SP LR

set, Organizationd| S; = {Dominance set, Organiza- [p 779/ 838 913 880|837 875 651 | 73.9
tional, N-gran}, S, = {Dominance set, Organizational, | R | 70.6| 86.8| 89.7 | 92.3| 86.2| 89.9| 82.8 89.7
N-gram, Contextudl, S5 (all) = {Dominance set, Orga- | F | 74.1| 85.2| 90.5 | 90.1| 84.9| 88.7| 72.8 | 80.9
nizational, N-gram, Contextual, Substructpre

RST-DT Instructional

Table 4: Segmentation results of different models.

5.4 Evaluation of the Discourse Segmenter 5.5 Parsing based on Automatic Segmentation

We evaluate the segmentation accuracy with respagf order to evaluate our full system, we feed our
to the intra-sentential Segment boundaries fOIIOWinaiscourse parser the Output of our discourse Seg_
(Fisher and Roark, 2007). Specifically, if & senmenter. Table 5 shows the F-score results. We com-
tence containg EDUs, which corresponds 0— 1 pare our results with SPADE on the RST-DT test set.
intra-sentence segment boundaries, we measure {{@ achieve absolute F-score improvements 6,
model's ability to correctly identify these — 1 3.4% and7.4% in span, nuclearity and relation, re-
boundaries. Human agreement for this task is quitgpectively. These improvements are statistically sig-
high (F-score 08.3) on RST-DT. nificant (p<0.001). Our system, therefore, reduces
Table 4 shows the results of different models inhe errors byi5.5%, 11.4%, and17.6% in span, nu-

(P)recision, (R)ecall, and (F)-score on the two corelearity and relations, respectively. These results are

pora. We compare our model's (LR) results withalso consistent with the mean results over 10-folds.
HILDA (HIL), SPADE (SP) and the results reported

. . RST-DT Instructional
in Fisher and Roar_k (F&R) (2007) on the RST-DT Tostset 10-fold | 10-fold
test set. HILDA gives the weakest performahce Scores | SPADE | DCRF | DCRF DCRF
Our results are also much better than SPADMth Span 76.7 | 803 | 787 71.9
an absolute F-score improvemen and com- Nuclearity|  70.2 | 73.6 | 722 64.3

P Ui, Relation 58.0 65.4 | 64.2 54.8

parable to the results of F&R, even though we use
fewer features. Furthermore, we perform 10-fold Table 5: Parsing results usiagtomatic segmentation.
cross validation on both corpora and compare with

SPADE. However, SPADE does not come with & gy the Instructional corpus, the last column of

training module for its segmenter. We reimpleapje 5 shows the mean 10-fold cross validation re-
mented this module and verified it on the RST-DTg,jts. \We cannot compare with S&E because no re-
test set. Due to the lack of human-annotated syntagyis were reported using an automatic segmenter.
tic trees in thdnstructional corpus, we train SPADE However, it is interesting to observe how much our

in this corpus using the syntactic trees producefl| system is affected by an automatic segmenter

"Note that, the high segmentation accuracy reported in (HeFzn both RST-DT and the Instructional C_OrpF’S (see
nault et al., 2010) is due to a less stringent evaluation metric. 1able 2 and Table 5). Nevertheless, taking into ac-
8The improvements are statistically significantgh4e-06) count the segmentation results in Table 4, this is

912



TO EV SU MA COMP EX COND TE CA EN BA CONT JO
0 0 0 0 0

wv
>
P
m
m

not surprising because previous studies (Soricut and

Marcu, 2003) have already shown that automatic rv
segmentation is the primary impediment to high ac- ;»
curacy discourse parsing. This demonstrates tH&?
need for a more accurate segmentation model in th@fé
Instructional genre. A promising future direction ca
would be to apply effective domain adaptation meth- 5
ods (e.g.easyadapt (Daume, 2007)) to improve ©|f
the segmentation performance in the Instructional ya
domain by leveraging the rich data in RST-DT. EL

—
o o
o
o
—

—

WOoOOOoOOOrRHOOOK OO
N

NWwWwoONNOOOOOOOOO
=
UNNWHRNHFRPRPWOO OO
[N}
HFOwWoooR~RpPpPOHROOOOO
=
UNOWARUNFRUKENWOOO

N
ONORONORORONORO
NO AR ANRFROOOR

PUOHRONORAROHOWR

~

80 3 31
15 276 20
9 19 295

HOOOOoOOOOCOO0OOO0OO0OOO
HFONOOOOOOOOOO®O O

0
1
2
2
1
0
1
9
6
1
7
4
3
0
1
4

OrHroOO0OO0cO0OO0CO0CO0OO0COO0OO0OO
NOOOHRHROOOOOHOOO
UNOHORFROURFROARANOOO

-
=

WWONRHRHOROOWOR HOO

5.6 Error Analysis and Discussion Figure 6: Confusion matrix for the relation labels on
. i the RST-DT test set. Y-axis represemtge and X-axis
The results in Table 2 suggest that given a manualbgpresentgredicted labels. The relation labels arepic-

segmented discourse, our sentence-level discours@VMENT, EVALUATION, ~SUMMARY, MANNER-MEANS,
OMPARISON, EXPLANATION, CONDITION, TEMPORAL,

) . ) C
parser finds the unlabeled (i.e., span) discourse tregsg, ENABLEMENT, BACKGROUND, CONTRAST, JOINT,
and assigns the nuclearity statuses to the spans sAME-UNIT, ATTRIBUTION, ELABORATION.

performance level close to human annotators. We,

therefore, look more closely into the performance of Based on these observations we will pursue two

our parser on the hardest taskreffation labeling.  \vays to improve our discourse parser. We need a
Figure 6 shows the confusion matrix for the relamore robust (e.ghagging) method to deal with the

tion labeling task using manual segmentation on thignbalanced distribution of relations, along with a

RST-DT test set. The relation labels are ordered agetter representation of semantic knowledge. For

cording to their frequency in the RST-DT trainingexample,compositional semantics (Subba and Eu-

set and represented by their initial letters. For exangenio, 2009) andubjectivity (Somasundaran, 2010)

ple, EL represents ELABORATION and CA repre-can be quite relevant for identifying relations.

sents CAUSE. In general, errors can be explained by

two different phenomena acting together: (i) the fre6 Conclusion

quency of the relations in the training data, and (i}, yhis haper, we have described a complete prob-
the semantic (or pragmatic) similarity between th%bilistic discriminative framework for performing

relations. The most frequent relations (€.g., ELABg o o nce-Jevel discourse analysis. Experiments indi-

ORATION) tend to confuse the _Iess freguent ON€Rate that our approach outperforms the state-of-the-
(e.g., SUMMARY), and the relations which are S€-4rt on two corpora, often by a wide margin.

mantically similar (e.g., CAUSE, EXPLANATION) In ongoing work, we plan to generalize our

confuse each other, making it hard to distinguish fop cpe ageq parser to multi-sentential text and also
the computa;ul))nal models. Notice tgat’hf[hﬁ ComclT'\'/erify to what extent parsing and segmentation can
spns _calfjse y ‘]O”\:: app;aar_s to be hig ConSIg’ejointly performed. Alonger term goal is to extend
erlgg its frequency. T be Zon usm;]n ?etwient;JOrI]N'Bur framework to also work with graph structures
and TEMPORAL may be due to the fact that bot 0I)fdiscourse, as recommended by several recent dis-

Ithgse coarser relatlo%sontaln finer relatlonshgl.re:., course theories (Wolf and Gibson, 2005). Once we
Istin JOINT anasequence in TEMPORAL), whic achieve similar performance on graph structures, we

are semantically similar, as pomted out by CarlsoW” perform extrinsic evaluation to determine their
and Marcu (2001). The confusion between ‘JOINTeIative utility for various NLP tasks

and BACKGROUND may be explained by their dif-
ferent (semantic vs. pragmatic) interpretation in thcknowledgments

RST theory (Stede, 2011, page 85).
We are grateful to G. Murray, J. CK Cheung, the

9JOINT is actually not a relation, but is characterized byreviewers and the NSERC CGS-D award.
juxtaposition of two EDUs without a relation.
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