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Abstract

We propose a complete probabilistic discrim-
inative framework for performing sentence-
level discourse analysis. Our framework com-
prises a discourse segmenter, based on a bi-
nary classifier, and a discourse parser, which
applies an optimal CKY-like parsing algo-
rithm to probabilities inferred from a Dynamic
Conditional Random Field. We show on two
corpora that our approach outperforms the
state-of-the-art, often by a wide margin.

1 Introduction

Automatic discourse analysis has been shown to
be critical in several fundamental Natural Lan-
guage Processing (NLP) tasks including text gener-
ation (Prasad et al., 2005), summarization (Marcu,
2000b), sentence compression (Sporleder and Lap-
ata, 2005) and question answering (Verberne et al.,
2007). Rhetorical Structure Theory (RST) (Mann
and Thompson, 1988), one of the most influential
theories of discourse, posits a tree representation of
a discourse, known as a Discourse Tree (DT), as
exemplified by the sample DT shown in Figure 1.
The leaves of a DT correspond to contiguous atomic
text spans, also called Elementary Discourse Units
(EDUs) (three in the example). The adjacent EDUs
are connected by arhetorical relation (e.g., ELAB-
ORATION), and the resulting larger text spans are
recursively also subject to this relation linking. A
span linked by a rhetorical relation can be either
a NUCLEUS or a SATELLITE depending on how
central the message is to the author. Discourse anal-
ysis in RST involves two subtasks: (i) breaking the

text into EDUs (known asdiscourse segmentation)
and (ii) linking the EDUs into a labeled hierarchical
tree structure (known asdiscourse parsing).

Figure 1: Discourse structure of a sentence in RST-DT.

Previous studies on discourse analysis have been
quite successful in identifying what machine learn-
ing approaches and what features are more useful for
automatic discourse segmentation and parsing (Sori-
cut and Marcu, 2003; Subba and Eugenio, 2009; du-
Verle and Prendinger, 2009). However, all the pro-
posed solutions suffer from at least one of the fol-
lowing two key limitations: first, they make strong
independence assumptions on the structure and the
labels of the resulting DT, and typically model the
construction of the DT and the labeling of the rela-
tions separately; second, they apply a greedy, sub-
optimal algorithm to build the structure of the DT.

In this paper, we propose a newsentence-level
discourse parser that addresses both limitations. The
crucial component is a probabilistic discriminative
parsing model, expressed as a Dynamic Conditional
Random Field (DCRF) (Sutton et al., 2007). By
representing thestructure and therelation of each
discourse tree constituent jointly and by explicitly
capturing thesequential andhierarchical dependen-
cies between constituents of a discourse tree, our
DCRF model does not make any independence as-
sumption among these properties. Furthermore, our
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parsing model supports a bottom-up parsing algo-
rithm which is non-greedy and provably optimal.

The discourse parser assumes that the input text
has been already segmented into EDUs. As an addi-
tional contribution of this paper, we propose a novel
discriminative approach to discourse segmentation
that not only achieves state-of-the-art performance,
but also reduces the time and space complexities by
using fewer features. Notice that the combination
of our segmenter with our parser forms a complete
probabilistic discriminative framework for perform-
ing sentence-level discourse analysis.

Our framework was tested in a series of experi-
ments. The empirical evaluation indicates that our
approach to discourse parsing outperforms the state-
of-the-art by a wide margin. Moreover, we show this
to be the case on two very different genres: news ar-
ticles and instructional how-to-do manuals.

In the rest of the paper, after discussing related
work, we present our discourse parser. Then, we
describe our segmenter. The experiments and the
corpora we used are described next, followed by a
discussion of the key results and some error analysis.

2 Related work

Automatic discourse analysis has a long history;
see (Stede, 2011) for a detailed overview. Sori-
cut and Marcu (2003) present the publicly available
SPADE1 system that comes with probabilistic mod-
els for sentence-level discourse segmentation and
parsing based on lexical and syntactic features de-
rived from the lexicalized syntactic tree of a sen-
tence. Their parsing algorithm finds the most proba-
ble DT for a sentence, where the probabilities of the
constituents are estimated by their parsing model.
A constituent (e.g., ATTRIBUTION-NS[(1,2),3] in
Figure 1) in a DT has two components, first, thela-
bel denoting the relation and second, thestructure
indicating which spans are being linked by the rela-
tion. The nuclearity statuses of the spans are built
into the relation labels (e.g., NS[(1,2),3] means that
span (1,2) is the NUCLEUS and it comes before
span 3 which is the SATELLITE). SPADE is limited
in several ways. It makes an independence assump-
tion between the label and the structure while mod-
eling a constituent, and it ignores the sequential and

1http://www.isi.edu/licensed-sw/spade/

hierarchical dependencies between the constituents
in the parsing model. Furthermore, SPADE relies
only on lexico-syntactic features, and it follows a
generative approach to estimate the model param-
eters for the segmentation and the parsing models.
SPADE was trained and tested on the RST-DT cor-
pus (Carlson et al., 2002), which contains human-
annotated discourse trees for news articles.

Subsequent research addresses the question of
how much syntax one really needs in discourse
analysis. Sporleder and Lapata (2005) focus on
discourse chunking, comprising the two subtasks
of segmentation and non-hierarchical nuclearity as-
signment. More specifically, they examine whether
features derived via part of speech (POS) and chunk
taggers would be sufficient for these purposes. Their
results on RST-DT turn out to be comparable to
SPADE without using any features from the syntac-
tic tree. Later, Fisher and Roark (2007) demonstrate
over 4% absolute “performance gain” in segmenta-
tion, by combining the features extracted from the
syntactic tree with the ones derived via taggers. Us-
ing quite a large number of features in a binary log-
linear model they achieve the state-of-the-art seg-
mentation performance on the RST-DT test set.

On the different genre ofinstructional manuals,
Subba and Eugenio (2009) propose a shift-reduce
parser that relies on a classifier to find the appro-
priate relation between two text segments. Their
classifier is based on Inductive Logic Programming
(ILP), which learns first-order logic rules from a
large set of features including the linguistically rich
compositional semantics coming from a semantic
parser. They show that the compositional seman-
tics improves the classification performance. How-
ever, their discourse parser implements a greedy ap-
proach (hence not optimal) and their classifier disre-
gards the sequence and hierarchical dependencies.

Using RST-DT, Hernault et al. (2010) present
the HILDA system that comes with a segmenter
and a parser based on Support Vector Machines
(SVMs). The segmenter is a binary SVM classi-
fier which relies on the same lexico-syntactic fea-
tures used in SPADE, but with more context. The
discourse parser builds a DT iteratively utilizing two
SVM classifiers in each iteration: (i) a binary classi-
fier decides which of the two adjacent spans to link,
and (ii) a multi-class classifier then connects the se-

905



lected spans with the appropriate relation. They use
a very large set of features in their parser. How-
ever, taking a radically-greedy approach, they model
structure and relations separately, and ignore the se-
quence dependencies in their models.

Recently, there has been an explosion of interest
in Conditional Random Fields (CRFs) (Lafferty et
al., 2001) for solving structured output classification
problems, with many successful applications in NLP
including syntactic parsing (Finkel et al., 2008), syn-
tactic chunking (Sha and Pereira, 2003) and dis-
course chunking (Ghosh et al., 2011) in Penn Dis-
course Treebank (Prasad et al., 2008). CRFs being a
discriminative approach to sequence modeling (i.e.,
directly models the conditionalp(y|x,Θ)), have sev-
eral advantages over its generative counterparts such
as Hidden Markov Models (HMMs) and Markov
Random Fields (MRFs), which first model the joint
p(y, x|Θ), then infer the conditionalp(y|x,Θ)). Key
advantages include the ability to incorporate arbi-
trary overlapping local and global features, and the
ability to relax strong independence assumptions. It
has been advocated that CRFs are generally more
accurate since they do not “waste effort” modeling
complex distributions (i.e.,p(x)) that are not rele-
vant for the target task (Murphy, 2012).

3 The Discourse Parser

Assuming that a sentence is already segmented into
a sequence of EDUse1, e2, . . . en manually or by an
automatic segmenter (see Section 4), the discourse
parsing problem is to decide which spans to con-
nect (i.e.,structure of the DT) and which relations
(i.e., labels of the internal nodes) to use in the pro-
cess of building the hierarchical DT. To build the
DTs effectively, a common assumption is that they
arebinary trees (Soricut and Marcu, 2003; duVerle
and Prendinger, 2009). That is, multi-nuclear re-
lations (e.g., LIST, JOINT, SEQUENCE) involving
more than two EDUs are mapped to a hierarchi-
cal right-branching binary tree. For example, a flat
LIST (e1, e2, e3, e4) is mapped to a right-branching
binary treeLIST (e1, LIST (e2, LIST (e3, e4))).

Our discourse parser has two components. The
first component, theparsing model, assigns a proba-
bility to every possible DT. The second component,
the parsing algorithm, finds the most probable DT

among the candidate discourse trees.

3.1 Parsing Model

A DT can be represented as a set of constituents
of the formR[i,m, j], which denotes a rhetorical
relationR that holds between the span containing
EDUs i throughm, and the span containing EDUs
m+1 throughj. For example, the DT in Figure 1
can be written as{ELABORATION-NS[1,1,2],
ATTRIBUTION-NS[1,2,3]}. Notice that a rela-
tion R also indicates the nuclearity assignments
of the spans being connected, which can be one
of NUCLEUS-SATELLITE (NS), SATELLITE-
NUCLEUS (SN) and NUCLEUS-NUCLEUS (NN).

Given the model parametersΘ and a candi-
date DT T , for all the constituentsc in T , our
parsing model estimates theconditional probabil-
ity P (c|C,Θ), which specifies the joint probabil-
ity of the relation R and the structure[i,m, j]
associated with the constituentc, given that c
has a set of sub-constituentsC. For instance,
for the DT shown in Figure 1, our model
would estimateP (R′[1, 1, 2]|Θ), P (R′[2, 2, 3]|Θ),
P (R′[1, 2, 3]|R′′[1, 1, 2],Θ) etc. for allR′ andR′′

ranging on the set of relations. In what follows we
describe our probabilistic parsing model to compute
all these conditional probabilitiesP (c|C,Θ). We
will demonstrate how our approach not only models
the structure and the relation jointly, but it also cap-
tureslinear sequence dependencies andhierarchical
dependencies between constituents of a DT.

Our novel parsing model is the Dynamic Condi-
tional Random Field (DCRF) (Sutton et al., 2007)
shown in Figure 2. A DCRF is a generalization
of linear-chain CRFs to represent complex interac-
tion between labels, such as when performing mul-
tiple labeling tasks on the same sequence. Theob-
served nodesWj in the figure are the text spans.
A text span can be either an EDU or a concatena-
tion of a sequence of EDUs. Thestructure nodes
Sj∈{0, 1} in the figure represent whether text spans
Wj−1 andWj should be connected or not. There-
lation nodesRj∈{1 . . .M} denote the discourse re-
lation between spansWj−1 andWj , given thatM is
the total number of relations in our relation set. No-
tice that we now model the structure and the relation
jointly and also take the sequential dependencies be-
tween adjacent constituents into consideration.
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Figure 2: A Dynamic CRF as a discourse parsing model.

We can obtain the conditional probabilities of
the constituents (i.e.,P (c|C,Θ)) of all candidate
DTs for a sentence by applying the DCRF pars-
ing model recursively at different levels, and by
computing the posterior marginals of the relation-
structure pairs. To illustrate, consider the example
sentence in Figure 1 where we have three EDUs
e1, e2 and e3. The DCRF model for the first
level is shown in Figure 3(a), where the (observed)
EDUs are the spans in the span sequence. Given
this model, we obtain the probabilities of the con-
stituentsR[1, 1, 2] andR[2, 2, 3] by computing the
posterior marginalsP (R2, S2=1|e1, e2, e3,Θ) and
P (R3, S3=1|e1, e2, e3,Θ), respectively. At the sec-
ond level (see Figure 3(b)), there are two possi-
ble span sequences(e1:2, e3) and (e1, e2:3). In the
first sequence, EDUse1 and e2 are linked into
a larger span, and in the second one, EDUse2
and e3 are connected into a larger span. We ap-
ply our DCRF model to the two possible span se-
quences and obtain the probabilities of the con-
stituents R[1, 2, 3] and R[1, 1, 3] by computing
the posterior marginalsP (R3, S3=1|e1:2, e3,Θ) and
P (R2:3, S2:3=1|e1, e2:3,Θ), respectively.

Figure 3: DCRF model applied to the sequences at differ-
ent levels in the example in Fig. 1. (a) A sequence at the
first level (b) Two possible sequences at the second level.

To further clarify the process, let us as-
sume that the sentence contains four EDUs
e1, e2, e3 and e4. At the first level (Fig-
ure 4(a)), there is only one possible span se-

quence to which we apply our DCRF model.
We obtain the probabilities of the constituents
R[1, 1, 2], R[2, 2, 3] andR[3, 3, 4] by computing the
posterior marginalsP (R2, S2=1|e1, e2, e3, e4,Θ),
P (R3, S3=1|e1, e2, e3, e4,Θ) and P (R4, S4=1|e1,
e2, e3, e4,Θ), respectively. At the second level
(Figure 4(b)), there are three possible sequences
(e1:2, e3, e4), (e1, e2:3, e4) and(e1, e2, e3:4). When
the DCRF model is applied to the sequence
(e1:2, e3, e4), we obtain the probabilities of the
constituentR[1, 2, 3] by computing the posterior
marginalP (R3, S3=1|e1:2, e3, e4,Θ). Likewise, the
posterior marginalsP (R2:3, S2:3=1|e1, e2:3, e4,Θ)
andP (R4, S4=1|e1, e2:3, e4,Θ) in the DCRF model
applied to the sequence(e1, e2:3, e4) represents
the probabilities of the constituentsR[1, 1, 3]
and R[2, 3, 4], respectively. Similarly, we at-
tain the probabilities of the constituentR[2, 2, 4]
from the DCRF model applied to the sequence
(e1, e2, e3:4) by computing the posterior marginal
P (R3:4, S3:4=1|e1, e2, e3:4,Θ). At the third level
(Figure 4(c)), there are three possible sequences
(e1:3, e4), (e1, e2:4) and(e1:2, e3:4), to which we ap-
ply our model and acquire the probabilities of the
constituentsR[1, 3, 4], R[1, 1, 4] and R[1, 2, 4] by
computing their respective posterior marginals.

Figure 4: DCRF model applied to the sequences at differ-
ent levels of a discourse tree. (a) A sequence at the first
level, (b) Three possible sequences at the second level,
(c) Two possible sequences at the third level.

Our DCRF model is designed using MALLET
(McCallum, 2002). In order to avoid overfitting we
regularize the DCRF model withl2 regularization
and learn the model parameters using the limited-
memory BFGS (L-BFGS) fitting algorithm. Since
exact inference can be intractable in DCRF models,
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we perform approximate inference (to compute the
posterior marginals) using tree-based reparameteri-
zation (Wainwright et al., 2002).

3.1.1 Features Used in the Parsing Model

Crucial to parsing performance is the set of fea-
tures used, as summarized in Table 1. Note that
these features are defined on two consecutive spans
Wj−1 andWj of a span sequence. Most of the fea-
tures have been explored in previous studies. How-
ever, we improve some of these as explained below.

Organizational features encode useful informa-
tion about the surface structure of a sentence as
shown by (duVerle and Prendinger, 2009). We mea-
sure the length of the spans in terms of the number of
EDUs and tokens in it. However, in order to better
adjust to the length variations, rather than comput-
ing their absolute numbers in a span, we choose to
measure theirrelative numbers with respect to their
total numbers in the sentence. For example, in a sen-
tence containing three EDUs, a span containing two
of these EDUs will have a relative EDU number of
0.67. We also measure thedistances of the spans
from the beginning and to the end of the sentence in
terms of the number of EDUs.

8 organizational features
Relative number of EDUs inspan 1 andspan 2.
Relative number of tokens inspan 1 andspan 2.
Distances of span 1 in EDUs to thebeginning and to theend.
Distances of span 2 in EDUs to thebeginning and to theend.
8 N-gram features
Beginning andend lexical N-grams in span 1.
Beginning andend lexical N-grams in span 2.
Beginning andend POS N-grams in span 1.
Beginning andend POS N-grams in span 2.
5 dominance set features
Syntactic labels of thehead node and theattachment node.
Lexical heads of thehead node and theattachment node.
Dominance relationship between the two text spans.
2 contextual features
Previous andnext feature vectors.
2 substructure features
Root nodes of theleft andright rhetorical subtrees.

Table 1: Features used in the DCRF parsing model.

Discourse connectives (e.g.,because, but), when
present, signal rhetorical relations between two text
segments (Knott and Dale, 1994; Marcu, 2000a).
However, previous studies (e.g., Hernault et al.
(2010), Biran and Rambow (2011)) suggest that an

empirically acquired lexical N-gram dictionary is
more effective than a fixed list of connectives, since
this approach is domain independent and capable
of capturing non-lexical cues such as punctuations.
To build thelexical N-gram dictionary empirically
from the training corpus we consider the first and
last N tokens (N∈{1, 2}) of each span and rank
them according to their mutual information2 with
the two labels,Structure andRelation. Intuitively,
the most informative cues are not only the most fre-
quent, but also the ones that are indicative of the la-
bels in the training data (Blitzer, 2008). In addition
to the lexical N-grams we also encodePOS tags of
the first and lastN tokens (N∈{1, 2}) as features.

Figure 5: A discourse segmented lexicalized syntactic
tree. Boxed nodes form the dominance setD.

Dominance setextracted from the Discourse Seg-
mented Lexicalized Syntactic Tree (DS-LST) (Sori-
cut and Marcu, 2003) has been shown to be a very
effective feature in SPADE. Figure 5 shows the DS-
LST for our running example (see Figure 1 and 3).
In a DS-LST, each EDU except the one with the root
node must have ahead node NH that is attached to
anattachment node NA residing in a separate EDU.
A dominance setD (shown at the bottom of Figure 5
for our example) contains theseattachment points of
the EDUs in a DS-LST. In addition to the syntactic
and lexical information of the head and attachment
nodes, each element inD also represents a domi-
nance relationship between the EDUs involved. The
EDU with NA dominates the EDU withNH . In or-

2In contrast, HILDA ranks the N-grams by frequencies.
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der to extract dominance set features for two consec-
utive spansei:j andej+1:k, we first computeD from
the DS-LST of the sentence. We then extract the
element fromD that holds across the EDUsj and
j + 1. In our running example, for the spanse1 and
e2 (Figure 3(a)), the relevant dominance set element
is (1, efforts/NP)>(2, to/S). We encode the syntac-
tic labels and lexical heads ofNH andNA and the
dominance relationship (i.e., which of the two spans
is dominating) as features in our model.

We also incorporate morecontextual information
by including the above features computed for the
neighboring span pairs in the current feature vector.

We incorporatehierarchical dependencies be-
tween constituents in a DT by means of thesub-
structure features. For the two adjacent spansei:j
and ej+1:k, we extract the roots of the rhetorical
subtrees spanning overei:j (left) andej+1:k (right).
In our example (see Figure 1 and Figure 3 (b)),
the root of the rhetorical subtree spanning overe1:2
is ELABORATION-NS. However, this assumes the
presence of a labeled DT which is not the case when
we apply the parser to a new sentence. This problem
can be easily solved by looping twice through build-
ing the model and the parsing algorithm (described
below). We first build the model without considering
the substructure features. Then we find the optimal
DT employing our parsing algorithm. This interme-
diate DT will now provide labels for the substruc-
tures. Next we can build a new, more accurate model
by including the substructure features, and run again
the parsing algorithm to find the final optimal DT.

3.2 Parsing Algorithm

Our parsing model above assigns a conditional prob-
ability to every possible DT constituent for a sen-
tence, the job of the parsing algorithm is to find the
most probable DT. Formally, this can be written as,
DT ∗ = argmax DTP (DT |Θ)

Our discourse parser implements a probabilistic
CKY-like bottom-up algorithm for computing the
most likely parse of a sentence using dynamic pro-
gramming; see (Jurafsky and Martin, 2008) for a
description. Specifically, withn number of EDUs
in a sentence, we use the upper-triangular por-
tion of the n × n Dynamic Programming Table
(DPT). The cell [i, j] in the DPT represents the
span containing EDUsi through j and stores the

probability of a constituentR[i,m, j], wherem =
argmax i≤k≤jP (R[i, k, j]).

In contrast to HILDA which implements a greedy
algorithm, our approach finds a DT that is glob-
ally optimal. Our approach is also different from
SPADE’s implementation. SPADE first finds the
tree structure that is globally optimal, then it assigns
the most probablerelations to the internal nodes.
More specifically, the cell[i, j] in SPADE’s DPT
stores the probability of a constituentR[i,m, j],
wherem = argmax i≤k≤jP ([i, k, j]). Disregard-
ing the relation labelR while building the DPT, this
approach may find a tree that isnot globally optimal.

4 The Discourse Segmenter

Our discourse parser above assumes that the input
sentences have been already segmented into EDUs.
Since it has been shown that discourse segmentation
is a primary source of inaccuracy for discourse pars-
ing (Soricut and Marcu, 2003), we have developed
our own segmenter, that not only achieves state-of-
the-art performance as shown later, but also reduces
the time complexity by using fewer features.

Our segmenter implements a binary classifier to
decide for each word (except the last word) in a sen-
tence, whether to put an EDU boundaryafter that
word. We use a Logistic Regression (LR) (i.e., dis-
criminative) model withl2 regularization and learn
the model parameters using the L-BFGS algorithm,
which gives quadratic convergence rate. To avoid
overfitting, we use 5-fold cross validation to learn
the regularization strength parameter from the train-
ing data. We also use a simplebagging technique
(Breiman, 1996) to deal with the sparsity ofbound-
ary tags. Note that, our first attempt at this task im-
plemented a linear-chain CRF model to capture the
sequence dependencies between the tags in a dis-
criminative way. However, the binary LR classifier,
using the same features, not only outperforms the
CRF model, but also reduces the space complexity.

4.1 Features Used in the Segmentation Model

Our set of features for discourse segmentation are
mostly inspired from previous studies but used in a
novel way as we describe below.

Our first subset of features which we callSPADE
features, includes the lexico-syntactic patterns ex-
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tracted from the lexicalized syntactic tree for the
given sentence. These features replicates the fea-
tures used in SPADE, but used in a discriminative
way. To decide on an EDU boundary after a token
wk, we find the lowest constituent in the lexicalized
syntactic tree that spans over tokenswi . . . wj such
that i≤k<j. The production that expands this con-
stituent in the tree and its different variations, form
the feature set. For example in Figure 5, the produc-
tion NP(efforts)→PRP$(its)NNS(efforts)↑S(to) and
its different variations depending on whether they
include the lexical heads and how many non-
terminals (up to two) to consider before and after
the potential EDU boundary (↑), are used to de-
termine the existence of a boundary after the word
efforts (see (Fisher and Roark, 2007) for details).
SPADE uses these features in a generative way,
meaning that, it inserts an EDU boundary if the rela-
tive frequency (i.e., Maximum Likelihood Estimate
(MLE)) of a potential boundary given the production
in the training corpus is greater than0.5. If the pro-
duction has not been observed frequently enough, it
uses its other variations to perform further smooth-
ing. In contrast, we compute the MLE estimates for
a production and its other variations, and use those
as features with/without binarizing the values.

Shallow syntactic parse (orChunk) andPOS tags
have been shown to possess valuable cues for dis-
course segmentation (Fisher and Roark, 2007). For
example, it is less likely that an EDU boundary oc-
curs within a chunk. We, therefore, annotate the to-
kens of a sentence with chunk and POS tags by a
state-of-the-art tagger3 and encode these as features.

EDUs are normally multi-word strings. Thus, a
token near the beginning or end of a sentence is un-
likely to be the end of a segment. Therefore, for each
token we include itsrelative position in the sentence
anddistances to the beginning and end as features.

It is unlikely that two consecutive tokens are
tagged with EDU boundaries. We incorporatecon-
textual information for a token by including the
above features computed for its neighboring tokens.

We also experimented with different N-gram
(N∈{1, 2, 3}) features extracted from the token se-
quence, POS sequence and chunk sequence. How-
ever, since such features did not improve the seg-

3http://cogcomp.cs.illinois.edu/page/software

mentation accuracy on the development set, they
were excluded from our final set of features.

5 Experiments

5.1 Corpora

To demonstrate the generality of our model, we ex-
periment with two different genres. First, we use the
standardRST-DT corpus (Carlson et al., 2002) that
contains discourse annotations for385 Wall Street
Journal news articles from the Penn Treebank (Mar-
cus et al., 1994). Second, we use theInstructional
corpus developed by Subba and Eugenio (2009) that
contains discourse annotations for176 instructional
how-to-do manuals on home-repair.

The RST-DT corpus is partitioned into a training
set of347 documents (7673 sentences) and a test set
of 38 documents (991 sentences), and53 documents
(1208 sentences) have been (doubly) annotated by
two human annotators, based on which we compute
the human agreement. We use the human-annotated
syntactic trees from Penn Treebank to train SPADE
in our experiments using RST-DT as done in (Sori-
cut and Marcu, 2003). We extracted a sentence-level
DT from a document-level DT by finding the subtree
that exactly spans over the sentence. By our count,
7321 sentences in the training set,951 sentences
in the test set and1114 sentences in the doubly-
annotated set have a well-formed DT in RST-DT.
The Instructional corpus contains3430 sentences in
total, out of which3032 have a well-formed DT.
This forms our sentence-level corpora for discourse
parsing. However, the existence of a well-formed
DT in not a necessity for discourse segmentation,
therefore, we do not exclude any sentence in our dis-
course segmentation experiments.

5.2 Experimental Setup

We perform our experiments on discourse pars-
ing in RST-DT with the18 coarser relations (see
Figure 6) defined in (Carlson and Marcu, 2001)
and also used in SPADE and HILDA. By attach-
ing the nuclearity statuses (i.e., NS, SN, NN) to
these relations we get39 distinct relations4. Our
experiments on the Instructional corpus consider
the same26 primary relations (e.g., GOAL:ACT,
CAUSE:EFFECT, GENERAL-SPECIFIC) used in

4Not all relations take all the possible nuclearity statuses.
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(Subba and Eugenio, 2009) and also treat the re-
versals of non-commutative relations as separate re-
lations. That is, PREPARATION-ACT and ACT-
PREPARATION are two different relations. Attach-
ing the nuclearity statuses to these relations gives70
distinct relations in the Instructional corpus.

We use SPADE as our baseline model and apply
the same modifications to its default setting as de-
scribed in (Fisher and Roark, 2007), which delivers
improved performance. Specifically, in testing, we
replace the Charniak parser (Charniak, 2000) with a
more accurate reranking parser (Charniak and John-
son, 2005). We use the reranking parser in all our
models to generate the syntactic trees. This parser
was trained on the sections of the Penn Treebank not
included in the test set. For a fair comparison, we ap-
ply the same canonical lexical head projection rules
(Magerman, 1995; Collins, 2003) to lexicalize the
syntactic trees as done in SPADE and HILDA. Note
that, all the previous works described in Section 2,
report their models’ performance on a particular test
set of a specific corpus. To compare our results with
the previous studies, we test our models on those
specific test sets. In addition, we show more general
performance based on10-fold cross validation.

5.3 Parsing based on Manual Segmentation

First, we present the results of our discourse parser
based onmanual segmentation. The parsing perfor-
mance is assessed using the unlabeled (i.e., span)
and labeled (i.e., nuclearity, relation) precision, re-
call and F-score as described in (Marcu, 2000b, page
143). For brevity, we report only the F-scores in Ta-
ble 2. Notice that, our parser (DCRF) consistently
outperforms SPADE (SP) on the RST-DT test set5.
Especially, on relation labeling, which is the hardest
among the three tasks, we get an absolute F-score
improvement of9.5%, which represents a relative
error rate reduction of29.3%. Our F-score of77.1
in relation labeling is also close to the human agree-
ment (i.e., F-score of83.0) on the doubly-annotated
data. Our results on the RST-DT test set are con-
sistent with the mean scores over 10-folds, when we
perform 10-fold cross validation on RST-DT.

The improvement is even larger on the Instruc-
tional corpus, where we compare our mean results

5The improvements are statistically significant (p < 0.01).

over 10-folds with the results reported in Subba and
Eugenio (S&E) (2009) on a test set6, giving ab-
solute F-score improvements of4.8%, 15.5% and
10.6% in span, nuclearity and relations, respectively.
Our parser reduces the errors by67.6%, 54.6% and
28.6% in span, nuclearity and relations, respectively.

RST-DT Instructional
Test set 10-fold Doubly S&E 10-fold

Scores SP DCRF DCRF Human ILP DCRF
Span 93.5 94.6 93.7 95.7 92.9 97.7
Nuc. 85.8 86.9 85.2 90.4 71.8 87.2
Rel. 67.6 77.1 75.4 83.0 63.0 73.6

Table 2: Parsing results usingmanual segmentation.

If we compare the performance of our model on
the two corpora, we see that our model is more accu-
rate in finding the right tree structure (see Span) on
the Instructional corpus. This may be due to the fact
that sentences in the Instructional domain are rela-
tively short and contain fewer EDUs than sentences
in the News domain, thus making it easier to find
the right tree structure. However, when we compare
the performance on the relation labeling task, we ob-
serve a decrease on the Instructional corpus. This
may be due to the small amount of data available for
training and the imbalanced distribution of a large
number of discourse relations in this corpus.

To analyze the features, Table 3 presents the pars-
ing results on the RST-DT test set using different
subsets of features. Every new subset of features
appears to improve the accuracy. More specifically,
when we add theorganizational features with the
dominance set features (seeS2), we get about2%
absolute improvement in nuclearity and relations.
With N-gram features (S3), the gain is even higher;
6% in relations and3.5% in nuclearity, demonstrat-
ing the utility of the N-gram features. This is con-
sistent with the findings of (duVerle and Prendinger,
2009; Schilder, 2002). Including theContextual fea-
tures (S4), we get further3% and 2.2% improve-
ments in nuclearity and relations, respectively. No-
tice that, adding thesubstructure features (S5) does
not help much in sentence-level parsing, giving only

6Subba and Eugenio (2009) report their results based on an
arbitrary split between a training set and a test set. We asked the
authors for their particular split. However, since we could not
obtain that information, we compare our model’s performance
based on 10-fold cross validation with their reported results.
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an improvement of0.8% in relations. Therefore, one
may choose to avoid using this computationally ex-
pensive feature in time-constrained scenarios. How-
ever, in the future, it will be interesting to see its im-
portance in document-level parsing with large trees.

Scores S1 S2 S3 S4 S5

Span 91.3 92.1 93.3 94.6 94.6
Nuclearity 78.2 80.3 83.8 86.8 86.9
Relation 66.2 68.1 74.1 76.3 77.1

Table 3: Parsing results based on manual segmentation
using different subsets of features on RST-DT test set.
Feature subsetsS1 = {Dominance set},S2 = {Dominance
set, Organizational}, S3 = {Dominance set, Organiza-
tional, N-gram}, S4 = {Dominance set, Organizational,
N-gram, Contextual}, S5 (all) = {Dominance set, Orga-
nizational, N-gram, Contextual, Substructure}.

5.4 Evaluation of the Discourse Segmenter

We evaluate the segmentation accuracy with respect
to the intra-sentential segment boundaries following
(Fisher and Roark, 2007). Specifically, if a sen-
tence containsn EDUs, which corresponds ton− 1
intra-sentence segment boundaries, we measure the
model’s ability to correctly identify thesen − 1
boundaries. Human agreement for this task is quite
high (F-score of98.3) on RST-DT.

Table 4 shows the results of different models in
(P)recision, (R)ecall, and (F)-score on the two cor-
pora. We compare our model’s (LR) results with
HILDA (HIL), SPADE (SP) and the results reported
in Fisher and Roark (F&R) (2007) on the RST-DT
test set. HILDA gives the weakest performance7.
Our results are also much better than SPADE8, with
an absolute F-score improvement of4.9%, and com-
parable to the results of F&R, even though we use
fewer features. Furthermore, we perform 10-fold
cross validation on both corpora and compare with
SPADE. However, SPADE does not come with a
training module for its segmenter. We reimple-
mented this module and verified it on the RST-DT
test set. Due to the lack of human-annotated syntac-
tic trees in theInstructional corpus, we train SPADE
in this corpus using the syntactic trees produced

7Note that, the high segmentation accuracy reported in (Her-
nault et al., 2010) is due to a less stringent evaluation metric.

8The improvements are statistically significant (p<2.4e-06)

by the reranking parser. Our model delivers abso-
lute F-score improvements of3.8% and8.1% on the
RST-DT and the Instructional corpora, respectively,
which is statistically significant in both cases (p<
3.0e-06). However, when we compare our results on
the two corpora, we observe a substantial decrease in
performance on the Instructional corpus. This could
be due to a smaller amount of data in this corpus and
the inaccuracies in the syntactic parser and taggers,
which are trained on news articles.

RST-DT Instructional
Test Set 10-fold 10-fold 10-fold

HIL SP F&R LR SP LR SP LR
P 77.9 83.8 91.3 88.0 83.7 87.5 65.1 73.9
R 70.6 86.8 89.7 92.3 86.2 89.9 82.8 89.7
F 74.1 85.2 90.5 90.1 84.9 88.7 72.8 80.9

Table 4: Segmentation results of different models.

5.5 Parsing based on Automatic Segmentation

In order to evaluate our full system, we feed our
discourse parser the output of our discourse seg-
menter. Table 5 shows the F-score results. We com-
pare our results with SPADE on the RST-DT test set.
We achieve absolute F-score improvements of3.6%,
3.4% and7.4% in span, nuclearity and relation, re-
spectively. These improvements are statistically sig-
nificant (p<0.001). Our system, therefore, reduces
the errors by15.5%, 11.4%, and17.6% in span, nu-
clearity and relations, respectively. These results are
also consistent with the mean results over 10-folds.

RST-DT Instructional
Test set 10-fold 10-fold

Scores SPADE DCRF DCRF DCRF
Span 76.7 80.3 78.7 71.9
Nuclearity 70.2 73.6 72.2 64.3
Relation 58.0 65.4 64.2 54.8

Table 5: Parsing results usingautomatic segmentation.

For the Instructional corpus, the last column of
Table 5 shows the mean 10-fold cross validation re-
sults. We cannot compare with S&E because no re-
sults were reported using an automatic segmenter.
However, it is interesting to observe how much our
full system is affected by an automatic segmenter
on both RST-DT and the Instructional corpus (see
Table 2 and Table 5). Nevertheless, taking into ac-
count the segmentation results in Table 4, this is
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not surprising because previous studies (Soricut and
Marcu, 2003) have already shown that automatic
segmentation is the primary impediment to high ac-
curacy discourse parsing. This demonstrates the
need for a more accurate segmentation model in the
Instructional genre. A promising future direction
would be to apply effective domain adaptation meth-
ods (e.g.,easyadapt (Daume, 2007)) to improve
the segmentation performance in the Instructional
domain by leveraging the rich data in RST-DT.

5.6 Error Analysis and Discussion

The results in Table 2 suggest that given a manually
segmented discourse, our sentence-level discourse
parser finds the unlabeled (i.e., span) discourse tree
and assigns the nuclearity statuses to the spans at a
performance level close to human annotators. We,
therefore, look more closely into the performance of
our parser on the hardest task ofrelation labeling.

Figure 6 shows the confusion matrix for the rela-
tion labeling task using manual segmentation on the
RST-DT test set. The relation labels are ordered ac-
cording to their frequency in the RST-DT training
set and represented by their initial letters. For exam-
ple, EL represents ELABORATION and CA repre-
sents CAUSE. In general, errors can be explained by
two different phenomena acting together: (i) the fre-
quency of the relations in the training data, and (ii)
the semantic (or pragmatic) similarity between the
relations. The most frequent relations (e.g., ELAB-
ORATION) tend to confuse the less frequent ones
(e.g., SUMMARY), and the relations which are se-
mantically similar (e.g., CAUSE, EXPLANATION)
confuse each other, making it hard to distinguish for
the computational models. Notice that, the confu-
sions caused by JOINT appears to be high consid-
ering its frequency. The confusion between JOINT
and TEMPORAL may be due to the fact that both of
these coarser relations9 contain finer relations (i.e.,
list in JOINT andsequence in TEMPORAL), which
are semantically similar, as pointed out by Carlson
and Marcu (2001). The confusion between JOINT
and BACKGROUND may be explained by their dif-
ferent (semantic vs. pragmatic) interpretation in the
RST theory (Stede, 2011, page 85).

9JOINT is actually not a relation, but is characterized by
juxtaposition of two EDUs without a relation.

Figure 6: Confusion matrix for the relation labels on
the RST-DT test set. Y-axis representstrue and X-axis
representspredicted labels. The relation labels areTOPIC-
COMMENT, EVALUATION, SUMMARY, MA NNER-MEANS,
COMPARISON, EXPLANATION, CONDITION, TEMPORAL,
CAUSE, ENABLEMENT, BACKGROUND, CONTRAST, JOINT,
SAME-UNIT, ATTRIBUTION, ELABORATION.

Based on these observations we will pursue two
ways to improve our discourse parser. We need a
more robust (e.g.,bagging) method to deal with the
imbalanced distribution of relations, along with a
better representation of semantic knowledge. For
example,compositional semantics (Subba and Eu-
genio, 2009) andsubjectivity (Somasundaran, 2010)
can be quite relevant for identifying relations.

6 Conclusion

In this paper, we have described a complete prob-
abilistic discriminative framework for performing
sentence-level discourse analysis. Experiments indi-
cate that our approach outperforms the state-of-the-
art on two corpora, often by a wide margin.

In ongoing work, we plan to generalize our
DCRF-based parser to multi-sentential text and also
verify to what extent parsing and segmentation can
be jointly performed. A longer term goal is to extend
our framework to also work with graph structures
of discourse, as recommended by several recent dis-
course theories (Wolf and Gibson, 2005). Once we
achieve similar performance on graph structures, we
will perform extrinsic evaluation to determine their
relative utility for various NLP tasks.
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