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Abstract

We present a distantly supervised system for
extracting the temporal bounds offluents(re-
lations which only hold during certain times,
such asattends school). Unlike previous
pipelined approaches, our model does not as-
sume independence between each fluent or
even between named entities with known con-
nections (parent, spouse, employer, etc.). In-
stead, we model what makes timelines of flu-
ents consistent by learning cross-fluent con-
straints, potentially spanning entities as well.
For example, our model learns that someone
is unlikely to start a job at age two or to marry
someone who hasn’t been born yet. Our sys-
tem achieves a 36% error reduction over a
pipelined baseline.

1 Introduction

Many information extraction (IE) systems tradition-
ally extracted just relations, but a great many real
world relations such asattends schoolor has spouse
vary over time. To capture this, some recent IE
systems have extended their focus from relations to
fluents(relations combined with temporal bounds).
This can be seen in the temporal slot filling track in
the TAC-KBP 2011 shared task (Ji et al., 2011). A
direct application of this work is the automatic im-
provement of online resources such as Freebase and
Wikipedia infoboxes. Indirect applications include
question answering systems.

Fluents can be grouped together to form time-
lines (see Figure 1 for an example) and provide eas-
ily capturable consistency constraints. Our goal is

Figure 1: A timeline of two named entities. Each time
span represents afluent(a relation with temporal bounds).
Temporal bounds are denoted by spans on the timeline.
Fluents can create links between entities (e.g., marriage).

to learn these constraints and use them to produce
more accurate timelines of significant events for
people and organizations. For example, it is com-
mon knowledge that someone cannot attend a school
if they haven’t been born yet. Constraints on con-
sistent timelines do not need to be hard constraints,
though: it is rare, although possible, to become the
CEO of a company at the age of 21.

Despite the rich constraints on valid timelines,
there is relatively little work on exploiting these con-
straints for mutual disambiguation. Many existing
systems extract different parts of a timeline sepa-
rately and use heuristics to combine them. These
heuristics tend to optimize only local consistency
(within a single fluent) but ignore more global con-
straints across fluents (e.g., attending a school be-
fore being born) or across fluents of two linked
entities (e.g., attending a school before the school
was founded). In this work, we explore using joint
inference to enforce these constraints. We show
that these techniques can yield substantial improve-
ments. Additionally, our general approach is not
specific to extracting temporal boundaries of fluents.
It could easily be applied to other IE systems which
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employ independent extractions followed by heuris-
tics to improve consistency.

2 The timelining task

As a basis for our task, we first describe the Tempo-
ral KBP task (Ji et al., 2011). As input, one is given
a list of queries, a database of example fluents, and
source documents. Queries are named entities (peo-
ple or organizations) with their gold relations but no
temporal bounds. The database consists of training
entities with their fluents, including known tempo-
ral bounds for each fluent. Example fluents can be
seen in Table 1. Note that the database may be in-
complete. In addition to missing fluents for an en-
tity, some temporal bounds may be missing from
the database; missing bounds are unfortunately in-
distinguishable from unbounded ranges. As a result,
we can only trust concrete temporal boundaries in
the database. Source documents consist of raw text
from news, blogs, and Wikipedia articles. For each
fluent, systems must output their predicted temporal
bounds, along with references to source documents
to provide provenance.

Our task is a variation of the Temporal KBP task.
In our case, the database is a collection of Freebase1

entities and their fluents, merged with Wikipedia in-
foboxes. Each entity has a unique ID, allowing us
to avoid some coreference issues (though there can
still be issues in document retrieval). In Temporal
KBP, the temporal representation allows for upper
and lower bounds on both the event start and end:
〈sl, su, el, eu〉 wheresl ≤ start ≤ su, el ≤ end ≤
eu. However, it is difficult to obtain these bounds
without manual annotation. As a result, we opted for
the simpler representation which can be easily found
in databases like Freebase. Our temporal represen-
tation is limited to bounds of the form〈start, end〉
where either can be unbounded or unknown (both
represented as±∞).

Our set of fluents is closely related to those in
the Temporal KBP task. Our goal was to use
as much temporal information as possible, with
the hope of each fluent providing additional poten-
tial constraints. While we omit theresides inand
member of fluents,2 we add several others. For

1http://freebase.org
2This is because these fluents are rarely present in Freebase

people and organizations, we add a special fluent,
lifespan, which doesn’t take a slot value.3 A list of
fluents we use are listed in Table 3.

3 Model

To operate on a set of queries, we first collect can-
didate temporal expression mentions for each fluent
from our source documents. This limits us to us-
ing temporal expression mentions which appear near
fluent mentions in text. It also ensures that we can
provide provenance for each temporal boundary as-
sertion. This process is described in§3.1.

Our model contains two components, both of
which assign probabilities to timelines. Theclas-
sifier componentdetermines how each candidate
temporal expression mention connects to its fluent
(§3.2). For example, the mention may indicate the
START of the fluent, theEND, both itsSTART AND

END (for instantaneous events), or beUNRELATED.
These connections involve relations between tempo-
ral expression mentions and relations and we refer to
them asmetarelations.4 For features, the classifier
uses the surrounding textual and syntactic context of
temporal expression and fluent mentions. Each clas-
sification decision is made independently, allowing
for inconsistency at multiple levels (within a fluent,
across fluents, or across entities). However, using
joint inference, the classifier component can deter-
mine the best overall span for each fluent.

The consistency componentlearns what makes
timelines consistent (§3.3). It is similar in nature to
a language model for timelines instead of sentences.
Given a candidate timeline, the consistency compo-
nent estimates its probability of occurring. This is
done by decomposing timelines into a series ofques-
tions (such as “did the entity go to school before
starting a job?”) and learning the probabilities of
different answers from training data.

Unlike the classifier component, the consistency
component is blind to the underlying text in the
source documents. The two components work to-
gether to find a global timeline that is both based on
textual evidence and coherent across entities using

with temporal bounds.
3Note that this is a relation in the non-temporal KBP task.
4Other metarelations are possible under more complex tem-

poral representations. For example, Artiles et al. (2011) uses
theHOLDS metarelation.

874



Entity Relation Slot value Temporal bounds
Jon Stewart

lifespan — [1962-11-28,+∞)
/en/jon stewart
Jon Stewart

has parent
Donald Leibowitz

[1962-11-28,+∞)
/en/jon stewart /en/donald leibowitz
Jon Stewart

attends school
College of William and Mary

(−∞, 1984]
/en/jon stewart /en/college of william and mary
Jon Stewart

has spouse
Tracey McShane

[2000-11,+∞)
/en/jon stewart /en/tracy mcshane

Table 1: Example relations with their temporal bounds. Freebase IDs are shown inmonospace . Note that temporal
bounds differ in their resolution (some are days of the year,others are only years). Some bounds are unknown (e.g.,
the start of theattends schoolfluent) and indistinguishable from unbounded. Thelifespanfluent is a unary relation.

joint inference (note that they are trained indepen-
dently). The inference process is described in§3.4.

3.1 Temporal expression retrieval

Given a fluent, we search for all textual mentions
of the fluent and collect nearby temporal expression
mentions. These temporal expressions are used as
candidate boundaries for the fluent in later steps.
The search process assumes that if a fluent’s entity
and slot value co-occur in a sentence,5 that sentence
is typically a positive example of the fluent.6 This
is sometimes known asdistant supervision(Craven
and Kumlien, 1999; Mintz et al., 2009). We use
the Stanford Core NLP suite (Toutanova et al., 2003;
Finkel et al., 2005; Klein and Manning, 2003; Lee et
al., 2011) to annotate each document with POS and
NER tags, parse trees, and coreference chains. On
top of this, we apply a rule-based temporal expres-
sion extractor (Chang and Manning, 2012). Since
we have coreference links, we also search docu-
ments for anything coreferent with the fluent’s en-
tity.

The temporal expression extractor handles most
standard date and time formats. For each document,
one can provide an optional reference time. For
underspecified dates, the reference time is used to

5While we limit our scope to sentences in this work, it is
trivial to extend this to larger regions such as paragraphs.

6The lifespanfluent requires special handling. Ideally, its
candidates would be provided by a relation extraction mention
detector (e.g., a KBP system). For this work, we use the gold
lifespanbounds as slot values for the purpose of document re-
trieval. While this does heavily bias the system towards using
gold bounds, the system still must predict the correct associa-
tions (START, END, etc.) making thelifespanfluent non-trivial.

resolve these dates to full expressions if possible.
Some of our documents are news articles, where we
use the publication date as the reference time. Other
documents, e.g., Wikipedia articles, are undated and
we typically omit a reference time for these. We ex-
clude dates which are not uniquely resolvable (e.g.,
“September 15th,” when the reference date is un-
known) since our task requires us to output unam-
biguous dates.

We create training datums by computing the
metarelation between each temporal expression and
its gold fluent. For example, for the temporal
expression mention “September 15th, 1981” and
gold lifespan relation that spans[1981-09-15 ,
+∞), we would assign theSTART metarelation. As
a heuristic, we allow for underspecified matches.
Thus, both “1981” and “September 1981” would
have theSTART metarelation but “September 2nd,
1981” would be assignedUNRELATED.

3.2 Classifier component

We use a classifier to determine the nature of the
link between fluents and candidate temporal expres-
sion mentions. Our classifier (a standard multi-
class maximum entropy classifier) learns a function
C : (t, f) → M wheret is a temporal expression
mention,f = 〈entity, relation name, slot value〉 is
a fluent from the database, andM is the set of the
four possible metarelations.

Features for the classifier include many of those
in Artiles et al. (2011). These include standard re-
lation extraction features such as the dependency
paths between the temporal expression and the en-
tity or slot value. We use both the original depen-
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dency paths and their collapsed Stanford Dependen-
cies forms (de Marneffe and Manning, 2008). We
include the lengths of each path and, if the path is
shorter than four edges, the grammatical relations,
words, POS tags, and NER labels along the path.
We extract the same sorts of features from surface
paths (i.e., the words and tags between the entity and
the temporal expression) if the path is five tokens or
shorter. For temporal expressions, we include their
century and decade as features. These features act as
a crude prior over when valid temporal expressions
occur. There are also features for the precision of
the temporal expression (year only, has month, and
has day). Lastly, we include the relation name itself
as a feature.

Previous work (Artiles et al., 2011) heuristically
aggregates the hard decisions from their classifier to
create a locally consistent span. Thebasic aggre-
gation model(described in§4.2) is similar to their
method. In contrast, our method uses the likeli-
hood of complete spans to ensure both boundaries
are consistent with the text.

To calculate the likelihood of a specific temporal
span for a fluentf , we represent the span as a
series of metarelations and take the product of their
probabilities. For example, if the candidate span is
[1981-09-15 , +∞) and we have two temporal
expressions, “September 15th, 1981” and “2012”:

P
(

span(f) = [1981-09-15 , +∞) | f
)

=

P
(

C(“September 15th, 1981”,f) = START
)

×

P
(

C(“2012”, f) = UNRELATED
)

This can easily be extended to calculating the joint
probability of an entire timeline, represented as a list
of 〈fluent , span〉 pairs:

PCC

(

〈f1, s1〉, . . .
)

=
∏

i

P
(

span(fi) = si | fi

)

We refer to this model as the Combined Classifier
(CC) since it uses the probabilities of all timelines
boundaries rather than aggregating hard local deci-
sions.

3.3 Consistency component

While distant supervision can be used to create im-
plicit negative examples for the classifier component

(time expressions marked asUNRELATED), we do
not have an equivalent technique to reliably create
negative examples for the consistency component
(examples of inconsistent timelines). Instead, we
only have positive examples of consistent timelines
from the database. As a result, we must treat predict-
ing consistency as a density estimation rather than a
classification problem.

Our consistency component is designed to be as
general as possible – it does not even include basic
constraints about timelines such as “starts are before
ends.” Instead, we provide several simple templates
for temporal constraints to allow it to learn these ba-
sic tendencies as well as more complex ones. Ex-
amples include whether one typically goes to school
first or starts their first job, how many jobs people
typically have at one time, or if it is possible to marry
someone who hasn’t been born yet.

We achieve this by decomposing timelines
into a series of probabilistic events, orques-
tions. As an example, one question about
the timeline shown in Table 1 is whether Jon
Stewart graduated from the College of William
and Mary BEFORE marrying Tracey McShane,
i.e.,end(attends school) < start(has spouse). In this
case, the answer is “yes.” More generally, we
can apply theBEFORE template to all bound-
aries of all fluents: boundary1(fluent1) <
boundary2(fluent2). We use templates like these
(denoted bySMALL CAPS) to generate all possible
questions to ask about a specific entity.

Other questions can be asked at the fluent level
rather than the boundary level (Allen, 1983). One
set of fluent level questions asks whether two flu-
ents’ spansOVERLAP. For example, in Table 1, Jon
Stewart’slifespan OVERLAPs with the span of his
has spousefluent. Other sets of fluent level ques-
tions ask whether the span of a fluent completely
CONTAINS the span of another one, whether a flu-
ent is COMPLETELY BEFORE another fluent, and
whether two fluentsTOUCH (the start of one fluent
is the same as the end of another).

Since all of these questions involve ordering but
ignore the actual differences in time, we create one
more set of questions asking whether two bound-
aries areWITHIN a certain number of years:

|boundary1(fluent1)− boundary2(fluent2)| ≤ K

876



for K ∈ {1, 2, 4, 8, 16}. The aim is to approxi-
mate the typical lengths of a single fluent or amount
of time between boundaries from different fluents.

There is nothing which requires that the flu-
ents in question come from a single entity. Thus,
we can trivially ask questions about two entities
which are linked by a fluent. For example, since
Jon Stewart is linked to Tracey McShane by the
has spousefluent (Table 1), we could ask the ques-
tion of whether Jon Stewart’slifespan OVERLAPS

Tracey McShane’slifespan. We can ask any type
of question about two linked entities and distinguish
the questions by prefixing them with the nature of
the link (has spousein this case).

Note that not all questions can be answered since
they may rely on comparing unknown values. This
is because (for our setup) infinite values are indistin-
guishable from unknown values. For example, the
start of the Jon Stewart’sattends schoolfluent is un-
defined in the database, but clearly not actually−∞.
Thus, we add a third possible answer to each ques-
tion: unknown. The answers to boundary level ques-
tions are defined only if both boundaries are finite.
Fluent level questions have known answers as long
as both fluents have at least one finite value.

To train our model, we gather the answers to ques-
tions over all the fluents from training entities. Each
question forms a multinomial over the three possible
values (yes, no, unknown). To determine the proba-
bility of a complete timeline:

Pconsistency(timeline) =

∏

(q,a)∈Q(timeline)

{

(1− c)Pθ(a | q) q is old

c q is new

where Q(·) generates all possible
〈question, answer〉 pairs which are consistent
with the fluents in the timeline,θ is a vector of the
model parameters, andc is a smoothing parameter
(described below).

To learn the model parameters, we start by us-
ing maximum-likelihood estimation for these multi-
nomials from training entities. However, some
smoothing is required since new entities may con-
tain previously unseen answers to existing ques-
tions. To address this, we apply add-λ smoothing
to each multinomial,Pθ(a | q). Additionally, it is
possible to see entirely new questions when we see

a new combination of fluent types. We reserve an
amount of probability mass for new questions,c. c
andλ are estimated in turn by picking the value that
maximizes the likelihood of the timeline made by
the development entities.

To adjust the weight of the consistency compo-
nent relative to the classifier component, we take
the geometric mean of the likelihood using the to-
tal number of questions,|Q(t)|, as the exponent and
raise the resulting mean to an exponent,β. This is
necessary since the two components essentially op-
erate on different scales. The Joint Classifier with
Consistency (JCC) model calculates the score of a
timeline,t, according to both components:

scoreJCC (t) = PCC (t)

[

Pconsistency(t)
β

|Q(t)|

]

3.4 Inference

Inference for the CC model is relatively simple:
Simply pick the most likely span for each fluent.
Since it assumes all fluents are independent, the
bounds for each fluent can be inferred separately.
To perform inference on a specific fluent, we con-
sider all of its possible temporal spans, limited by
the temporal expression mentions found by the re-
trieval system (§3.1). Each possible span assigns one
of the four metarelations to each candidate temporal
expression for the fluent. For example, if we found
only the temporal expression mention “1981” for a
specific fluent, there are four possible spans:

UNRELATED: (−∞, +∞)
START: [1981-01-01,+∞)
END: (−∞, 1981-12-31]
START AND END: [1981-01-01, 1981-12-31]

Note that when we assign “1981” as a start, we
use the earliest possible time (January 1st) while
when we assign it as an end, we use the latest pos-
sible time (December 31st). Of course, we typi-
cally have multiple candidate temporal expressions
and thus potentially many more than four possible
spans. All temporal expression mentions that re-
solve to the same time are grouped together, since it
wouldn’t make sense to assign “August 28th, 2010”
one metarelation and a different one to “8/28/2010.”

Joint inference for the JCC model is a little more
involved since the consistency model does not as-
sume independence across fluents. Thus, we need
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to apply techniques like Gibbs sampling or random-
restart hillclimbing (RRHC) to determine the opti-
mal temporal spans for each fluent. For our task,
the two methods obtain similar performance while
RRHC requires many fewer iterations so our discus-
sion focuses on the latter. RRHC involves looping
over all fluents in our testing entities, shuffling the
order of the fluents at the beginning of each pass.
We maintain a working timeline,t, with our current
guesses of the spans for each fluent. For each fluent
and span〈f, s〉 ∈ t, we pick the optimal span forf :

s∗ = argmax
s′∈S(f)

scoreJCC (ts′)

where S(f) determines all possible temporal
spans for the fluentf andts′ = (t∪ 〈f, s′〉)− 〈f, s〉
is a copy oft where s′ is the span forf instead
of s. After selectings∗, we add it to our timeline:
tnew = (t ∪ 〈f, s∗〉) − 〈f, s〉. Rather than calculat-
ing the score of the full timeline, we can save time by
using only the relevant fluents ints′ . For example,
if our fluent is thehas spousefluent for Jon Stew-
art, we include all the fluents involving Jon Stewart
and any relevant linked entities. In this case, we also
include all the fluents for Tracey McShane.

Each round of RRHC consists of two passes
through the fluents we are inferring: Anargmax
pass followed by a randomization pass where we
randomly choose spans for a random fraction of the
fluents. When finished, we return the highest scor-
ing timeline seen during either of these passes.

4 Experiments

We evaluate our models (CC and JCC) according to
their ability to predict the temporal bounds of flu-
ents from Freebase. This is similar to the Diagnostic
Track in the Temporal KBP task, where gold rela-
tions are provided as inputs. We provide three base-
lines for comparison, discussed further in§4.2. To
form our database, we scraped a random sample of
people and organization entities from Freebase us-
ing their API. Since our consistency model has lim-
ited effect if entities do not have any links to other
entities, we restrict our attention to entities linked
to at least one other entity – this eliminates a large

portion of possible entities. Our corpus7 consists of
8,450 entities for training, 1,072 for development,
and 1,067 for test. Entities have approximately 2.0
fluents on average.

From experiments on the development set, we set
the relative strength of the consistency component
β = 10. For the JCC model, we perform three runs
for each experiment with different random seeds.
Each experiment performs 10 rounds of RRHC,8 ini-
tializing from an empty timeline.

4.1 Evaluation metric

Our evaluation metric is adapted from the Temporal
KBP metric (Ji et al., 2011) to work with 2-tuples
for temporal representations rather than the 4-tuples
in Temporal KBP. The metric favors tighter bounds
on fluents while giving partial credit. All dates need
to be given at day resolution. Thus, for gold fluents
with only year- or month-level resolution, we treat
them as their earliest (for starts) or latest (for ends)
possible day. To score a boundary, we take the dif-
ference between the predicted and gold values: If
they’re both unbounded (±∞), the boundary’s score
is 1. If only one is unbounded, the score is 0. If
both are finite, the score is1/(1 + |d|) whered is
the difference between the values in years. To score
a fluent, we average the scores of its start and end
boundaries. In rare cases, we have multiple spans
for the same relation (e.g., Elizabeth Taylor married
Richard Burton twice). In these cases, we give sys-
tems the benefit of the doubt and greedily align flu-
ents in such a way as to maximize the metric. The
total metric computes the score of each fluent di-
vided by the number of fluents. The official metric
includes precision and recall components, but since
our setup provides gold relations, our precision and
recall are be equal. This allows us to report a single
number.

4.2 Baselines and oracle

The simplest baseline is thenull baseline, proposed
in Surdeanu et al. (2011). This baseline assumes that
all fluents are unbounded in their spans. The purpose

7http://nlp.stanford.edu/ ˜ mcclosky/data/
freebase-temporal-relations.tar.gz

8There was no significant difference in accuracy between
running 10 and 200 rounds of RRHC.
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Figure 2: Performance of models and baselines on devel-
opment data while varying amount of training data. Not
pictured: Thenull baseline at 58.8%.

of this baseline is primarily to show the approximate
minimal value for the temporal metric.

We provide two other baselines to describe heuris-
tic methods of aggregating the hard decisions from
the classifier functionC learned in§3.2. These are
unlike the CC model which uses the soft decisions
of C. Both of these baselines maintain lists of pos-
sible starts and ends for each fluent. If the classifier
assignsSTART AND END, we add the candidate tem-
poral expression to both. The first baseline,basic
aggregation, is along the same lines as the aggrega-
tion method used in Artiles et al. (2011), a state-of-
the-art system. Our baseline assigns the earliest start
and the latest end as the bounds for each fluent, as-
signing±∞ for empty lists. The second baseline,
basic aggregation (modes), is the same except that it
uses the mode from each list.

To determine the best possible score given our
temporal expression retrieval system, we calculate
the oracle score by assigning each fluent the span
which maximizes the temporal metric. The oracle
score can differ from a perfect score since we can
only use candidate temporal expressions as values
for a fluent if (a) mentions of the fluent are retriev-
able in our source documents, (b) the temporal ex-
pression mention appears nearby, and (c) our tem-
poral expression extractor is able to recognize it cor-
rectly. Nevertheless, it is still a reasonable upper
bound in our setting.

Model Dev Test
Oracle 78.1 75.2
Joint Classifier with Consistency 76.1 72.2
Combined Classifier 75.8 71.5
Basic aggregation (modes) 75.3 71.2
Basic aggregation 74.7 70.5
null baseline 58.8 55.6

Table 2: Performance of systems on development and test
divisions. The Joint classifier with Consistency is the av-
erage of three runs with negligible variance (σ ≈ 0.02).

4.3 Results

We present the performance of our models, base-
lines, and the oracle in Figure 2 while varying the
percentage of training entities. The JCC model
(76.1% on development with 100% training enti-
ties) is consistently the best non-oracle system. Its
gains are larger when the amount of training data is
low. This is presumably because the classifier suf-
fers from insufficient data and the consistency com-
ponent is able to learn consistency rules to recover
from this. Both the CC and JCC models outperform
the basic aggregation models. This shows the value
of incorporating all marginal probabilities. On the
test set (Table 2), the JCC model performs even bet-
ter in comparison to the simple models, despite the
test set being clearly more difficult than the develop-
ment set. In this case, the JCC achieves a 36% error
reduction over the basic aggregation model.9 On the
official KBP entities, the oracle score is 92%. Since
we use a different set of entities, there is a mismatch
between our entities and the source documents re-
sulting in a lower oracle score. Addressing this is
future work.

5 Discussion

Table 3 shows the performance of four systems
and baselines on individual fluent types. The JCC
model derives most of its improvement from the
two lifespanfluents and other high frequency flu-
ents. Thelifespanfluents provide the most room
for improvement since they tend to contain non-null
values a reasonable amount of the time (note how
these relations have a large gap between their ora-

9This counts errors relative to the oracle score since we treat
the retrieval system as fixed in this work.
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Model
Fluent Count null Basic Basic (modes) CC JCC Oracle
organization:lifespan 266 49.2 71.0 70.7 71.1 71.7 73.4
organization:top employees 150 88.0 88.0 88.0 88.0 88.0 88.3
organization:founders 31 0.0 5.4 5.4 10.8 11.1 16.3
organization:acquires company 14 21.4 21.4 21.4 21.4 21.4 38.5
person:lifespan 806 28.6 63.1 64.6 65.6 66.1 69.1
person:has spouse 582 92.2 92.1 92.1 92.2 92.3 93.1
person:attends school 107 97.7 97.7 97.7 97.7 98.1 98.1
person:has job 85 78.8 79.4 79.4 78.8 78.8 80.3
person:holds government position 45 16.7 19.7 19.7 19.7 19.7 25.1
person:romantic partner 5 50.0 52.9 52.9 52.9 52.9 71.2

Table 3: Fluent-level performance of models and baselines on development data. Scores are calculated with the
temporal metric. CC stands for Combined Classifier and JCC for Joint Classifier with Consistency. The JCC model
obtains most of its benefits on the twolifespanrelations. Forattends school, it is the only system able to achieve
oracle-level performance. Thenull baseline is especially strong for several fluents since these tend to be unbounded or
(more likely) missing their values in Freebase. The two basic aggregation models differ primarily on their predictions
for the lifespanfluents.

cle andnull scores). Additionally, thelifespanfluent
is always present for entities while other fluents are
sparser. Forattends school, JCC is the only system
able to achieve oracle-level performance. No system
improves on thenull baseline foracquires company.
This is likely due to its sparsity.

Inspecting the multinomials in the consistency
component, we can see that the model learns reason-
able answers to questions such as whether an entity
“was born before getting married?” (yes: 14.8%,
no: 0.04%),10 “died before their parents were born?”
(yes: 0.3%, no: 53.7%) and “finished a job before
starting a job (not necessarily the same one)?” (yes:
72.5%, no: 20.5%). Despite some unavoidable noise
in the data, it is clear these constraints are useful.

6 Related work

There is a large body of related work that focuses
on ordering events or classifying temporal relations
between them (Ling and Weld, 2010; Yoshikawa et
al., 2009; Chambers and Jurafsky, 2008; Mani et
al., 2006,inter alia). Much of this work uses the
Allen interval relations (Allen, 1983) which richly
describe partial orderings of fluents. We use several
of these as fluent-level question templates.

Joint inference has been applied successfully

10Percentages for “unknown” are omitted here.

to other NLP problems (Roth and Yih, 2004;
Toutanova et al., 2008; Martins et al., 2009; Chang
et al., 2010; Koo et al., 2010; Berant et al.,
2011). Two recent examples in information ex-
traction include using Markov Logic for temporal
ordering (Ling and Weld, 2010) and using dual-
decomposition for event extraction (Riedel and Mc-
Callum, 2011).

Our work is closest to Temporal KBP slot filling
systems. The CUNY and UNED systems (Artiles
et al., 2011; Garrido et al., 2011) for this task used
classifiers to determine the relation between tempo-
ral expressions and fluents. These systems use the
hard decisions from the classifier and combine the
decisions by finding a span that includes all temporal
expressions. In contrast, our system uses the classi-
fier’s marginal probabilities along with the consis-
tency component to incorporate global consistency
constraints. Other participants used rule-based and
pattern matching approaches (Byrne and Dunnion,
2011; Surdeanu et al., 2011; Burman et al., 2011).

Outside of Temporal KBP, there are several works
on the task of extracting fluents from text. Wang
et al. (2011) which uses label propagation, a graph-
based semi-supervised method to extend positive
and negative seed examples over the graph. Taluk-
dar et al. (2012) apply a similar approach by ag-
gregating local classification decisions using tempo-
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ral constraints (e.g., mutual exclusion, containment,
and succession) and joint inference. One key dif-
ference is that their constraints are included as input
rather than learned by the system.

7 Conclusion and future Work

Joint inference can be effectively applied to the task
of inferring timelines about named entities. Rather
than using hard coded heuristics, our model learns
and applies consistency constraints which capture
inter-entity and cross-entity rules. Simple inference
techniques such as random-restart hillclimbing score
well and run efficiently. Both of our models (CC and
JCC) obtain a substantial error reductions over sim-
pler heuristics-based consistency approaches.

The overall framework can easily be applied to
other information extraction tasks. Rather than list-
ing rules for consistency, these can be learned and
enforced via joint inference. While simple joint in-
ference methods such as random-restart hillclimb-
ing and Gibbs sampling worked well in our case,
more complex inference methods may be required
with more elaborate constraints.

A prime direction for future work is combining
our model with a probabilistic relation extraction
system. This could be accomplished by using the
marginal probabilities on the extracted relations and
multiplying them with the probabilities from the
classifier and consistency components. Inference
would require an additional step which could add or
drop candidate fluents. Furthermore, the consistency
component can be extended with new question types
to incorporate non-temporal constraints as well.
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