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Abstract

We examine the task of resolving complex
cases of definite pronouns, specifically those
for which traditional linguistic constraints
on coreference (e.g., Binding Constraints,
gender and number agreement) as well as
commonly-used resolution heuristics (e.g.,
string-matching facilities, syntactic salience)
are not useful. Being able to solve this task has
broader implications in artificial intelligence:

a restricted version of it, sometimes referred
to as the Winograd Schema Challenge, has
been suggested as a conceptually and practi-
cally appealing alternative to the Turing Test.
We employ a knowledge-rich approach to this
task, which yields a pronoun resolver that out-
performs state-of-the-art resolvers by nearly

needed to resolve the pronouns that machines do not.
Our world knowledge tells us that if someone is an-
gry, he may shout at other people. Siftmbshouted,

he should be the one who was angry. Our world
knowledge also tells us that we may shout at some-
one who made a mistake and that crashing a car is
a mistake. Combining these two pieces of evidence,
we can easily infer thakim crashed the car.

Our goal in this paper is to examine the resolu-
tion of complexcases of definite pronouns that ap-
pear in sentences exemplified by gfeutexample.
Specifically, each sentence (1) has two clauses sepa-
rated by a discourse connective (i.e., the connective
appearsdetweenthe two clauses, just likbecause
in the shoutexample), where the first clause con-
tains two or more candidate antecedents (e&gl.,

18 points in accuracy on our dataset. and Tim), and the second clause contains the tar-

get pronoun (e.g.he); and (2) the target pronoun
agrees in gender, number, and semantic class with
each candidate antecedent, but does not have any
Despite the significant amount of work on pronoumyyerlap in content words with any of them. For con-
resolution in the natural language processing coMyenience, we will refer to the target pronoun that ap-
munity in the past forty years, the problem is stillyears in this kind of sentences aditiicult pronoun.

::ar fr_c:m bl_emg solved.h_lt:; dlflzuklty stlercrj]s In part Note that many traditional linguistic constraints
rocrjn_ ! ]:Q' reliance onhsop 'S 'C?ﬁ nO,EN edge S_Ogr?edq’n coreference are no longer useful for resolving dif-
andinierence mechanisms. The Sentence pair belgf, , pronouns. For instance, syntactic constraints
which we will subsequently refer to as tehoutex-

le. illustrates how difficult th bi b _such as the Binding Constraints will not be useful,
ample, fiiustrates how dificult the problem can be. g, ¢ he pronoun and the candidate antecedents ap-

(1a) Ed shouted at Tim because he crashed the cggar in different clauses separated by a discourse

(1b) Ed shouted at Tim because he was angry. connective; and constraints concerning agreement in
The pronounhe refers toTim in 1la andEd in 1b. gender, number, and semantic class will not be use-
Humans can resolve the pronoun easily, but statéuil, since the pronoun and the candidate antecedents
of-the-art coreference resolvers cannot. The reasamne compatible with respect to all these attributes.
is that humans have the kind oforld knowledge Traditionally important clues provided by various

1 Introduction
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I(@) The city councilmenrefused the demonstrators a permit becdhsgfeared violence.

I(b) The city councilmen refuseithe demonstratorsa permit becaustheyadvocated violence.
ll(a) James askeRobert for a favor, butherefused.

lI(b) Jamesasked Robert for a favor, bbewas refused.

lli(a) Keith fired Blaine buthedid not regret.

lli(b) Keith fired Blaine althoughheis diligent.

IV(a) Emma did not pass the ball danie, althoughshewas open.
IV(b) Emmadid not pass the ball to Janie, althougfeshould have.

V(@) Medvedev will cede the presidencyPRaitin becausédneis more popular.

V(b) Medvedevwill cede the presidency to Putin becaumssis less popular.

Table 1: Sample twin sentences. The target pronoun in eaterse is italicized, and its antecedent is boldfaced.

string-matching facilities will not be useful either, researcher, but it is indeed the state of the art.
since the pronoun and its candidate antecedents doA natural question is: why do existing resolvers
not have any words in common. not attempt to handle difficult pronouns? One rea-

Asin theshoutexamme’ we ensure that each senson could be that these difficult pronouns do not
tence has awin. Twin sentences were used ex-appear frequently in standard evaluation corpora
tensively by researchers in the 1970s to illustratguch as MUC, ACE, and OntoNotes (Bagga, 1998;
the difficulty of pronoun resolution (Hirst, 1981). Haghighi and Klein, 2009). In fact, the Stanford
We consider two sentences as twins if (1) thegoreference resolver (Lee et al., 2011), which won
are identical up to and possib|y inc|uding the dis.the CoNLL-2011 shared task on coreference resolu-
course connective; and (2) the difficult pronouns ifion, adopts the once-popular rule-based approach,
them are lexically identical but have different an€solving pronouns simply with rules that encode
tecedents. The presence of twins implies that syfibe aforementioned traditional linguistic constraints
tactic Sa“ence, a Commomy_used heuristic in proon COI'Efel'ence, such as the Blndlng constraints and
noun resolution that prefers the selection of synta@ender and number agreement.
tically salient candidate antecedents, may no longer The infrequency of occurrences of difficult pro-
be useful, since the candidate in the subject positiotPuns in these standard evaluation corpora by no
is not more likely to be the correct antecedent thafieans undermines their significance, however. In
the other candidates. fact, being able to automatically resolve difficult

To enable the reader to get a sense of how hard itR{onoUNs has broader implications in artificial intel-
to resolve difficult pronouns, Table 1 shows sampligence. Recently, Levesque (2011) has argued that
twin sentences from our dataset. Note that state-of?€ Problem of resolving the difficult pronouns in
the-art pronoun resolvers (e.g., JavaRAP (Qiu et aP, carefully chose_n set of twin sentences, which he
2004), GuiTaR (Poesio and Kabadjov, 2004), as welffers to as the Winograd Schema Challéngeuld
as those designed by Mitkov (2002) and CharniaR€"ve @s a conceptually and practically appealing
and Elsner (2009)) and coreference resolvers (e.gitemative to the well-known Turing Test (Turing,
BART (Versley et al., 2008), CherryPicker (Rahman 1L evesque (2011) defines a Winograd Schema as a small
and Ng, 2009), Reconcile (Stoyanov et al., 2010)gading comprehension test involving the question of wiich

the Stanford resolver (Raghunathan et al., 2010; | dige two candidate antecedents for the definite pronoun ivemgi
tal. 2011 t tel | tf’1 d'ff'1 |ﬁeentence is its correct antecedent. Levesque names tlis cha
etal, )) cannot accurately resolve the difficu nge after Winograd because of his pioneering attempte@us

pronouns in these structurally simple sentences, @gil-known pair of twin sentences — specifically the firstrpai
they do not have the mechanism to capture the fireTable 1 — to illustrate the difficulty of natural language-u

distinctions between twin sentences. In other wordgerstanding (Winograd, 1972). Strictly speaking, we are ad

when given these sentences, the best that the existﬂgss'”g a relaxed version of the Challenge: while Levesque
ocuses solely on definite pronouns whose resolution reguir

!’esower_s can do to reso_lv_e the pronouns is gueSgsckground knowledgeot expressed in the words of a sen-
ing. This could be surprising to a non-coreferenceence, we do not impose such a condition on a sentence.
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1950). The reason should perhaps be clear given thentain multiple pronouns, but exactly one of them
above discussion: this is an easy task for a subjeet the one explicitly annotated by its author — is
who can “understand” natural language but a chathe target pronoun. Each sentence pair was cross-
lenging task for one who can only make intelligentchecked by one other student to ensure that it (1)
guesses. Levesque believes that “with a very higbonforms to the desired constraints and (2) does not
probability”, anything that can resolve correctly acontain pronouns with ambiguous antecedents (in
series of difficult pronouns “is thinking in the full- other words, a human should not be confused as
bodied sense we usually reserve for people”. Hencty which candidate antecedent is the correct one).
being able to make progress on this task enables As$ the end of the process, 941 sentence pairs were
to move one step closer to building an intelligent maeonsidered acceptable, and they formed our dataset.
chine that can truly understand natural language. These sentences cover a variety of topics, ranging
To sum up, an important contribution of our workfrom real events (e.g., Iran’s plan to attack the Saudi
is that it opens up a new line of research involvingimbassador to the U.S.), to events and characters in
a problem whose solution requires a deeper undgnovies (e.g., Batman and Robin), to purely imagi-
standing of a text. With recent advances in knowlnary situations (e.g., thehoutexample). We parti-
edge extraction from text, we believe that time is ripdion these sentence pairs into a training set and a test
to tackle this problem. It is worth noting that someset following a 70/30 ratio.
researchers have focused on other kinds of anaphorsWhile not requested by us, the students annotated
that are hard to resolve, including bridging anaphorexactly two candidate antecedents for each sentence.
(e.g., Poesio et al. (2004)) and anaphors referringor ease of exposition, we will assume below that
to abstract entities, such as those realized by vethere are two candidate antecedents per sentence.
phrases in dialogs (e.g., Byron (2002), Strube and
Mdller (2003), Muller (2007)). Nevertheless, to our3 Machine Learning Framework

knowledge, there has been little work that specifi- ) . )
cally targets difficult pronouns. Since our goal is to determine which of the two can-

Given the complexity of our task, we investigatedidate antecedents is the correct antecedent for the

a variety of sophisticated knowledge sources for rd@"9€t pronoun in each sentence, our system assumes
solving difficult pronouns, and combine them via £S5 mput the sentence, the target pronoun, and the two
machine learning approach. Note that there has be&@ndidate antecedents.

a recent surge of interest in extracting world knowl- We employ machine learning to combine the
edge from online encyclopedias such as WikipediE?atureS derived from different knowledge sources.
(e.g., Ponzetto and Strube (2006, 2007), Poesio gpecifically, we employ @anking-basedapproach.

al. (2007)), YAGO (e.g., Bryl et al. (2010), RahmanRanking-based approaches have been shown to out-
and Ng (2011), Uryupina et al. (2011)), and Freeberform their classification-based counterparts (De-
base (e.g., Lee et al. (2011)). However, the resultings and Baldridge, 2007, 2008; lida et al., 2003;
extractions are primarily 1S-A relations (e.§arack Yang et al., 2003). Given a pronoun and two can-
ObamalS-A U. S. president which would not be didate antecedents, we aim to train a ranking model

antecedent is assigned a higher rank.
2 Dataset Creation More formally, given training sentenc§) con-

taining target pronoumM,, correct antecedent’,
We asked 30 undergraduate students who are not afid incorrect antecedeli, we create two feature
filiated with this research to compose sentence paiv@ctors,Xc 4, andxr4,, wherexcy, is generated
(i.e., twin sentences) that conform to the constrainsom A; and Cj, and X4, is generated fromd,
specified in the introduction. Each student was alsand I;,. The training set consists of ordered pairs
asked to annotate the candidate antecedents, the tafrfeature vectorsxc 4, , Xr4,), and the goal of the
get pronoun, and the correct antecedent for eadhaining procedure is to acquire a ranker that mini-
sentence she composed. Note that a sentence nmaizes the number of violations of pairwise rankings
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provided in the training set. We train this ranker us- ﬁg:‘:gt?\;‘eegthams f Features Eecatures
ing Joachims’ (2002) SVKP package. Itis worth | Goggie G1, G2, G3, G4

noting that we daot exploit the fact that each sen-| FrameNet FN1, FN2, FN3, FN4

tence has a twin in training or testing. t's:rrr']sef('jcﬁgg?g Elfgtlllﬁppgtzzlipo?_?

PWwhp

After training, the ranker can be applied to the test connective-Based CBR
instances, which are created in the same way as heRelationC 3 SC1 SC2 SC3

. . emantic Compat. 1, ,
training "_]Stances' For each _teSt instance, the 'Fal’ q?exical Features | 68,331 antecedent- independent
pronoun is resolved to the higher-ranked candidate and dependent features

antecedent. L _
Table 2: Summary of the features described in Section 4.

4 Linguistic Features

We derive linguistic features for resolving difficult @S asubjectz_ Second, we determine the event(s)
pronouns from eight components, as described pthat the candidate antecedents participate in. In (2),

low. To enable the reader to keep track of these fe&0th candidate antecedents participate in gihe-
tures more easily, we summarize them in Table 2. ish event. Third, we pair each event participated
by each candidate antecedent with each event par-

4.1 Narrative Chains ticipated by the pronoun. In our example, we would
create two pairs,punish try-s) and punish escape-
s). Note thattry andescapeare associated with the
(2) Ed punished Tim because he tried to escapeygle of the pronoun that we extracted in the first step.
Humans resolvdie to Tim by exploiting the world Fourth, for each such pair, we extract all the narra-
knowledge that someone who tried to escape is bdie chains containing both elements in the pair from
and therefore should be punished. Such kind athambers and Jurafsky’s outpufThis step results
knowledge can be extracted framarrative chains  in one chain being extracted, which contains punish-
Narrative chains are partially ordered sets ob and escape-s. In other words, the protagonist in
events centered around a comnpratagonist aim-  this chain is the subject of ascapeevent and the
ing to encode the kind of knowledge provided byobject of apunishevent. Fifth, from the extracted
scripts (Schank and Abelson, 1977). While scriptschain, we obtain the role played by the pronoun (i.e.,
are hand-written, narrative chains can be learndtie protagonist) in the event in which the candidate
from unannotated text. Below is a chain learned bgntecedents participate. In our example, the pronoun
Chambers and Jurafsky (2008): plays an object role in thpunishevent. Finally, we
extract the candidate antecedent that plays the ex-

borrow-s invest-s spend-s pay-s raise-s lend-s e .
. . tracted role, which in our example is the second an-
As we can see, a narrative chain is composed oft% cedentTim4

sequence of events (verbs) together with the roles o bi ¢ hich q
the protagonist. Here, “s” denotes the subject roleh_Wﬁ cre_:a'Fe: inary eagure, NC, whic | encofels
even though a chain can contain a mix of “s” and «oythis heuristic decision, and compute its value as fol-

(the object role). From this chain, we know that théows. Assume in the rest of the paper thatand

person who borrows something (probably mone)é2 acrjt_e dthe feature dvectors dc%rrespondéng to dtze first
may invest, spend, pay, or lend it. andidate antecedent and the second candidate an-

We employ narrative chains to heuristically pre=—F7—— _ _
Throughout the paper, the subject/object of an event refers

dict the antece_:d_ent for the target pronoun, .ar?d e its deeprather thansurfacesubject/object. We determine
code the prediction as a feature. The heuristic d@e grammatical role of an NP using the Stanford dependency

cision procedure operates as follows. Given a separser (de Marneffe et al., 2006) and a set of simple hegsisti
tence, we first determine the event the target pro- *We employ narative chains of length 12, which are

noun participates irand its role in the event. As 2Valable from http://cs. stanford. edu/ peopl e/
nc/ schemas/ schemas- si zel2.

an gx_ample,_ we determine that in sentenceh@) “For an alternative way of using narrative chains for coref-
participates in thdry event and theescapeevent erence resolution, see Irwin et al. (2011).

Consider the following sentence:
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tecedent, respectively. For our running example, “zebras are”; (Q3) “lions are predators”; and (Q4)

since Tim is predicted to be the antecedenttuf “zebras are predators”.

the value of NC iniy is 1, and its value in; is O. Using the counts returned by Google for these
For notational convenience, we write NOEO and  queries, we create four features, G1, G2, G3, and
NC(i2)=1, and will follow this convention when de- G4, whose values are determined by Rules 1, 2, 3,
scribing the features in the rest of the paper. and 4, respectively, as described below.

Finally, we note that NG() and NC{2) will Rule 1: if count(Q1)> count(Q2) by at
both be set to zero if (1) the pronoun and the an-  |east 2% then G1(;)=1 and G1{;)=0;

tecedents do not participate in events, or (2) no nar-  else ifcount(Q2)> count(Q1) by at least
rative chains can be extracted in step 4 above, or (3) 2% then G1(i,)=1 and G1{;)=0; else
step 4 enables us to extract more than one chain and  G1(,)=G1(,)=0.

these chains indicate that the candidate antecedent

can have both a subject role and an object role. Rule 2 if count(Q3)> count(Q4) by at

least 2% then G2(i1)=1 and G2{;)=0;
4.2 Google else ifcount(Q4)> count(Q3) by at least
% then G2(i;)=1 and G2{;)=0; else

Consider the following sentences: G2(i)=G2(i)=0.

(3a) Lions eat zebras because they are predators. _
(3b) The knife sliced through the flesh because ~ Rule 3 if count(Q5)> count(Q6) by at

it was sharp. least 2% then G3(;;)=1 and G3{)=0;
else ifcount(Q6)> count(Q5) by at least
Humans resolveéheyto Lionsin (3a) by exploiting 2% then G3(i»)=1 and G3()=0; else

the Worlq knowle(_jgt_a that predators attgck and eat  G3(j;)=G3(i»)=0.

other animals. Similarly, humans resoliteto the

knifein (3b) by exploiting the world knowledge that ~ Rule 4 if one of G1¢;) and G1{y) is 1,

the wordsharp can be used to describe a knife but ~ then G4(i1)=G1(1) and G4{;)=G1(y2);

not flesh. To acquire this kind of world knowledge, ~ €lse if one of G2;) and G2f,) is 1,

we learn patterns of word usage from the Web by  then G4(1)=G2(:1) and G4{;)=G2(2);

issuing search queries. To facilitate our discussion, ©€lse if one of G3{;) and G3{y) is 1,

let us first introduce some notation. Let a sentence then G4(1)=G3(1) and G4;)=G3(2);

S be denoted by a tripled, Conn, Z»), whereZ; elseG4(i1)=G4(i2)=0.

and Z, are the clauses preceding and following th&he role of the threshold should be obvious: it

discourse connectiv€'onn, respectively;A € Z, ensures that a heuristic decision is made only if the

be the pronoun governed by the véry W be the difference between the counts for the two queries are

sequence of words followinyy in S; andCy,Cy €  sufficiently large, because otherwise there is no rea-

Z1 be the candidate antecedents. son for us to prefer one candidate antecedent to the
Given a sentence, we generate four queries: (Qjher. In all of our experiments, we seto 20.

C1V;(Q2)C5V; (Q3) C1VW; and (Q4)C, V. If Note that other researchers have also used lexico-

v is a verb-to-be followed by an adjective we gen- syntactic patterns to generate search queries for

erate two more queries: (Q5)C; and (Q6)JC,. bridging anaphora resolution (e.g., Poesio et al.

To exemplify, six queries are generated for (3b)(2004)), other-anaphora resolution (e.g., Modjeska

(Q1) “knife was”; (Q2) “flesh was”; (Q3) “knife was et al. (2003)), and learning selectional preferences

sharp”; (Q4) “flesh was sharp”; (Q5) “sharp knife”; for pronoun resolution (e.g., Yang et al. (2005)).

and (Q6) “sharp flesh”. On the other hand, only fouHowever, in each of these three cases, the taeget

gueries are generated for (3a): (Q1) “lions are”; (Q2lations (e.g., the part-whole relation in the case of

— _ _ bridging anaphora resolution, and the subject-verb
The nth candidate antecedent in a sentence isifean-

notated NP encountered when processing the sentence th a Iéa}nd verb-object relations in the case of selectional

to-right manner. In sentence (&d is the first candidate an- Preferences) are specific enough that they can be ef-
tecedent andimis the second. fectively captured by specific patterns. For example,
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to determine whethahe wheels part ofthe carin  are computed based on the same four heuristic rules
bridging anaphora resolution, Poesio et al. emplothat were discussed in the previous subsection.
gueries of the form “X of Y”, where X and Y would

be replaced withe wheebndthe car, respectively. 4.4 Heuristic Polarity

On the other hand, we are not targeting a particul&ome sentences involve comparing the two candi-
type of relation. Rather, we intend to capture worldiate antecedents. Consider the following sentences:
knowledge likelions rather than zebras are preda- (5a) John was defeated by Jim in the election
tors._ Such knowledge may not bg expressed as a even though he is more popular.
relat|_o_n and hence may_not be easily captured using (5b) John was defeated by Jim in the election
specific patterns. For this reason, we need to employ because he is more popular.
patterns as general as those such as Q3 and Q4.
The pronourherefers toJohnin (5a) andJimin

4.3 FrameNet (5b). To see how we can design an algorithm for re-
If we generate search queries as described in the pg®lving these pronouns, it would be useful to under-
vious subsection for thehoutexample, it is unlikely stand how humans resolve them. The phrasee
that Google will return meaningful counts to us. Thepopular has a positive sentiment. In (5a), the use
reason is that both candidate antecedents in the s@f-even thouglyields a clause of concession, which
tence are proper names belonging to the same tyflips the polarity ofmore popular(from positive to
(which in this case is PRSON). negative), whereas in (5b), the usebeftauseyields

However, in some cases, we may be able to gene¥-clause of cause, which does not change the po-
ate more meaningful queries from such kind of serarity of more popular(i.e., more popularremains
tences. Consider the following sentence: positive). Sincenore populaiis used to describie,

(4) John killed Jim, so he was arrested. heis “better” in (5b) but “worse” in (5a). Now, the

To aenerate meaninaful queries. we make one oword defeathas a positive sentiment, and siniim
9 giutq ' is thedeep subjeadf defeat Jimis “better” andJohn

servation: Johnand Jim played different roles in a is “worse”. Finally, in (5b)heandJim are “better”,

k'!l even.t. Hence, we can replace thesg proper nams?c?heis resolved talim; on the other hand, in (5a),
with their roles. We propose to obtain these role

ﬁe andJohnare “worse”, scheis resolved taJohn
from FrameNet (Baker et al., 1998). More gener- We automate this (human) method for resolv-

ally, for each proper namein a given sentence, we . . .
Y. prop g ’ ing pronouns as follows. We begin by determin-

(1) determine the event in whiehis involved (using ing whether we can assignrank value(i.e., “bet-

the Stanford dependency parser); (2) search for the®, . »

. ter” or “worse”) to the pronoun and the two can-

FrameNet frame corresponding to the event as we . .

, . idate antecedents. For instance, to determine the
ase’s role in the event; and (3) replace the name

L . rank value of the pronoud, we first determine the
with its FrameNet role. In our example, since both P '

names are involved in thdll event, we retrieve the p_oIanty valuep s of |ts_ anchorword wy, which is

. . . either the verhy for which A serves as the deep sub-
FrameNet frame fakill. Given thatlohnandJimare ject, or the adjective modifyingl if » does not ex-
the subject and object &fll, we can extract their se- J 7 . cl ; S
mantic roles directly from the frame, which dider Ist, 3 sIng Wl_lson et al’s (2005b) subjectivity lex-
andvictim, respectively. Consequently, we replace icon” If pa is not NEUTRAL, we check whether

the two names with their extracted semantic rolesIt can be fiipped by the context abs. We con-

) -sider three kinds of polarity-reversing context: nega-
and generate the search queries from the resultm% . . ;
) tron, comparative adverb, and discourse connective.
sentence in the same way as before.

Note that if no frames can be found for the verb inSpecmcaIIy, we determine whether, is negated

the first clause, no search queries will be generate%.Slng the Stanford dependency parser, which explic-

After obtaining the query counts, we generate four 7In the sentiment analysis and opinion mining literature,

binary features, FN1, FN2, FN3, FN4, whose valuegva, pa) is known as an opinion-target pair.
8The lexicon contains 8221 words, each of which is hand

®We heuristically map grammatical roles to semantic roleslabeled with a polarity of BSITIVE, NEGATIVE, or NEUTRAL.
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ity annotates instances of negation; we determin®pinionFinder (Wilson et al., 2005a), which has a
the existence of a comparative adverb (e.g., “morefre-trained classifier for annotating the phrases in a
“less”) using the POS tag “RBR”; and we determinesentence with their contextual polarity values.
whether A exists in a clause headed by a polarity- Given a sentence and the polarity values of the
reversing connective, such akhough After flip- phrases annotated by OpinionFinder, we determine
pingp4 by context, we can infed’s rank value from the rank values of the pronoun and the two candi-
it. Specifically, A’s rank value is “better” ifp4 is date antecedents by mapping them to the polarized
positive; “worse” if p4 is negative; and “cannot be phrases using the dependency relations provided by
determined” ifp 4 is neutral. The polarity values of the Stanford dependency parser. We create three bi-
the two candidate antecedents can be determinedriary features, LPOL1, LPOL2, and LPOL3, whose
a similar fashion. Note that sometimes we may neeghlues are computed in the same way as HPOL1,
to infer rank values. For example, given the sentend¢POL2, and HPOL3, respectively, except that the
“Jane is prettier than Jill'prettier has a positive po- computation here is based on the machine-learned
larity, so its modifying NPJane has a “better” rank, polarity values rather than the heuristically deter-
and we can infer thatill’s rank is “worse”. mined polarity values.

We create three features, HPOL1, HPOL2, and
HPOL3, based on our heuristic polarity determina4.6 Connective-Based Relations
tion component. Specifically, if the rank value ofConsider the following sentences:
the pronoun or the rank value of one or both of the
candidate antecedents cannot be determined, the val-
ues of all three binary features will be set to zero
for bothi; andi,. Otherwise, we compute the val-
ues of the three features as follows. To compute
HPOL1, which is a binary feature, we (1) employ Humans resolvéheyto Googlein (6a) by exploit-
a heuristic resolution procedure, which resolves thiag the world knowledge that there is a causal rela-
pronoun to the candidate antecedent with the santien (signaled by the discourse connectivecausg
rank value, and then (2) encode the outcome of thisetween thevantevent and théouy event. A simi-
heuristic procedure as the value of HPOL1. For edar mechanism is used to resoltleeyto Googlein
ample, since the first candidate anteceddoln is  (6b): from world knowledge we know that there is a
predicted to be the antecedent in (5a), HPGDHL causal relation betweeaich andbuy.
and HPOL1{;)=0. The value of HPOL2 is the We automate this (human) method for resolving
concatenation of the polarity values determinegronouns as follows. First, we gather connective-
for the pronoun and the candidate antecedertbased relations of this kind from a large, unanno-
Referring again to (5a), HPOLZ(=positive- tated corpus. In our experiments, we use as our
positive and HPOLZ2()=positive-negative. = To unannotated corpus the documents in three text cor-
compute HPOL3 for a given instance, we simypora (namely, BLLIP, Reuters, and English Giga-
ply take its HPOL2 value and append theword), but retain only those sentences that con-
connective to it Using (5a) as an exam4ain a single discourse connective and do not be-
ple, HPOL3(;)=positive-positive-even-though andgin with the connective. From these sentences,
HPOL3(,)=positive-negative-even-though. we collect triples and their frequencies of occur-
rences in the corpus. Each triple is of the form
(V,Conn,X), whereConn is a discourse connec-
In the previous subsection, we compute the polaritiive, V' is a stemmed verb in the clause preceding
of a word by updating its prior polarity heuristically Conn, and X is a stemmed verb or an adjective in
with contextual information. We hypothesized thathe clause followingC'onn. Each triple essentially
polarity could be computed more accurately by emdenotes a relation betweén and X expressed by
ploying a sentiment analyzer that can capture rich&’'onn. Conceivably, the strength of the relation in a
contextual information. For this reason, we employriple increases with its frequency count.

(6a) Google bought Motorola because they
want its customer base.

(6b) Google bought Motorola because they
are rich.

4.5 Machine-Learned Polarity
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We use the frequency counts of these triples toumber of times is the subject ob; (2) the num-
heuristically predict the correct antecedent for a taber of times is the direct object of; (3) the mutual
get pronoun. Given a sentence whéfenn is the information (MI) of v andn (with n as the subject
discourse connectiveX is the stemmed verb gov- of v); and (4) the Ml ofv andn (with n as the direct
erning the target pronous or the adjective modify- object ofv).°
ing A (if X is ato beverb), andV is the stemmed  To understand how we use these statistics to gen-
verb governing the candidate antecedents, we rerate features for resolving pronouns, consider the
trieve the frequency count of the triple" (Conn,X). following sentence:
If the count is at least 100, we employ a procedure (7) The man stole the neighbor’s bike because
for heuristically selecting the antecedent for the tar- he needed one.
get anaphor. Specifically, iX is a verb, then it re-
solves the target pronoun to the candidate anteceden#Assuming that the target pronoun and its govern-
that has the same grammatical role as the pronoufig verbV has grammatical relatio' R, we create
However, if X is an adjective and the sentence doe#ree features, SC1, SC2, and SC3, based on our se-
not involve comparison, then it resolves the targenantic compatibility component. SC1 encodes the

pronoun to the candidate antecedent serving as tM value of the head noun of a candidate antecedent
subject ofl. andV (and GR). SC2 is a binary feature whose

We create a binary featur€;BR, that encodes Vvalue indicates which of the candidate antecedents

this heuristic decision. In our running example, théas a larger Ml value witl’ (andGR). SC3 is the
triple (buy, becausewant) occurs 860 times in our same as SC2, except that Ml is replaced with corpus
corpus, so the pronoutheyis resolved to the can- frequency. In other words, SC2 and SC3 employ
didate antecedent that occurs as the subjetiugf different measures to heuristically predict the cor-
Hence, CBR{;)=1 and CBR{;)=0. However, had rect antecedent for the target pronoun. If the target
the triple occurred less than 100 times, both of theg@ronoun is governed by @ beverb, the values of

features would have been set to zero. these three features will all be set to zero.
_ o Given our running example, we first retrieve
4.7 Semantic Compatibility the following corpus-based statistics: Méedsubj,

Some of the queries generated by the Google corf?an=0.6322; Mlfieedsubj, neighbo)=0.3975;
ponent, such as Q1 and Q2, aim to capture theountfieedsubj, man=474; and count(eedsubj,
semantic compatibility between a candidate ar€ighbo)=68. Using these statistics, we can then
tecedentC, and the verb governing the target procompute the aforementioned features for our exam-
noun,V . However, using web search queries to estiPle. Specifically, SC%()=0.6322, SC1)=0.3975,
mate semantic compatibility has potential problems3C261)=1, SC2{2)=0, SC3(;)=1, and SC3%)=0.
including (1) aprecision problem: the fact that’ 48 Lexical Eeatures
and V' appear next to each other in a query does
not necessarily imply that a subject-verb relation ex¥Ve exploit the coreference-annotated training docu-
ists between them; and (2)racall problem: these Ments by creatingexical features from them. These
queries fail to capture subject-verb relations whertexical features can be divided into two categories,
C andV are notimmediately adjacent to each otheflepending on whether they are computed based on
To address these potential problems, we conibe candidate antecedents.
pute knowledge of selectional preferences from a Letus begin with thentecedent-independefeta-
large, unannotated corpus. As before, we crdures. Assuming thall’ is an arbitrary word in a
ate our unannotated corpus using the documents $§ntences that is not part of a candidate antecedent
BLLIP, Reuters, and English Gigaword. Speciﬁ_and Conn is the connective iS5, we create three
cally, we first parse each sentence in the corpus ug/Pes of binary-valued antecedent-independent fea-
ing the Stanford dependency parser. Then, for eadWres, namely (lunigrams where we create one
stemmed verb and each stemmed nounin the sy yse the same formula as described in Section 4.2 of
corpus, we collect the following statistics: (1) theBergsma and Lin (2006) to compute M values.
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feature for eacV; (2) word pairs where we cre- target pronoun in each sentence. Since there are
ate features by pairing eady appearing before two candidate antecedents per sentence, the Random
Conn with eachW appearing afte€onn, exclud- baseline should achieve an accuracy of 50%.

ir;g adjgctti_v(T-nou?] and noun-adje<t:tive E%Hrsa(;]d _The Stanford resolver. Our second baseline is the
.( );vor 'thrg ©3 WT(;re Wle au?menh (feact wor d_pa'rStanford resolver (Lee et al., 2011), which achieves
in (2) wi onn. The value of each featurgindi- the best performance in the CoNLL 2011 shared task

cates the presence orr?bsencg;m Sd defia (Pradhan et al., 2011). As a rule-based resolver, it
Next, we compute thantecedent-dependefea- does not exploit any coreference-annotated data.

tures. Let (1)Hc, and H¢, be the head words of :
; . Recall from Section 3 that our system assumes as
candidate antecedent® and Cs, respectively; (2) . .
input not only a sentence containing a target pronoun

Zﬁa tr‘l/gzt:';\?neci V?ogguﬂergerit%ZY?rgl:gééycz’ but also the two candidate antecedents. To ensure a
getp » resp y; Ci'  fair comparison, the same input is provided to this

Jc,, and.J4 be the adjectives modifying, Cz, and 4 oo pacelines. Hence, if the Stanford resolver

A, respectively! We create from each candidate an-, . L
o .decides to resolve the target pronoun, it will resolve
tecedent four features, each of which is a word pair )
If to one of the two candidate antecedents. However,

FromC}, we create H¢,, Vi,), (Heys Joy), (Hey,

Va), and (e, J4), all of which will appear in the if it does not have enough confidence about resolv-

, A ing it, it will leave it unresolved. Its performance on
feature vector corresponding €. A similar set of g P

the test set is shown in the “Unadjusted Scores” col-
four features are created fraffy. These antecedent- . .
: umn in row 1 of Table 3. As we can see, it correctly
dependent features are all binary-valued.

. o ; ., resolves 40.1% of the pronouns, incorrectly resolves
It is worth mentioning that while we also consid-

. . . . 29.8% of them, and does not make any decision on
ered word triples in the connective-based relatlon%e remaining 30.1%

component and word pairs in the semantic compat- _. .
comp rdp P Given that the Random baseline correctly resolves
ibility component, in those components we deter-

. ) ) . 50% of pronouns and the Stanford resolver correctly
mine their usefulness in an unsupervised manner L .

) ) résolves only 40.1% of the pronouns, it is tempting
whereas by employing them as lexical features we

) ) . . to conclude that Stanford does not perform as well
determine their usefulness in a supervised manner,

as Random. However, recall that Stanford leaves

5 Evaluation 30.1_% of the pronouns unresolved. H(_ance, to ensure
a fairer comparison, we produce “adjusted” scores
5.1 Experimental Setup for the Stanford resolver, where we “force” it to re-

Dataset. We report results on the test set, whictP0IVe all of the unresolved target pronouns by as-
comprises 30% of our hand-annotated sentence paiMing that probabilistically half of them will be re-
(see Section 2 for details). solved correctly. This adjusted score is shown in the
. . . “Adjusted Scores” column in row 1 of Table 3. As
Evaluation metrics. Results are expressed in .

¢ ¢ hich is th ; ¢ we can see, Stanford achieves an accuracy of 55.1%,
erms of accuracy, which IS the percentage ot oy ;. js 5 1 points higher than that of Random.
rectly resolved target pronouns. We also report the

percentages of these pronouns that are (1) not réhe Baseline Ranker. To understand whether the

solved and (2) incorrectly resolved. somewhat unsatisfactory Stanford results can be at-
_ _ tributed to its inability to exploit the training data,
5.2 Results and Discussion we employ as our third baseline a mention ranker

The Random baseline. Our first baseline is a re- that is trained in the same way as our system (see

solver that randomly guesses the antecedent for t@ction 3), except that it employs 39 commonly-

- used linguistic features for learning-based corefer-
10p 4 ivi fppn ; ; ; .

" Pa'l””g an adleCt_'Vle“ 'crl‘t%”elc'ause ‘_’V'tth f‘h_“cl’(L_W nan  ence resolution (see Table 1 of Rahman and Ng

other clause may misiea e learner Into tninkKin ats T

modified by A, an)(/j hence we do not create such pai%s. (2009) for a description of these features). Hence,
Wt ¢, Oy, and A are not modified by adjectives, no the performance difference between this Baseline

adjective-based features will be created. Ranker and our system can be attributed entirely
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Unadjusted Scores Adjusted Scores
Coreference System Correct Wrong No Decision Correct Wrong No Decision
1 | Stanford 40.07% 29.79% 30.14% | 55.14% 44.86% 0.00%
2 | Baseline Ranker 47.70%  47.16% 5.14% | 50.27% 49.73% 0.00%
3 | Stanford+Baseline Ranker 53.49% 43.12% 3.39% | 55.19% 44.77% 0.00%
4 | Our system 73.05% 26.95% 0.00% 73.05% 26.95% 0.00%

Table 3: Results of the Stanford resolver, the Baseline Battke Combined resolver, and our system.

to the difference between the two linguistic featurg Feature Type Correct Wrong  No Decisior}
R Its of the B i Rank h . All features 73.05% 26.95% 0.00%
sets. Results of the Baseline anker are shown in_Narrative Chains 68.97% 31.03% 0.00%
row 2 of Table 3. Before score adjustment, it cort —Google 65.96% 34.04% 0.00%
rectly resolves 47.7% of the target pronouns, incof-—FrameNet 72.16% 27.84%  0.00%
y 00 getp ’ s —Heuristic Polarity 71.45% 28.55% 0.00%
recFIy_ resolves 47.2% of them, and leaves the re-_| eamed Polarity 72.70%  27.30% 0.00%
maining 5.1% unresolved. (Note that we output “ng —Connective-Based Rel} 71.28%  28.72% 0.00%
icinnY ; —Semantic Compat. 71.81% 28.19% 0.00%
decision” if the ranker assigns the same rank valuLaiLeXical Eoatures 601106 253506  14.54%

to both candidate antecedents.) After score adjust-
ment, its accuracy is 50.3%, which is 0.3 points
higher than that of Random but statistically indis-
tinguishable from it? On the other hand, its accu-
racy is 4.9 points lower than that of Stanford, an@n accuracy of 73.1%, significantly outperforming
the difference between their performance is signifi’® Combined resolver by 17.9 points in accuracy.
cant. While it seems somewhat surprising that a sy-hese results suggest that our features are more use-
pervised resolver does not perform as well as a ruldul for resolving difficult pronouns than those com-
based resolver, neither of them employs knowledg®only used for coreference resolution.

sources that are particularly useful for our dataset. IQ.S Feature Analysis

other words, despite given access to annotated data,

the Baseline Ranker may not be able to make effet? @n attempt to gain additional insight into the per-
tive use of it due to the lack of useful features. formance contribution of each of the eight types of

The Combined resolver. We create a fourth base- features used in our system, we conduct feature ab-

. o lation experiments. The unadjusted scores of these
line by combining the Stanford resolver and the . .

. L experiments are shown in Table 4, where each row
Baseline Ranker. The motivation is that the former

. . shows the performance of the model trained on all

can provide better precision and the latter can pro- .
) o . ypes of features except for the one shown in that
vide better recall by handling “no decision” cases
._row. For easy reference, the performance of the
not covered by the former. Note that the Baseline . ) .
) . model trained on all types of features is shown in
Ranker will be applied to resolve only those pro- ow 1 of the table
nouns that are left unresolved by Stanford. ResullS '

in row 3 of Table 3 show that the adjusted accurac%ggzvérgogn?i gi?iizmle vaﬁir(‘:tk']‘:\‘/-e r f';';f:-repfffzf}s
of this Combined resolver is 55.2%, which is sta- PS Sig y yp

tistically indistinguishable from Stanford’s adjusted ©MoVed: This suggests that all eight feature types

re contributing positively to overall accuracy. Sec-
accuracy. Hence, these results show that the addi" )
y ond, theGooglebased features and thexical Fea-

tsl(:gn?;r?: rizzledlt?:niigﬁfa:c?fes not help ImIOrov?ures are the most useful, ar_ld those generated via
~_ FrameNetand Learned Polarityare the least use-
Our system. Results of our system, which is | iy the presence afther feature types. While it
trained using the features described in Section 4 {a somewhat surprising thaearned Polarityis not
combination with a ranking model, are shown inyqre yseful tharHeuristic Polarity we speculate

row 4 of Table 3. As we can see, our system achievgge reason can be attributed to the fact that the cor-

"2All statistical significance test results in this paper ape o PUS ON which Opinion_Finder was tr_ained was quite
tained using the pairetitest, withp < 0.05. different from ours. Finally, even without using the

Table 4: Results of feature ablation experiments.
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Feature Type Correct Wrong No Decision  stryct a search query composed of information ex-
Narrative Chains 30.67% 24.47% 44.86%

Google 33.16%  7.09% 59 759 | tracted from bof[h (_:Iauses, anql the regultmg, possi-
FrameNet 7.27%  4.08% 88.65% | bly long, query is likely to receive no hit count due
Learned Polarity 4.79%  2.66%  92.55% | o data sparseness. Investigating how to construct

Heuristic Polarity 7.27% 1.77% 90.96% . . ..
Connective-Based Rel. 14.01%  8.69% 77.30% | such queries while avoiding data sparseness would

Semantic Compat. 23.58% 13.12% 63.30% | be an interesting line of future work.
Lexical Features 56.91% 43.09%  0.00% Narrative chains, on the other hand, are useful
Table 5: Results of single-feature coreference models.]cOr paptqung the relationship between the events de-
scribed in the two clauses. However, they are com-
puted over verbs, and therefore cannot capture such
Lexical Featuresour system still outperforms all the a relationship when one or both of the events in-
baseline resolvers: as can been implied from the lagdlved are not described by verbs. For example,
row of Table 4, in the absence of thexical Fea- narrative chains fail to capture the causal relation
tures our resolver achieves an adjusted accuracy dktween the event expressedangry andshoutin
67.4%, which is only 5.7 points less than that obsentence (1b). It is also worth mentioning that some
tained when the full feature set is employed. Henceyronouns that could have been resolved using nar-
while the Lexical Featuresare useful, their impor- rative chains are not owing to tle®verageandac-
tance should not be over-emphasized. curacy of Chambers and Jurafsky’s (2008) chains,
To get a better idea of the utility of each featurebut we believe that these recall and precision prob-
type, we conduct another experiment in which wéems could be addressed by (1) inducing chains from
train eight models, each of which employs exactha larger corpus and (2) using semantic roles rather
one type of features. Their unadjusted scores atRan grammatical roles in the induction process.
shown in Table 5. As we can sdegarned Polarity  Some resolution errors arise from errors in polar-
has the smallest contribution, whereas tlexical ity analysis. This can be attributed to the simplicity
Featureshave the largest contribution. of our Heuristic Polarity component: determining
the polarity of a word based on its prior polarity is
too naive. Fine-grained polarity analysis would be
While our resolver significantly outperforms stateq promising solution to this problem (see Pang and

of-the-art resolvers, there is a lot of room for im-__ee (2008) and Liu (2012) for related work).
provement. To help direct future research on the res-

olution of difficult pronouns, we analyze the majorg  Conclusions
sources of errors made by our resolver.

Our analysis reveals that many of the errors coM/e investigated the resolution of complex cases of
respond to cases that cannot be handled by any @éfinite pronouns, a problem that was under exten-
the eight components of our resolver. To understarglve discussion by coreference researchers in the
these cases, consider first the strengths and wedl@70s but has received revived interest owing in part
nesses ofNarrative Chainsand Google the two to its relevance to the Turing Test. Our experimental
components that contribute the most to overall peresults indicate that it is a challenge for state-of-the-
formance aftetexical Features art resolvers, and while we proposed new knowledge

Googleis especially good at capturing facts, suctsources for addressing this challenge, our resolver
aslions are predatorsandzebras are not predators still has a lot of room for improvement. In partic-
helping us correctly resolve sentences such as (Salpr, our error analysis indicates that further gains
and (5b), as well as those in sentence pair () in Tazould be achieved via more accurate sentiment anal-
ble 1. However, it may not be good at handling proysis and induction of world knowledge from corpora
nouns whose resolution requires an understanding of the Web. In addition, we plan to integrate our
the connection between the facts or events describesksolver into a general-purpose coreference system
in the two clauses of a sentence. The reason is thatd evaluate the resulting resolver on standard eval-
establishing such a connection requires that we conation corpora such as MUC, ACE, and OntoNotes.

5.4 Error Analysis
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