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Abstract

Microblog normalisation methods often utilise
complex models and struggle to differenti-
ate between correctly-spelled unknown words
and lexical variants of known words. In this
paper, we propose a method for construct-
ing a dictionary of lexical variants of known
words that facilitates lexical normalisation via
simple string substitution (e.g. tomorrow for
tmrw). We use context information to generate
possible variant and normalisation pairs and
then rank these by string similarity. Highly-
ranked pairs are selected to populate the dic-
tionary. We show that a dictionary-based ap-
proach achieves state-of-the-art performance
for both F-score and word error rate on a stan-
dard dataset. Compared with other methods,
this approach offers a fast, lightweight and
easy-to-use solution, and is thus suitable for
high-volume microblog pre-processing.

1 Lexical Normalisation

A staggering number of short text “microblog” mes-
sages are produced every day through social me-
dia such as Twitter (Twitter, 2011). The immense
volume of real-time, user-generated microblogs that
flows through sites has been shown to have utility
in applications such as disaster detection (Sakaki et
al., 2010), sentiment analysis (Jiang et al., 2011;
González-Ibáñez et al., 2011), and event discovery
(Weng and Lee, 2011; Benson et al., 2011). How-
ever, due to the spontaneous nature of the posts,
microblogs are notoriously noisy, containing many
non-standard forms — e.g., tmrw “tomorrow” and
2day “today” — which degrade the performance of

natural language processing (NLP) tools (Ritter et
al., 2010; Han and Baldwin, 2011). To reduce this
effect, attempts have been made to adapt NLP tools
to microblog data (Gimpel et al., 2011; Foster et al.,
2011; Liu et al., 2011b; Ritter et al., 2011). An al-
ternative approach is to pre-normalise non-standard
lexical variants to their standard orthography (Liu et
al., 2011a; Han and Baldwin, 2011; Xue et al., 2011;
Gouws et al., 2011). For example, se u 2morw!!!
would be normalised to see you tomorrow! The nor-
malisation approach is especially attractive as a pre-
processing step for applications which rely on key-
word match or word frequency statistics. For ex-
ample, earthqu, eathquake, and earthquakeee — all
attested in a Twitter corpus — have the standard
form earthquake; by normalising these types to their
standard form, better coverage can be achieved for
keyword-based methods, and better word frequency
estimates can be obtained.

In this paper, we focus on the task of lexical nor-
malisation of English Twitter messages, in which
out-of-vocabulary (OOV) tokens are normalised to
their in-vocabulary (IV) standard form, i.e., a stan-
dard form that is in a dictionary. Following other re-
cent work on lexical normalisation (Liu et al., 2011a;
Han and Baldwin, 2011; Gouws et al., 2011; Liu et
al., 2012), we specifically focus on one-to-one nor-
malisation in which one OOV token is normalised to
one IV word.

Naturally, not all OOV words in microblogs are
lexical variants of IV words: named entities, e.g.,
are prevalent in microblogs, but not all named en-
tities are included in our dictionary. One chal-
lenge for lexical normalisation is therefore to dis-
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tinguish those OOV tokens that require normalisa-
tion from those that are well-formed. Recent un-
supervised approaches have not attempted to distin-
guish such tokens from other types of OOV tokens
(Cook and Stevenson, 2009; Liu et al., 2011a), lim-
iting their applicability to real-world normalisation
tasks. Other approaches (Han and Baldwin, 2011;
Gouws et al., 2011) have followed a cascaded ap-
proach in which lexical variants are first identified,
and then normalised. However, such two-step ap-
proaches suffer from poor lexical variant identifica-
tion performance, which is propagated to the nor-
malisation step. Motivated by the observation that
most lexical variants have an unambiguous standard
form (especially for longer tokens), and that a lexi-
cal variant and its standard form typically occur in
similar contexts, in this paper we propose methods
for automatically constructing a lexical normalisa-
tion dictionary — a dictionary whose entries consist
of (lexical variant, standard form) pairs — that en-
ables type-based normalisation.

Despite the simplicity of this dictionary-based
normalisation method, we show it to outperform
previously-proposed approaches. This very fast,
lightweight solution is suitable for real-time pro-
cessing of the large volume of streaming microblog
data available from Twitter, and offers a simple solu-
tion to the lexical variant detection problem that hin-
ders other normalisation methods. Furthermore, this
dictionary-based method can be easily integrated
with other more-complex normalisation approaches
(Liu et al., 2011a; Han and Baldwin, 2011; Gouws
et al., 2011) to produce hybrid systems.

After discussing related work in Section 2, we
present an overview of our dictionary-based ap-
proach to normalisation in Section 3. In Sections 4
and 5 we experimentally select the optimised con-
text similarity parameters and string similarity re-
ranking method. We present experimental results on
the unseen test data in Section 6, and offer some con-
cluding remarks in Section 7.

2 Related Work

Given a token t, lexical normalisation is the task
of finding arg maxP (s|t) ∝ arg maxP (t|s)P (s),
where s is the standard form, i.e., an IV word. Stan-
dardly in lexical normalisation, t is assumed to be an

OOV token, relative to a fixed dictionary. In prac-
tice, not all OOV tokens should be normalised; i.e.,
only lexical variants (e.g., tmrw “tomorrow”) should
be normalised and tokens that are OOV but other-
wise not lexical variants (e.g., iPad “iPad”) should
be unchanged. Most work in this area focuses only
on the normalisation task itself, oftentimes assuming
that the task of lexical variant detection has already
been completed.

Various approaches have been proposed to esti-
mate the error model, P (t|s). For example, in work
on spell-checking, Brill and Moore (2000) improve
on a standard edit-distance approach by consider-
ing multi-character edit operations; Toutanova and
Moore (2002) build on this by incorporating phono-
logical information. Li et al. (2006) utilise distri-
butional similarity (Lin, 1998) to correct misspelled
search queries.

In text message normalisation, Choudhury et al.
(2007) model the letter transformations and emis-
sions using a hidden Markov model (Rabiner, 1989).
Cook and Stevenson (2009) and Xue et al. (2011)
propose multiple simple error models, each of which
captures a particular way in which lexical variants
are formed, such as phonetic spelling (e.g., epik
“epic”) or clipping (e.g., walkin “walking”). Never-
theless, optimally weighting the various error mod-
els in these approaches is challenging.

Without pre-categorising lexical variants into dif-
ferent types, Liu et al. (2011a) collect Google
search snippets from carefully-designed queries
from which they then extract noisy lexical variant–
standard form pairs. These pairs are used to train
a conditional random field (Lafferty et al., 2001) to
estimate P (t|s) at the character level. One short-
coming of querying a search engine to obtain train-
ing pairs is it tends to be costly in terms of time and
bandwidth. Here we exploit microblog data directly
to derive (lexical variant, standard form) pairs, in-
stead of relying on external resources. In more-
recent work, Liu et al. (2012) endeavour to improve
the accuracy of top-n normalisation candidates by
integrating human cognitive inference, character-
level transformations and spell checking in their nor-
malisation model. The encouraging results shift the
focus to reranking and promoting the correct nor-
malisation to the top-1 position. However, like much
previous work on lexical normalisation, this work
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assumes perfect lexical variant detection.

Aw et al. (2006) and Kaufmann and Kalita (2010)
consider normalisation as a machine translation task
from lexical variants to standard forms using off-the-
shelf tools. These methods do not assume that lexi-
cal variants have been pre-identified; however, these
methods do rely on large quantities of labelled train-
ing data, which is not available for microblogs.

Recently, Han and Baldwin (2011) and Gouws
et al. (2011) propose two-step unsupervised ap-
proaches to normalisation, in which lexical vari-
ants are first identified, and then normalised. They
approach lexical variant detection by using a con-
text fitness classifier (Han and Baldwin, 2011) or
through dictionary lookup (Gouws et al., 2011).
However, the lexical variant detection of both meth-
ods is rather unreliable, indicating the challenge
of this aspect of normalisation. Both of these
approaches incorporate a relatively small normal-
isation dictionary to capture frequent lexical vari-
ants with high precision. In particular, Gouws et
al. (2011) produce a small normalisation lexicon
based on distributional similarity and string simi-
larity (Lodhi et al., 2002). Our method adopts a
similar strategy using distributional/string similarity,
but instead of constructing a small lexicon for pre-
processing, we build a much wider-coverage nor-
malisation dictionary and opt for a fully lexicon-
based end-to-end normalisation approach. In con-
trast to the normalisation dictionaries of Han and
Baldwin (2011) and Gouws et al. (2011) which fo-
cus on very frequent lexical variants, we focus on
moderate frequency lexical variants of a minimum
character length, which tend to have unambiguous
standard forms; our intention is to produce normali-
sation lexicons that are complementary to those cur-
rently available. Furthermore, we investigate the im-
pact of a variety of contextual and string similarity
measures on the quality of the resulting lexicons.
In summary, our dictionary-based normalisation ap-
proach is a lightweight end-to-end method which
performs both lexical variant detection and normal-
isation, and thus is suitable for practical online pre-
processing, despite its simplicity.

3 A Lexical Normalisation Dictionary

Before discussing our method for creating a normal-
isation dictionary, we first discuss the feasibility of
such an approach.

3.1 Feasibility
Dictionary lookup approaches to normalisation have
been shown to have high precision but low recall
(Han and Baldwin, 2011; Gouws et al., 2011). Fre-
quent (lexical variant, standard form) pairs such as
(u, you) are typically included in the dictionaries
used by such methods, while less-frequent items
such as (g0tta, gotta) are generally omitted. Be-
cause of the degree of lexical creativity and large
number of non-standard forms observed on Twitter,
a wide-coverage normalisation dictionary would be
expensive to construct manually. Based on the as-
sumption that lexical variants occur in similar con-
texts to their standard forms, however, it should
be possible to automatically construct a normalisa-
tion dictionary with wider coverage than is currently
available.

Dictionary lookup is a type-based approach to
normalisation, i.e., every token instance of a given
type will always be normalised in the same way.
However, lexical variants can be ambiguous, e.g., y
corresponds to “you” in yeah, y r right! LOL but
“why” in AM CONFUSED!!! y you did that? Nev-
ertheless, the relative occurrence of ambiguous lex-
ical variants is small (Liu et al., 2011a), and it has
been observed that while shorter variants such as y
are often ambiguous, longer variants tend to be un-
ambiguous. For example bthday and 4eva are un-
likely to have standard forms other than “birthday”
and “forever”, respectively. Therefore, the normali-
sation lexicons we produce will only contain entries
for OOVs with character length greater than a spec-
ified threshold, which are likely to have an unam-
biguous standard form.

3.2 Overview of approach
Our method for constructing a normalisation dictio-
nary is as follows:

Input: Tokenised English tweets

1. Extract (OOV, IV) pairs based on distributional
similarity.
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2. Re-rank the extracted pairs by string similarity.

Output: A list of (OOV, IV) pairs ordered by string
similarity; select the top-n pairs for inclusion in
the normalisation lexicon.

In Step 1, we leverage large volumes of Twitter
data to identify the most distributionally-similar IV
type for each OOV type. The result of this pro-
cess is a set of (OOV, IV) pairs, ranked by dis-
tributional similarity. The extracted pairs will in-
clude (lexical variant, standard form) pairs, such as
(tmrw, tomorrow), but will also contain false posi-
tives such as (Tusday, Sunday) — Tusday is a lexical
variant, but its standard form is not “Sunday” — and
(Youtube, web) — Youtube is an OOV named en-
tity, not a lexical variant. Nevertheless, lexical vari-
ants are typically formed from their standard forms
through regular processes (Thurlow, 2003) — e.g.,
the omission of characters — and from this per-
spective Sunday and web are not plausible standard
forms for Tusday and Youtube, respectively. In Step
2, we therefore capture this intuition to re-rank the
extracted pairs by string similarity. The top-n items
in this re-ranked list then form the normalisation lex-
icon, which is based only on development data.

Although computationally-expensive to build,
this dictionary can be created offline. Once built,
it then offers a very fast approach to normalisation.

We can only reliably compute distributional simi-
larity for types that are moderately frequent in a cor-
pus. Nevertheless, many lexical variants are suffi-
ciently frequent to be able to compute distributional
similarity, and can potentially make their way into
our normalisation lexicon. This approach is not suit-
able for normalising low-frequency lexical variants,
nor is it suitable for shorter lexical variant types
which — as discussed in Section 3.1 — are more
likely to have an ambiguous standard form. Never-
theless, previously-proposed normalisation methods
that can handle such phenomena also rely in part on
a normalisation lexicon. The normalisation lexicons
we create can therefore be easily integrated with pre-
vious approaches to form hybrid normalisation sys-
tems.

4 Contextually-similar Pair Generation

Our objective is to extract contextually-similar
(OOV, IV) pairs from a large-scale collection of mi-

croblog data. Fundamentally, the surrounding words
define the primary context, but there are different
ways of representing context and different similar-
ity measures we can use, which may influence the
quality of generated normalisation pairs.

In representing the context, we experimentally ex-
plore the following factors: (1) context window size
(from 1 to 3 tokens on both sides); (2) n-gram or-
der of the context tokens (unigram, bigram, trigram);
(3) whether context words are indexed for relative
position or not; and (4) whether we use all context
tokens, or only IV words. Because high-accuracy
linguistic processing tools for Twitter are still under
exploration (Liu et al., 2011b; Gimpel et al., 2011;
Ritter et al., 2011; Foster et al., 2011), we do not
consider richer representations of context, for exam-
ple, incorporating information about part-of-speech
tags or syntax. We also experiment with a number
of simple but widely-used geometric and informa-
tion theoretic distance/similarity measures. In par-
ticular, we use Kullback–Leibler (KL) divergence
(Kullback and Leibler, 1951), Jensen–Shannon (JS)
divergence (Lin, 1991), Euclidean distance and Co-
sine distance.

We use a corpus of 10 million English tweets to do
parameter tuning over, and a larger corpus of tweets
in the final candidate ranking. All tweets were col-
lected from September 2010 to January 2011 via
the Twitter API.1 From the raw data we extract
English tweets using a language identification tool
(Lui and Baldwin, 2011), and then apply a simpli-
fied Twitter tokeniser (adapted from O’Connor et al.
(2010)). We use the Aspell dictionary (v6.06)2 to
determine whether a word is IV, and only include
in our normalisation dictionary OOV tokens with
at least 64 occurrences in the corpus and character
length ≥ 4, both of which were determined through
empirical observation. For each OOV word type in
the corpus, we select the most similar IV type to
form (OOV, IV) pairs. To further narrow the search
space, we only consider IV words which are mor-
phophonemically similar to the OOV type, follow-
ing settings in Han and Baldwin (2011).3

1https://dev.twitter.com/docs/
streaming-api/methods

2http://aspell.net/
3We only consider IV words within an edit distance of 2 or a

phonemic edit distance of 1 from the OOV type, and we further
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In order to evaluate the generated pairs, we ran-
domly selected 1000 OOV words from the 10 mil-
lion tweet corpus. We set up an annotation task
on Amazon Mechanical Turk,4 presenting five in-
dependent annotators with each word type (with no
context) and asking for corrections where appropri-
ate. For instance, given tmrw, the annotators would
likely identify it as a non-standard variant of “to-
morrow”. For correct OOV words like iPad, on the
other hand, we would expect them to leave the word
unchanged. If 3 or more of the 5 annotators make
the same suggestion (in the form of either a canoni-
cal spelling or leaving the word unchanged), we in-
clude this in our gold standard for evaluation. In
total, this resulted in 351 lexical variants and 282
correct OOV words, accounting for 63.3% of the
1000 OOV words. These 633 OOV words were used
as (OOV, IV) pairs for parameter tuning. The re-
mainder of the 1000 OOV words were ignored on
the grounds that there was not sufficient consensus
amongst the annotators.5

Contextually-similar pair generation aims to in-
clude as many correct normalisation pairs as pos-
sible. We evaluate the quality of the normalisation
pairs using “Cumulative Gain” (CG):

CG =

N ′∑
i=1

rel′i

Suppose there are N ′ correct generated pairs
(oovi, ivi), each of which is weighted by rel′i, the
frequency of oovi to indicate its relative importance;
for example, (thinkin, thinking) has a higher weight
than (g0tta, gotta) because thinkin is more frequent
than g0tta in our corpus. In this evaluation we don’t
consider the position of normalisation pairs, and nor
do we penalise incorrect pairs. Instead, we push dis-
tinguishing between correct and incorrect pairs into
the downstream re-ranking step in which we incor-
porate string similarity information.

Given the development data and CG, we run an
exhaustive search of parameter combinations over

only consider the top 30% most-frequent of these IV words.
4https://www.mturk.com/mturk/welcome
5Note that the objective of this annotation task is to identify

lexical variants that have agreed-upon standard forms irrespec-
tive of context, as a special case of the more general task of
lexical normalisation (where context may or may not play a sig-
nificant role in the determination of the normalisation).

our development corpus. The five best parameter
combinations are shown in Table 1. We notice the
CG is almost identical for the top combinations. As
a context window size of 3 incurs a heavy process-
ing and memory overhead over a size of 2, we use
the 3rd-best parameter combination for subsequent
experiments, namely: context window of±2 tokens,
token bigrams, positional index, and KL divergence
as our distance measure.

To better understand the sensitivity of the method
to each parameter, we perform a post-hoc parame-
ter analysis relative to a default setting (as under-
lined in Table 2), altering one parameter at a time.
The results in Table 2 show that bigrams outper-
form other n-gram orders by a large margin (note
that the evaluation is based on a log scale), and
information-theoretic measures are superior to the
geometric measures. Furthermore, it also indicates
using the positional indexing better captures context.
However, there is little to distinguish context mod-
elling with just IV words or all tokens. Similarly,
the context window size has relatively little impact
on the overall performance, supporting our earlier
observation from Table 1.

5 Pair Re-ranking by String Similarity

Once the contextually-similar (OOV, IV) pairs are
generated using the selected parameters in Section
4, we further re-rank this set of pairs in an at-
tempt to boost morphophonemically-similar pairs
like (bananaz, bananas), and penalise noisy pairs
like (paninis, beans).

Instead of using the small 10 million tweet cor-
pus, from this step onwards, we use a larger cor-
pus of 80 million English tweets (collected over the
same period as the development corpus) to develop
a larger-scale normalisation dictionary. This is be-
cause once pairs are generated, re-ranking based on
string comparison is much faster. We only include
in the dictionary OOV words with a token frequency
> 15 to include more OOV types than in Section 4,
and again apply a minimum length cutoff of 4 char-
acters.

To measure how well our re-ranking method pro-
motes correct pairs and demotes incorrect pairs (in-
cluding both OOV words that should not be nor-
malised, e.g. (Youtube, web), and incorrect normal-
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Rank Window size n-gram Positional index? Lex. choice Sim/distance measure log(CG)
1 ±3 2 Yes All KL divergence 19.571
2 ±3 2 No All KL divergence 19.562
3 ±2 2 Yes All KL divergence 19.562
4 ±3 2 Yes IVs KL divergence 19.561
5 ±2 2 Yes IVs JS divergence 19.554

Table 1: The five best parameter combinations in the exhaustive search of parameter combinations

Window size n-gram Positional index? Lexical choice Similarity/distance measure
±1 19.325 1 19.328 Yes 19.328 IVs 19.335 KL divergence 19.328
±2 19.327 2 19.571 No 19.263 All 19.328 Euclidean 19.227
±3 19.328 3 19.324 JS divergence 19.311

Cosine 19.170

Table 2: Parameter sensitivity analysis measured as log(CG) for correctly-generated pairs. We tune one parameter at
a time, using the default (underlined) setting for other parameters; the non-exhaustive best-performing setting in each
case is indicated in bold.

isations for lexical variants, e.g. (bcuz, cause)), we
modify our evaluation metric from Section 4 to
evaluate the ranking at different points, using Dis-
counted Cumulative Gain (DCG@N : Jarvelin and
Kekalainen (2002)):

DCG@N = rel1 +
N∑

i=2

reli
log2 (i)

where reli again represents the frequency of the
OOV, but it can be gain (a positive number) or loss
(a negative number), depending on whether the ith
pair is correct or incorrect. Because we also expect
correct pairs to be ranked higher than incorrect pairs,
DCG@N takes both factors into account.

Given the generated pairs and the evaluation met-
ric, we first consider three baselines: no re-ranking
(i.e., the final ranking is that of the contextual simi-
larity scores), and re-rankings of the pairs based on
the frequencies of the OOVs in the Twitter corpus,
and the IV unigram frequencies in the Google Web
1T corpus (Brants and Franz, 2006) to get less-noisy
frequency estimates. We also compared a variety of
re-rankings based on a number of string similarity
measures that have been previously considered in
normalisation work (reviewed in Section 2). We ex-
periment with standard edit distance (Levenshtein,
1966), edit distance over double metaphone codes
(phonetic edit distance: (Philips, 2000)), longest
common subsequence ratio over the consonant edit
distance of the paired words (hereafter, denoted as

consonant edit distance: (Contractor et al., 2010)),
and a string subsequence kernel (Lodhi et al., 2002).

In Figure 1, we present the DCG@N results for
each of our ranking methods at different rank cut-
offs. Ranking by OOV frequency is motivated by
the assumption that lexical variants are frequently
used by social media users. This is confirmed
by our findings that lexical pairs like (goin, going)
and (nite, night) are at the top of the ranking.
However, many proper nouns and named entities
are also used frequently and ranked at the top,
mixed with lexical variants like (Facebook, speech)
and (Youtube, web). In ranking by IV word fre-
quency, we assume the lexical variants are usually
derived from frequently-used IV equivalents, e.g.
(abou, about). However, many less-frequent lexical
variant types have high-frequency (IV) normalisa-
tions. For instance, the highest-frequency IV word
the has more than 40 OOV lexical variants, such as
tthe and thhe. These less-frequent types occupy the
top positions, reducing the cumulative gain. Com-
pared with these two baselines, ranking by default
contextual similarity scores delivers promising re-
sults. It successfully ranks many more intuitive nor-
malisation pairs at the top, such as (2day, today)
and (wknd, weekend), but also ranks some incorrect
pairs highly, such as (needa, gotta).

The string similarity-based methods perform bet-
ter than our baselines in general. Through man-
ual analysis, we found that standard edit dis-
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tance ranking is fairly accurate for lexical vari-
ants with low edit distance to their standard forms,
but fails to identify heavily-altered variants like
(tmrw, tomorrow). Consonant edit distance is simi-
lar to standard edit distance, but places many longer
words at the top of the ranking. Edit distance
over double metaphone codes (phonetic edit dis-
tance) performs particularly well for lexical vari-
ants that include character repetitions — commonly
used for emphasis on Twitter — because such rep-
etitions do not typically alter the phonetic codes.
Compared with the other methods, the string subse-
quence kernel delivers encouraging results. It mea-
sures common character subsequences of length n
between (OOV, IV) pairs. Because it is computa-
tionally expensive to calculate similarity for larger
n, we choose n=2, following Gouws et al. (2011).
As N (the lexicon size cut-off) increases, the per-
formance drops more slowly than the other meth-
ods. Although this method fails to rank heavily-
altered variants such as (4get, forget) highly, it typi-
cally works well for longer words. Given that we fo-
cus on longer OOVs (specifically those longer than
4 characters), this ultimately isn’t a great handicap.

6 Evaluation

Given the re-ranked pairs from Section 5, here we
apply them to a token-level normalisation task us-
ing the normalisation dataset of Han and Baldwin
(2011).

6.1 Metrics

We evaluate using the standard evaluation metrics of
precision (P), recall (R) and F-score (F) as detailed
below. We also consider the false alarm rate (FA)
and word error rate (WER), also as shown below.
FA measures the negative effects of applying nor-
malisation; a good approach to normalisation should
not (incorrectly) normalise tokens that are already
in their standard form and do not require normalisa-
tion.6 WER, like F-score, shows the overall benefits
of normalisation, but unlike F-score, measures how
many token-level edits are required for the output to
be the same as the ground truth data. In general, dic-
tionaries with a high F-score/low WER and low FA

6FA + P ≤ 1 because some lexical variants might be incor-
rectly normalised.

are preferable.

P =
# correctly normalised tokens

# normalised tokens

R =
# correctly normalised tokens

# tokens requiring normalisation

F =
2PR

P + R

FA =
# incorrectly normalised tokens

# normalised tokens

WER =
# token edits needed after normalisation

# all tokens

6.2 Results
We select the three best re-ranking methods, and
best cut-off N for each method, based on the
highest DCG@N value for a given method over
the development data, as presented in Figure 1.
Namely, they are string subsequence kernel (S-dict,
N=40,000), double metaphone edit distance (DM-
dict, N=10,000) and default contextual similarity
without re-ranking (C-dict, N=10,000).7

We evaluate each of the learned dictionaries in Ta-
ble 3. We also compare each dictionary with the
performance of the manually-constructed Internet
slang dictionary (HB-dict) used by Han and Bald-
win (2011), the small automatically-derived dictio-
nary of Gouws et al. (2011) (GHM-dict), and com-
binations of the different dictionaries. In addition,
the contribution of these dictionaries in hybrid nor-
malisation approaches is also presented, in which we
first normalise OOVs using a given dictionary (com-
bined or otherwise), and then apply the normalisa-
tion method of Gouws et al. (2011) based on con-
sonant edit distance (GHM-norm), or the approach
of Han and Baldwin (2011) based on the summation
of many unsupervised approaches (HB-norm), to the
remaining OOVs. Results are shown in Table 3, and
discussed below.

6.2.1 Individual Dictionaries
Overall, the individual dictionaries derived by the

re-ranking methods (DM-dict, S-dict) perform bet-
7We also experimented with combining ranks using Mean

Reciprocal Rank. However, the combined rank didn’t improve
performance on the development data. We plan to explore other
ranking aggregation methods in future work.
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Figure 1: Re-ranking based on different string similarity methods.

ter than that based on contextual similarity (C-dict)
in terms of precision and false alarm rate, indicating
the importance of re-ranking. Even though C-dict
delivers higher recall — indicating that many lexi-
cal variants are correctly normalised — this is offset
by its high false alarm rate, which is particularly un-
desirable in normalisation. Because S-dict has better
performance than DM-dict in terms of both F-score
and WER, and a much lower false alarm rate than
C-dict, subsequent results are presented using S-dict
only.

Both HB-dict and GHM-dict achieve better than
90% precision with moderate recall. Compared to
these methods, S-dict is not competitive in terms of
either precision or recall. This result seems rather
discouraging. However, considering that S-dict is an
automatically-constructed dictionary targeting lexi-
cal variants of varying frequency, it is not surprising
that the precision is worse than that of HB-dict —
which is manually-constructed — and GHM-dict —
which includes entries only for more-frequent OOVs
for which distributional similarity is more accurate.
Additionally, the recall of S-dict is hampered by the

restriction on lexical variant token length of 4 char-
acters.

6.2.2 Combined Dictionaries

Next we look to combining HB-dict, GHM-dict
and S-dict. In combining the dictionaries, a given
OOV word can be listed with different standard
forms in different dictionaries. In such cases we use
the following preferences for dictionaries — moti-
vated by our confidence in the normalisation pairs
of the dictionaries — to resolve conflicts: HB-dict
> GHM-dict > S-dict.

When we combine dictionaries in the second sec-
tion of Table 3, we find that they contain com-
plementary information: in each case the recall
and F-score are higher for the combined dictio-
nary than any of the individual dictionaries. The
combination of HB-dict+GHM-dict produces only
a small improvement in terms of F-score over HB-
dict (the better-performing dictionary) suggesting
that, as claimed, HB-dict and GHM-dict share many
frequent normalisation pairs. HB-dict+S-dict and
GHM-dict+S-dict, on the other hand, improve sub-
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Method Precision Recall F-Score False Alarm Word Error Rate
C-dict 0.474 0.218 0.299 0.298 0.103
DM-dict 0.727 0.106 0.185 0.145 0.102
S-dict 0.700 0.179 0.285 0.162 0.097
HB-dict 0.915 0.435 0.590 0.048 0.066
GHM-dict 0.982 0.319 0.482 0.000 0.076
HB-dict+S-dict 0.840 0.601 0.701 0.090 0.052
GHM-dict+S-dict 0.863 0.498 0.632 0.072 0.061
HB-dict+GHM-dict 0.920 0.465 0.618 0.045 0.063
HB-dict+GHM-dict+S-dict 0.847 0.630 0.723 0.086 0.049
GHM-dict+GHM-norm 0.338 0.578 0.427 0.458 0.135
HB-dict+GHM-dict+S-dict+GHM-norm 0.406 0.715 0.518 0.468 0.124
HB-dict+HB-norm 0.515 0.771 0.618 0.332 0.081
HB-dict+GHM-dict+S-dict+HB-norm 0.527 0.789 0.632 0.332 0.079

Table 3: Normalisation results using our derived dictionaries (contextual similarity (C-dict); double metaphone ren-
dering (DM-dict); string subsequence kernel scores (S-dict)), the dictionary of Gouws et al. (2011) (GHM-dict), the
Internet slang dictionary (HB-dict) from Han and Baldwin (2011), and combinations of these dictionaries. In addition,
we combine the dictionaries with the normalisation method of Gouws et al. (2011) (GHM-norm) and the combined
unsupervised approach of Han and Baldwin (2011) (HB-norm).

stantially over HB-dict and GHM-dict, respectively,
indicating that S-dict contains markedly different
entries to both HB-dict and GHM-dict. The best F-
score and WER are obtained using the combination
of all three dictionaries, HB-dict+GHM-dict+S-dict.
Furthermore, the difference between the results us-
ing HB-dict+GHM-dict+S-dict and HB-dict+GHM-
dict is statistically significant (p < 0.01), based on
the computationally-intensive Monte Carlo method
of Yeh (2000), demonstrating the contribution of S-
dict.

6.2.3 Hybrid Approaches
The methods of Gouws et al. (2011) (i.e.

GHM-dict+GHM-norm) and Han and Baldwin
(2011) (i.e. HB-dict+HB-norm) have lower preci-
sion and higher false alarm rates than the dictionary-
based approaches; this is largely caused by lex-
ical variant detection errors.8 Using all dic-
tionaries in combination with these methods —
HB-dict+GHM-dict+S-dict+GHM-norm and HB-
dict+GHM-dict+S-dict+HB-norm — gives some
improvements, but the false alarm rates remain high.
Despite the limitations of a pure dictionary-based
approach to normalisation — discussed in Section
3.1 — the current best practical approach to normal-

8Here we report results that do not assume perfect detection
of lexical variants, unlike the original published results in each
case.

Error type OOV Standard form
Dict. Gold

(a) plurals playe players player
(b) negation unlike like dislike
(c) possessives anyones anyone anyone’s
(d) correct OOVs iphone phone iphone
(e) test data errors durin during durin
(f) ambiguity siging signing singing

Table 4: Error types in the combined dictionary (HB-
dict+GHM-dict+S-dict)

isation is to use a lexicon, combining hand-built and
automatically-learned normalisation dictionaries.

6.3 Discussion and Error Analysis

We first manually analyse the errors in the combined
dictionary (HB-dict+GHM-dict+S-dict) and give ex-
amples of each error type in Table 4. The most fre-
quent word errors are caused by slight morphologi-
cal variations, including plural forms (a), negations
(b), possessive cases (c), and OOVs that are correct
and do not require normalisation (d). In addition, we
also notice some missing annotations where lexical
variants are skipped by human annotations but cap-
tured by our method (e). Ambiguity (f) definitely
exists in longer OOVs, however, these cases do not
appear to have a strong negative impact on the nor-
malisation performance. An example of a remain-
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Length cut-off (N ) #Variants Precision Recall (≥ N ) Recall (all) False Alarm
≥4 556 0.700 0.381 0.179 0.162
≥5 382 0.814 0.471 0.152 0.122
≥6 254 0.804 0.484 0.104 0.131
≥7 138 0.793 0.471 0.055 0.122

Table 5: S-dict normalisation results broken down according to OOV token length. Recall is presented both over the
subset of instances of length ≥ N in the data (“Recall (≥ N )”), and over the entirety of the dataset (“Recall (all)”);
“#Variants” is the number of token instances of the indicated length in the test dataset.

ing miscellaneous error is bday “birthday”, which is
mis-normalised as day.

To further study the influence of OOV word
length relative to the normalisation performance, we
conduct a fine-grained analysis of the performance
of the derived dictionary (S-dict) in Table 5, bro-
ken down across different OOV word lengths. The
results generally support our hypothesis that our
method works better for longer OOV words. The
derived dictionary is much more reliable for longer
tokens (length 5, 6, and 7 characters) in terms of pre-
cision and false alarm. Although the recall is rela-
tively modest, in the future we intend to improve re-
call by mining more normalisation pairs from larger
collections of microblog data.

7 Conclusions and Future Work

In this paper, we describe a method for automat-
ically constructing a normalisation dictionary that
supports normalisation of microblog text through di-
rect substitution of lexical variants with their stan-
dard forms. After investigating the impact of dif-
ferent distributional and string similarity methods
on the quality of the dictionary, we present ex-
perimental results on a standard dataset showing
that our proposed methods acquire high quality
(lexical variant, standard form) pairs, with reason-
able coverage, and achieve state-of-the-art end-to-
end lexical normalisation performance on a real-
world token-level task. Furthermore, this dictionary-
lookup method combines the detection and normali-
sation of lexical variants into a simple, lightweight
solution which is suitable for processing of high-
volume microblog feeds.

In the future, we intend to improve our dictionary
by leveraging the constantly-growing volume of mi-
croblog data, and considering alternative ways to
combine distributional and string similarity. In addi-

tion to direct evaluation, we also want to explore the
benefits of applying normalisation for downstream
social media text processing applications, e.g. event
detection.
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