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Abstract

People tweet more than 100 Million times
daily, yielding a noisy, informal, but some-
times informative corpus of 140-character
messages that mirrors the zeitgeist in an un-
precedented manner. The performance of
standard NLP tools is severely degraded on
tweets. This paper addresses this issue by
re-building the NLP pipeline beginning with
part-of-speech tagging, through chunking, to
named-entity recognition. Our novel T-NER
system doubles F1 score compared with the
Stanford NER system. T-NER leverages the
redundancy inherent in tweets to achieve this
performance, using LabeledLDA to exploit
Freebase dictionaries as a source of distant
supervision. LabeledLDA outperforms co-
training, increasing F1 by 25% over ten com-
mon entity types.

Our NLP tools are available at: http://
github.com/aritter/twitter_nlp

1 Introduction

Status Messages posted on Social Media websites
such as Facebook and Twitter present a new and
challenging style of text for language technology
due to their noisy and informal nature. Like SMS
(Kobus et al., 2008), tweets are particularly terse
and difficult (See Table 1). Yet tweets provide a
unique compilation of information that is more up-
to-date and inclusive than news articles, due to the
low-barrier to tweeting, and the proliferation of mo-
bile devices.1 The corpus of tweets already exceeds

1See the “trending topics” displayed on twitter.com

the size of the Library of Congress (Hachman, 2011)
and is growing far more rapidly. Due to the vol-
ume of tweets, it is natural to consider named-entity
recognition, information extraction, and text mining
over tweets. Not surprisingly, the performance of
“off the shelf” NLP tools, which were trained on
news corpora, is weak on tweet corpora.

In response, we report on a re-trained “NLP
pipeline” that leverages previously-tagged out-of-
domain text, 2 tagged tweets, and unlabeled tweets
to achieve more effective part-of-speech tagging,
chunking, and named-entity recognition.

1 The Hobbit has FINALLY started filming! I
cannot wait!

2 Yess! Yess! Its official Nintendo announced
today that they Will release the Nintendo 3DS
in north America march 27 for $250

3 Government confirms blast n nuclear plants n
japan...don’t knw wht s gona happen nw...

Table 1: Examples of noisy text in tweets.

We find that classifying named entities in tweets is
a difficult task for two reasons. First, tweets contain
a plethora of distinctive named entity types (Compa-
nies, Products, Bands, Movies, and more). Almost
all these types (except for People and Locations) are
relatively infrequent, so even a large sample of man-
ually annotated tweets will contain few training ex-
amples. Secondly, due to Twitter’s 140 character
limit, tweets often lack sufficient context to deter-
mine an entity’s type without the aid of background

2Although tweets can be written on any subject, following
convention we use the term “domain” to include text styles or
genres such as Twitter, News or IRC Chat.
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knowledge.
To address these issues we propose a distantly su-

pervised approach which applies LabeledLDA (Ra-
mage et al., 2009) to leverage large amounts of unla-
beled data in addition to large dictionaries of entities
gathered from Freebase, and combines information
about an entity’s context across its mentions.

We make the following contributions:

1. We experimentally evaluate the performance of
off-the-shelf news trained NLP tools when ap-
plied to Twitter. For example POS tagging
accuracy drops from about 0.97 on news to
0.80 on tweets. By utilizing in-domain, out-
of-domain, and unlabeled data we are able to
substantially boost performance, for example
obtaining a 52% increase in F1 score on seg-
menting named entities.

2. We introduce a novel approach to distant super-
vision (Mintz et al., 2009) using Topic Models.
LabeledLDA is applied, utilizing constraints
based on an open-domain database (Freebase)
as a source of supervision. This approach in-
creases F1 score by 25% relative to co-training
(Blum and Mitchell, 1998; Yarowsky, 1995) on
the task of classifying named entities in Tweets.

The rest of the paper is organized as follows.
We successively build the NLP pipeline for Twitter
feeds in Sections 2 and 3. We first present our ap-
proaches to shallow syntax – part of speech tagging
(§2.1), and shallow parsing (§2.2). §2.3 describes a
novel classifier that predicts the informativeness of
capitalization in a tweet. All tools in §2 are used
as features for named entity segmentation in §3.1.
Next, we present our algorithms and evaluation for
entity classification (§3.2). We describe related work
in §4 and conclude in §5.

2 Shallow Syntax in Tweets

We first study two fundamental NLP tasks – POS
tagging and noun-phrase chunking. We also discuss
a novel capitalization classifier in §2.3. The outputs
of all these classifiers are used in feature generation
for named entity recognition in the next section.

For all experiments in this section we use a dataset
of 800 randomly sampled tweets. All results (Tables

Accuracy Error
Reduction

Majority Baseline (NN) 0.189 -
Word’s Most Frequent Tag 0.760 -
Stanford POS Tagger 0.801 -
T-POS(PTB) 0.813 6%
T-POS(Twitter) 0.853 26%
T-POS(IRC + PTB) 0.869 34%
T-POS(IRC + Twitter) 0.870 35%
T-POS(PTB + Twitter) 0.873 36%
T-POS(PTB + IRC + Twitter) 0.883 41%

Table 2: POS tagging performance on tweets. By training
on in-domain labeled data, in addition to annotated IRC
chat data, we obtain a 41% reduction in error over the
Stanford POS tagger.

2, 4 and 5) represent 4-fold cross-validation experi-
ments on the respective tasks.3

2.1 Part of Speech Tagging

Part of speech tagging is applicable to a wide range
of NLP tasks including named entity segmentation
and information extraction.

Prior experiments have suggested that POS tag-
ging has a very strong baseline: assign each word
to its most frequent tag and assign each Out of Vo-
cabulary (OOV) word the most common POS tag.
This baseline obtained a 0.9 accuracy on the Brown
corpus (Charniak et al., 1993). However, the appli-
cation of a similar baseline on tweets (see Table 2)
obtains a much weaker 0.76, exposing the challeng-
ing nature of Twitter data.

A key reason for this drop in accuracy is that Twit-
ter contains far more OOV words than grammatical
text. Many of these OOV words come from spelling
variation, e.g., the use of the word “n” for “in” in Ta-
ble 1 example 3. Although NNP is the most frequent
tag for OOV words, only about 1/3 are NNPs.

The performance of off-the-shelf news-trained
POS taggers also suffers on Twitter data. The state-
of-the-art Stanford POS tagger (Toutanova et al.,
2003) improves on the baseline, obtaining an accu-
racy of 0.8. This performance is impressive given
that its training data, the Penn Treebank WSJ (PTB),
is so different in style from Twitter, however it is a
huge drop from the 97% accuracy reported on the

3We used Brendan O’Connor’s Twitter tokenizer
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Gold Predicted Stanford
Error

T-POS Error Error
Reduction

NN NNP 0.102 0.072 29%
UH NN 0.387 0.047 88%
VB NN 0.071 0.032 55%
NNP NN 0.130 0.125 4%
UH NNP 0.200 0.036 82%

Table 3: Most common errors made by the Stanford POS
Tagger on tweets. For each case we list the fraction of
times the gold tag is misclassified as the predicted for
both our system and the Stanford POS tagger. All verbs
are collapsed into VB for compactness.

PTB. There are several reasons for this drop in per-
formance. Table 3 lists common errors made by
the Stanford tagger. First, due to unreliable capi-
talization, common nouns are often misclassified as
proper nouns, and vice versa. Also, interjections
and verbs are frequently misclassified as nouns. In
addition to differences in vocabulary, the grammar
of tweets is quite different from edited news text.
For instance, tweets often start with a verb (where
the subject ‘I’ is implied), as in: “watchng american
dad.”

To overcome these differences in style and vocab-
ulary, we manually annotated a set of 800 tweets
(16K tokens) with tags from the Penn TreeBank tag
set for use as in-domain training data for our POS
tagging system, T-POS.4 We add new tags for the
Twitter specific phenomena: retweets, @usernames,
#hashtags, and urls. Note that words in these cate-
gories can be tagged with 100% accuracy using sim-
ple regular expressions. To ensure fair comparison
in Table 2, we include a postprocessing step which
tags these words appropriately for all systems.

To help address the issue of OOV words and
lexical variations, we perform clustering to group
together words which are distributionally similar
(Brown et al., 1992; Turian et al., 2010). In particu-
lar, we perform hierarchical clustering using Jcluster
(Goodman, 2001) on 52 million tweets; each word
is uniquely represented by a bit string based on the
path from the root of the resulting hierarchy to the
word’s leaf. We use the Brown clusters resulting
from prefixes of 4, 8, and 12 bits. These clusters are
often effective in capturing lexical variations, for ex-

4Using MMAX2 (Müller and Strube, 2006) for annotation.

ample, following are lexical variations on the word
“tomorrow” from one cluster after filtering out other
words (most of which refer to days):

‘2m’, ‘2ma’, ‘2mar’, ‘2mara’, ‘2maro’,
‘2marrow’, ‘2mor’, ‘2mora’, ‘2moro’, ‘2mo-
row’, ‘2morr’, ‘2morro’, ‘2morrow’, ‘2moz’,
‘2mr’, ‘2mro’, ‘2mrrw’, ‘2mrw’, ‘2mw’,
‘tmmrw’, ‘tmo’, ‘tmoro’, ‘tmorrow’, ‘tmoz’,
‘tmr’, ‘tmro’, ‘tmrow’, ‘tmrrow’, ‘tm-
rrw’, ‘tmrw’, ‘tmrww’, ‘tmw’, ‘tomaro’,
‘tomarow’, ‘tomarro’, ‘tomarrow’, ‘tomm’,
‘tommarow’, ‘tommarrow’, ‘tommoro’, ‘tom-
morow’, ‘tommorrow’, ‘tommorw’, ‘tomm-
row’, ‘tomo’, ‘tomolo’, ‘tomoro’, ‘tomorow’,
‘tomorro’, ‘tomorrw’, ‘tomoz’, ‘tomrw’,
‘tomz’

T-POS uses Conditional Random Fields5 (Laf-
ferty et al., 2001), both because of their ability to
model strong dependencies between adjacent POS
tags, and also to make use of highly correlated fea-
tures (for example a word’s identity in addition to
prefixes and suffixes). Besides employing the Brown
clusters computed above, we use a fairly standard set
of features that include POS dictionaries, spelling
and contextual features.

On a 4-fold cross validation over 800 tweets,
T-POS outperforms the Stanford tagger, obtaining a
26% reduction in error. In addition we include 40K
tokens of annotated IRC chat data (Forsythand and
Martell, 2007), which is similar in style. Like Twit-
ter, IRC data contains many misspelled/abbreviated
words, and also more pronouns, and interjections,
but fewer determiners than news. Finally, we also
leverage 50K POS-labeled tokens from the Penn
Treebank (Marcus et al., 1994).

Overall T-POS trained on 102K tokens (12K from
Twitter, 40K from IRC and 50K from PTB) results
in a 41% error reduction over the Stanford tagger,
obtaining an accuracy of 0.883. Table 3 lists gains
on some of the most common error types, for ex-
ample, T-POS dramatically reduces error on inter-
jections and verbs that are incorrectly classified as
nouns by the Stanford tagger.

2.2 Shallow Parsing
Shallow parsing, or chunking is the task of identi-
fying non-recursive phrases, such as noun phrases,

5We use MALLET (McCallum, 2002).
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Accuracy Error
Reduction

Majority Baseline (B-NP) 0.266 -
OpenNLP 0.839 -
T-CHUNK(CoNLL) 0.854 9%
T-CHUNK(Twitter) 0.867 17%
T-CHUNK(CoNLL + Twitter) 0.875 22%

Table 4: Token-Level accuracy at shallow parsing tweets.
We compare against the OpenNLP chunker as a baseline.

verb phrases, and prepositional phrases in text. Ac-
curate shallow parsing of tweets could benefit sev-
eral applications such as Information Extraction and
Named Entity Recognition.

Off the shelf shallow parsers perform noticeably
worse on tweets, motivating us again to annotate in-
domain training data. We annotate the same set of
800 tweets mentioned previously with tags from the
CoNLL shared task (Tjong Kim Sang and Buchholz,
2000). We use the set of shallow parsing features de-
scribed by Sha and Pereira (2003), in addition to the
Brown clusters mentioned above. Part-of-speech tag
features are extracted based on cross-validation out-
put predicted by T-POS. For inference and learning,
again we use Conditional Random Fields. We utilize
16K tokens of in-domain training data (using cross
validation), in addition to 210K tokens of newswire
text from the CoNLL dataset.

Table 4 reports T-CHUNK’s performance at shal-
low parsing of tweets. We compare against the off-
the shelf OpenNLP chunker6, obtaining a 22% re-
duction in error.

2.3 Capitalization

A key orthographic feature for recognizing named
entities is capitalization (Florian, 2002; Downey et
al., 2007). Unfortunately in tweets, capitalization
is much less reliable than in edited texts. In addi-
tion, there is a wide variety in the styles of capital-
ization. In some tweets capitalization is informative,
whereas in other cases, non-entity words are capital-
ized simply for emphasis. Some tweets contain all
lowercase words (8%), whereas others are in ALL
CAPS (0.6%).

To address this issue, it is helpful to incorporate
information based on the entire content of the mes-

6http://incubator.apache.org/opennlp/

P R F1

Majority Baseline 0.70 1.00 0.82
T-CAP 0.77 0.98 0.86

Table 5: Performance at predicting reliable capitalization.

sage to determine whether or not its capitalization
is informative. To this end, we build a capitaliza-
tion classifier, T-CAP, which predicts whether or not
a tweet is informatively capitalized. Its output is
used as a feature for Named Entity Recognition. We
manually labeled our 800 tweet corpus as having
either “informative” or “uninformative” capitaliza-
tion. The criteria we use for labeling is as follows:
if a tweet contains any non-entity words which are
capitalized, but do not begin a sentence, or it con-
tains any entities which are not capitalized, then its
capitalization is “uninformative”, otherwise it is “in-
formative”.

For learning , we use Support Vector Ma-
chines.7 The features used include: the frac-
tion of words in the tweet which are capitalized,
the fraction which appear in a dictionary of fre-
quently lowercase/capitalized words but are not low-
ercase/capitalized in the tweet, the number of times
the word ‘I’ appears lowercase and whether or not
the first word in the tweet is capitalized. Results
comparing against the majority baseline, which pre-
dicts capitalization is always informative, are shown
in Table 5. Additionally, in §3 we show that fea-
tures based on our capitalization classifier improve
performance at named entity segmentation.

3 Named Entity Recognition

We now discuss our approach to named entity recog-
nition on Twitter data. As with POS tagging and
shallow parsing, off the shelf named-entity recog-
nizers perform poorly on tweets. For example, ap-
plying the Stanford Named Entity Recognizer to one
of the examples from Table 1 results in the following
output:

[Yess]ORG! [Yess]ORG! Its official
[Nintendo]LOC announced today that they
Will release the [Nintendo]ORG 3DS in north
[America]LOC march 27 for $250

7http://www.chasen.org/˜taku/software/
TinySVM/
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The OOV word ‘Yess’ is mistaken as a named en-
tity. In addition, although the first occurrence of
‘Nintendo’ is correctly segmented, it is misclassi-
fied, whereas the second occurrence is improperly
segmented – it should be the product “Nintendo
3DS”. Finally “north America” should be segmented
as a LOCATION, rather than just ‘America’. In gen-
eral, news-trained Named Entity Recognizers seem
to rely heavily on capitalization, which we know to
be unreliable in tweets.

Following Collins and Singer (1999), Downey et
al. (2007) and Elsner et al. (2009), we treat classi-
fication and segmentation of named entities as sepa-
rate tasks. This allows us to more easily apply tech-
niques better suited towards each task. For exam-
ple, we are able to use discriminative methods for
named entity segmentation and distantly supervised
approaches for classification. While it might be ben-
eficial to jointly model segmentation and (distantly
supervised) classification using a joint sequence la-
beling and topic model similar to that proposed by
Sauper et al. (2010), we leave this for potential fu-
ture work.

Because most words found in tweets are not part
of an entity, we need a larger annotated dataset to ef-
fectively learn a model of named entities. We there-
fore use a randomly sampled set of 2,400 tweets for
NER. All experiments (Tables 6, 8-10) report results
using 4-fold cross validation.

3.1 Segmenting Named Entities

Because capitalization in Twitter is less informative
than news, in-domain data is needed to train models
which rely less heavily on capitalization, and also
are able to utilize features provided by T-CAP.

We exhaustively annotated our set of 2,400 tweets
(34K tokens) with named entities.8 A convention on
Twitter is to refer to other users using the @ sym-
bol followed by their unique username. We deliber-
ately choose not to annotate @usernames as entities
in our data set because they are both unambiguous,
and trivial to identify with 100% accuracy using a
simple regular expression, and would only serve to
inflate our performance statistics. While there is am-
biguity as to the type of @usernames (for example,

8We found that including out-of-domain training data from
the MUC competitions lowered performance at this task.

P R F1 F1 inc.
Stanford NER 0.62 0.35 0.44 -
T-SEG(None) 0.71 0.57 0.63 43%
T-SEG(T-POS) 0.70 0.60 0.65 48%
T-SEG(T-POS, T-CHUNK) 0.71 0.61 0.66 50%
T-SEG(All Features) 0.73 0.61 0.67 52%

Table 6: Performance at segmenting entities varying the
features used. “None” removes POS, Chunk, and capital-
ization features. Overall we obtain a 52% improvement
in F1 score over the Stanford Named Entity Recognizer.

they can refer to people or companies), we believe
they could be more easily classified using features
of their associated user’s profile than contextual fea-
tures of the text.

T-SEG models Named Entity Segmentation as a
sequence-labeling task using IOB encoding for rep-
resenting segmentations (each word either begins, is
inside, or is outside of a named entity), and uses
Conditional Random Fields for learning and infer-
ence. Again we include orthographic, contextual
and dictionary features; our dictionaries included a
set of type lists gathered from Freebase. In addition,
we use the Brown clusters and outputs of T-POS,
T-CHUNK and T-CAP in generating features.

We report results at segmenting named entities in
Table 6. Compared with the state-of-the-art news-
trained Stanford Named Entity Recognizer (Finkel
et al., 2005), T-SEG obtains a 52% increase in F1

score.

3.2 Classifying Named Entities

Because Twitter contains many distinctive, and in-
frequent entity types, gathering sufficient training
data for named entity classification is a difficult task.
In any random sample of tweets, many types will
only occur a few times. Moreover, due to their
terse nature, individual tweets often do not contain
enough context to determine the type of the enti-
ties they contain. For example, consider following
tweet:

KKTNY in 45min..........

without any prior knowledge, there is not enough
context to determine what type of entity “KKTNY”
refers to, however by exploiting redundancy in the
data (Downey et al., 2010), we can determine it is
likely a reference to a television show since it of-
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ten co-occurs with words such as watching and pre-
mieres in other contexts.9

In order to handle the problem of many infre-
quent types, we leverage large lists of entities and
their types gathered from an open-domain ontology
(Freebase) as a source of distant supervision, allow-
ing use of large amounts of unlabeled data in learn-
ing.
Freebase Baseline: Although Freebase has very
broad coverage, simply looking up entities and their
types is inadequate for classifying named entities in
context (0.38 F-score, §3.2.1). For example, accord-
ing to Freebase, the mention ‘China’ could refer to
a country, a band, a person, or a film. This prob-
lem is very common: 35% of the entities in our data
appear in more than one of our (mutually exclusive)
Freebase dictionaries. Additionally, 30% of entities
mentioned on Twitter do not appear in any Freebase
dictionary, as they are either too new (for example a
newly released videogame), or are misspelled or ab-
breviated (for example ‘mbp’ is often used to refer
to the “mac book pro”).
Distant Supervision with Topic Models: To
model unlabeled entities and their possible types, we
apply LabeledLDA (Ramage et al., 2009), constrain-
ing each entity’s distribution over topics based on
its set of possible types according to Freebase. In
contrast to previous weakly supervised approaches
to Named Entity Classification, for example the Co-
Training and Naı̈ve Bayes (EM) models of Collins
and Singer (1999), LabeledLDA models each entity
string as a mixture of types rather than using a single
hidden variable to represent the type of each men-
tion. This allows information about an entity’s dis-
tribution over types to be shared across mentions,
naturally handling ambiguous entity strings whose
mentions could refer to different types.

Each entity string in our data is associated with a
bag of words found within a context window around
all of its mentions, and also within the entity itself.
As in standard LDA (Blei et al., 2003), each bag of
words is associated with a distribution over topics,
Multinomial(θe), and each topic is associated with a
distribution over words, Multinomial(βt). In addi-
tion, there is a one-to-one mapping between topics
and Freebase type dictionaries. These dictionaries

9Kourtney & Kim Take New York.

constrain θe, the distribution over topics for each en-
tity string, based on its set of possible types, FB[e].
For example, θAmazon could correspond to a distribu-
tion over two types: COMPANY, and LOCATION,
whereas θApple might represent a distribution over
COMPANY, and FOOD. For entities which aren’t
found in any of the Freebase dictionaries, we leave
their topic distributions θe unconstrained. Note that
in absence of any constraints LabeledLDA reduces
to standard LDA, and a fully unsupervised setting
similar to that presented by Elsner et. al. (2009).

In detail, the generative process that models our
data for Named Entity Classification is as follows:

for each type: t = 1 . . . T do
Generate βt according to symmetric Dirichlet

distribution Dir(η).
end for
for each entity string e = 1 . . . |E| do

Generate θe over FB[e] according to Dirichlet
distribution Dir(αFB[e]).

for each word position i = 1 . . . Ne do
Generate ze,i from Mult(θe).
Generate the word we,i from Mult(βze,i).

end for
end for
To infer values for the hidden variables, we apply

Collapsed Gibbs sampling (Griffiths and Steyvers,
2004), where parameters are integrated out, and the
ze,is are sampled directly.

In making predictions, we found it beneficial to
consider θtrain

e as a prior distribution over types for
entities which were encountered during training. In
practice this sharing of information across contexts
is very beneficial as there is often insufficient evi-
dence in an isolated tweet to determine an entity’s
type. For entities which weren’t encountered dur-
ing training, we instead use a prior based on the dis-
tribution of types across all entities. One approach
to classifying entities in context is to assume that
θtrain
e is fixed, and that all of the words inside the

entity mention and context, w, are drawn based on
a single topic, z, that is they are all drawn from
Multinomial(βz). We can then compute the poste-
rior distribution over types in closed form with a
simple application of Bayes rule:

P (z|w) ∝
∏

w∈w

P (w|z : β)P (z : θtrain
e )

During development, however, we found that rather
than making these assumptions, using Gibbs Sam-
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Type Top 20 Entities not found in Freebase dictionaries
PRODUCT nintendo ds lite, apple ipod, generation black, ipod nano, apple iphone, gb black, xperia, ipods, verizon

media, mac app store, kde, hd video, nokia n8, ipads, iphone/ipod, galaxy tab, samsung galaxy, playstation
portable, nintendo ds, vpn

TV-SHOW pretty little, american skins, nof, order svu, greys, kktny, rhobh, parks & recreation, parks & rec, dawson
’s creek, big fat gypsy weddings, big fat gypsy wedding, winter wipeout, jersey shores, idiot abroad, royle,
jerseyshore, mr . sunshine, hawaii five-0, new jersey shore

FACILITY voodoo lounge, grand ballroom, crash mansion, sullivan hall, memorial union, rogers arena, rockwood
music hall, amway center, el mocambo, madison square, bridgestone arena, cat club, le poisson rouge,
bryant park, mandalay bay, broadway bar, ritz carlton, mgm grand, olympia theatre, consol energy center

Table 7: Example type lists produced by LabeledLDA. No entities which are shown were found in Freebase; these are
typically either too new to have been added, or are misspelled/abbreviated (for example rhobh=”Real Housewives of
Beverly Hills”). In a few cases there are segmentation errors.

pling to estimate the posterior distribution over types
performs slightly better. In order to make predic-
tions, for each entity we use an informative Dirich-
let prior based on θtrain

e and perform 100 iterations of
Gibbs Sampling holding the hidden topic variables
in the training data fixed (Yao et al., 2009). Fewer
iterations are needed than in training since the type-
word distributions, β have already been inferred.

3.2.1 Classification Experiments

To evaluate T-CLASS’s ability to classify entity
mentions in context, we annotated the 2,400 tweets
with 10 types which are both popular on Twitter,
and have good coverage in Freebase: PERSON,
GEO-LOCATION, COMPANY, PRODUCT, FACIL-
ITY, TV-SHOW, MOVIE, SPORTSTEAM, BAND,
and OTHER. Note that these type annotations are
only used for evaluation purposes, and not used dur-
ing training T-CLASS, which relies only on distant
supervision. In some cases, we combine multi-
ple Freebase types to create a dictionary of entities
representing a single type (for example the COM-
PANY dictionary contains Freebase types /busi-
ness/consumer company and /business/brand). Be-
cause our approach does not rely on any manually
labeled examples, it is straightforward to extend it
for a different sets of types based on the needs of
downstream applications.
Training: To gather unlabeled data for inference,
we run T-SEG, our entity segmenter (from §3.1), on
60M tweets, and keep the entities which appear 100
or more times. This results in a set of 23,651 dis-
tinct entity strings. For each entity string, we col-
lect words occurring in a context window of 3 words

from all mentions in our data, and use a vocabulary
of the 100K most frequent words. We run Gibbs
sampling for 1,000 iterations, using the last sample
to estimate entity-type distributions θe, in addition
to type-word distributions βt. Table 7 displays the
20 entities (not found in Freebase) whose posterior
distribution θe assigns highest probability to selected
types.
Results: Table 8 presents the classification re-
sults of T-CLASS compared against a majority base-
line which simply picks the most frequent class
(PERSON), in addition to the Freebase baseline,
which only makes predictions if an entity appears
in exactly one dictionary (i.e., appears unambigu-
ous). T-CLASS also outperforms a simple super-
vised baseline which applies a MaxEnt classifier us-
ing 4-fold cross validation over the 1,450 entities
which were annotated for testing. Additionally we
compare against the co-training algorithm of Collins
and Singer (1999) which also leverages unlabeled
data and uses our Freebase type lists; for seed rules
we use the “unambiguous” Freebase entities. Our
results demonstrate that T-CLASS outperforms the
baselines and achieves a 25% increase in F1 score
over co-training.

Tables 9 and 10 present a breakdown of F1 scores
by type, both collapsing types into the standard
classes used in the MUC competitions (PERSON,
LOCATION, ORGANIZATION), and using the 10
popular Twitter types described earlier.
Entity Strings vs. Entity Mentions: DL-Cotrain
and LabeledLDA use two different representations
for the unlabeled data during learning. LabeledLDA
groups together words across all mentions of an en-
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System P R F1

Majority Baseline 0.30 0.30 0.30
Freebase Baseline 0.85 0.24 0.38
Supervised Baseline 0.45 0.44 0.45
DL-Cotrain 0.54 0.51 0.53
LabeledLDA 0.72 0.60 0.66

Table 8: Named Entity Classification performance on the
10 types. Assumes segmentation is given as in (Collins
and Singer, 1999), and (Elsner et al., 2009).

Type LL FB CT SP N
PERSON 0.82 0.48 0.65 0.83 436
LOCATION 0.74 0.21 0.55 0.67 372
ORGANIZATION 0.66 0.52 0.55 0.31 319
overall 0.75 0.39 0.59 0.49 1127

Table 9: F1 classification scores for the 3 MUC types
PERSON, LOCATION, ORGANIZATION. Results are
shown using LabeledLDA (LL), Freebase Baseline (FB),
DL-Cotrain (CT) and Supervised Baseline (SP). N is the
number of entities in the test set.

Type LL FB CT SP N
PERSON 0.82 0.48 0.65 0.86 436
GEO-LOC 0.77 0.23 0.60 0.51 269
COMPANY 0.71 0.66 0.50 0.29 162
FACILITY 0.37 0.07 0.14 0.34 103
PRODUCT 0.53 0.34 0.40 0.07 91
BAND 0.44 0.40 0.42 0.01 54
SPORTSTEAM 0.53 0.11 0.27 0.06 51
MOVIE 0.54 0.65 0.54 0.05 34
TV-SHOW 0.59 0.31 0.43 0.01 31
OTHER 0.52 0.14 0.40 0.23 219
overall 0.66 0.38 0.53 0.45 1450

Table 10: F1 scores for classification broken down by
type for LabeledLDA (LL), Freebase Baseline (FB), DL-
Cotrain (CT) and Supervised Baseline (SP). N is the num-
ber of entities in the test set.

P R F1

DL-Cotrain-entity 0.47 0.45 0.46
DL-Cotrain-mention 0.54 0.51 0.53
LabeledLDA-entity 0.73 0.60 0.66
LabeledLDA-mention 0.57 0.52 0.54

Table 11: Comparing LabeledLDA and DL-Cotrain
grouping unlabeled data by entities vs. mentions.

System P R F1

COTRAIN-NER (10 types) 0.55 0.33 0.41
T-NER(10 types) 0.65 0.42 0.51
COTRAIN-NER (PLO) 0.57 0.42 0.49
T-NER(PLO) 0.73 0.49 0.59
Stanford NER (PLO) 0.30 0.27 0.29

Table 12: Performance at predicting both segmentation
and classification. Systems labeled with PLO are evalu-
ated on the 3 MUC types PERSON, LOCATION, ORGA-
NIZATION.

tity string, and infers a distribution over its possi-
ble types, whereas DL-Cotrain considers the entity
mentions separately as unlabeled examples and pre-
dicts a type independently for each. In order to
ensure that the difference in performance between
LabeledLDA and DL-Cotrain is not simply due to
this difference in representation, we compare both
DL-Cotrain and LabeledLDA using both unlabeled
datasets (grouping words by all mentions vs. keep-
ing mentions separate) in Table 11. As expected,
DL-Cotrain performs poorly when the unlabeled ex-
amples group mentions; this makes sense, since Co-
Training uses a discriminative learning algorithm,
so when trained on entities and tested on individual
mentions, the performance decreases. Additionally,
LabeledLDA’s performance is poorer when consid-
ering mentions as “documents”. This is likely due
to the fact that there isn’t enough context to effec-
tively learn topics when the “documents” are very
short (typically fewer than 10 words).
End to End System: Finally we present the end
to end performance on segmentation and classifica-
tion (T-NER) in Table 12. We observe that T-NER

again outperforms co-training. Moreover, compar-
ing against the Stanford Named Entity Recognizer
on the 3 MUC types, T-NER doubles F1 score.

4 Related Work

There has been relatively little previous work on
building NLP tools for Twitter or similar text styles.
Locke and Martin (2009) train a classifier to recog-
nize named entities based on annotated Twitter data,
handling the types PERSON, LOCATION, and OR-
GANIZATION. Developed in parallel to our work,
Liu et al. (2011) investigate NER on the same 3
types, in addition to PRODUCTs and present a semi-
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supervised approach using k-nearest neighbor. Also
developed in parallel, Gimpell et al. (2011) build a
POS tagger for tweets using 20 coarse-grained tags.
Benson et. al. (2011) present a system which ex-
tracts artists and venues associated with musical per-
formances. Recent work (Han and Baldwin, 2011;
Gouws et al., 2011) has proposed lexical normaliza-
tion of tweets which may be useful as a preprocess-
ing step for the upstream tasks like POS tagging and
NER. In addition Finin et. al. (2010) investigate
the use of Amazon’s Mechanical Turk for annotat-
ing Named Entities in Twitter, Minkov et. al. (2005)
investigate person name recognizers in email, and
Singh et. al. (2010) apply a minimally supervised
approach to extracting entities from text advertise-
ments.

In contrast to previous work, we have demon-
strated the utility of features based on Twitter-
specific POS taggers and Shallow Parsers in seg-
menting Named Entities. In addition we take a dis-
tantly supervised approach to Named Entity Classi-
fication which exploits large dictionaries of entities
gathered from Freebase, requires no manually anno-
tated data, and as a result is able to handle a larger
number of types than previous work. Although we
found manually annotated data to be very beneficial
for named entity segmentation, we were motivated
to explore approaches that don’t rely on manual la-
bels for classification due to Twitter’s wide range of
named entity types. Additionally, unlike previous
work on NER in informal text, our approach allows
the sharing of information across an entity’s men-
tions which is quite beneficial due to Twitter’s terse
nature.

Previous work on Semantic Bootstrapping has
taken a weakly-supervised approach to classifying
named entities based on large amounts of unla-
beled text (Etzioni et al., 2005; Carlson et al., 2010;
Kozareva and Hovy, 2010; Talukdar and Pereira,
2010; McIntosh, 2010). In contrast, rather than
predicting which classes an entity belongs to (e.g.
a multi-label classification task), LabeledLDA esti-
mates a distribution over its types, which is then use-
ful as a prior when classifying mentions in context.

In addition there has been been work on Skip-
Chain CRFs (Sutton, 2004; Finkel et al., 2005)
which enforce consistency when classifying multi-
ple occurrences of an entity within a document. Us-

ing topic models (e.g. LabeledLDA) for classifying
named entities has a similar effect, in that informa-
tion about an entity’s distribution of possible types
is shared across its mentions.

5 Conclusions

We have demonstrated that existing tools for POS
tagging, Chunking and Named Entity Recognition
perform quite poorly when applied to Tweets. To
address this challenge we have annotated tweets and
built tools trained on unlabeled, in-domain and out-
of-domain data, showing substantial improvement
over their state-of-the art news-trained counterparts,
for example, T-POS outperforms the Stanford POS
Tagger, reducing error by 41%. Additionally we
have shown the benefits of features generated from
T-POS and T-CHUNK in segmenting Named Entities.

We identified named entity classification as a par-
ticularly challenging task on Twitter. Due to their
terse nature, tweets often lack enough context to
identify the types of the entities they contain. In ad-
dition, a plethora of distinctive named entity types
are present, necessitating large amounts of training
data. To address both these issues we have presented
and evaluated a distantly supervised approach based
on LabeledLDA, which obtains a 25% increase in F1

score over the co-training approach to Named En-
tity Classification suggested by Collins and Singer
(1999) when applied to Twitter.

Our POS tagger, Chunker Named Entity Rec-
ognizer are available for use by the research
community: http://github.com/aritter/
twitter_nlp
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