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Abstract

Most previous research on verb clustering has
focussed on acquiring flat classifications from
corpus data, although many manually built
classifications are taxonomic in nature. Also
Natural Language Processing (NLP) applica-
tions benefit from taxonomic classifications
because they vary in terms of the granularity
they require from a classification. We intro-
duce a new clustering method called Hierar-
chical Graph Factorization Clustering (HGFC)
and extend it so that it is optimal for the task.
Our results show that HGFC outperforms the
frequently used agglomerative clustering on a
hierarchical test set extracted from VerbNet,
and that it yields state-of-the-art performance
also on a flat test set. We demonstrate how the
method can be used to acquire novel classifi-
cations as well as to extend existing ones on
the basis of some prior knowledge about the
classification.

1 Introduction

A variety of verb classifications have been built to
support NLP tasks. These include syntactic and se-
mantic classifications, as well as ones which in-
tegrate aspects of both (Grishman et al., 1994;
Miller, 1995; Baker et al., 1998; Palmer et al., 2005;
Kipper, 2005; Hovy et al., 2006). Classifications
which integrate a wide range of linguistic proper-
ties can be particularly useful for tasks suffering
from data sparseness. One such classification is
the taxonomy of English verbs proposed by Levin
(1993) which is based on shared (morpho-)syntactic

and semantic properties of verbs. Levin’s taxon-
omy or its extended version in VerbNet (Kipper,
2005) has proved helpful for various NLP applica-
tion tasks, including e.g. parsing, word sense disam-
biguation, semantic role labeling, information ex-
traction, question-answering, and machine transla-
tion (Swier and Stevenson, 2004; Dang, 2004; Shi
and Mihalcea, 2005; Zapirain et al., 2008).

Because verbs change their meaning and be-
haviour across domains, it is important to be able
to tune existing classifications as well to build novel
ones in a cost-effective manner, when required. In
recent years, a variety of approaches have been pro-
posed for automatic induction of Levin style classes
from corpus data which could be used for this pur-
pose (Schulte im Walde, 2006; Joanis et al., 2008;
Sun et al., 2008; Li and Brew, 2008; Korhonen
et al., 2008; Ó Séaghdha and Copestake, 2008; Vla-
chos et al., 2009). The best of such approaches
have yielded promising results. However, they have
mostly focussed on acquiring and evaluating flat
classifications. Levin’s classification is not flat, but
taxonomic in nature, which is practical for NLP pur-
poses since applications differ in terms of the gran-
ularity they require from a classification.

In this paper, we experiment with hierarchical
Levin-style clustering. We adopt as our baseline
method a well-known hierarchical method – ag-
glomerative clustering (AGG) – which has been pre-
viously used to acquire flat Levin-style classifica-
tions (Stevenson and Joanis, 2003) as well as hierar-
chical verb classifications not based on Levin (Fer-
rer, 2004; Schulte im Walde, 2008). The method has
also been popular in the related task of noun clus-
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tering (Ushioda, 1996; Matsuo et al., 2006; Bassiou
and Kotropoulos, 2011).

We introduce then a new method called Hierar-
chical Graph Factorization Clustering (HGFC) (Yu
et al., 2006). This graph-based, probabilistic cluster-
ing algorithm has some clear advantages over AGG

(e.g. it delays the decision on a verb’s cluster mem-
bership at any level until a full graph is available,
minimising the problem of error propagation) and it
has been shown to perform better than several other
hierarchical clustering methods in recent compar-
isons (Yu et al., 2006). The method has been applied
to the identification of social network communities
(Lin et al., 2008), but has not been used (to the best
of our knowledge) in NLP before.

We modify HGFC with a new tree extraction al-
gorithm which ensures a more consistent result, and
we propose two novel extensions to it. The first is a
method for automatically determining the tree struc-
ture (i.e. number of clusters to be produced for each
level of the hierarchy). This avoids the need to pre-
determine the number of clusters manually. The sec-
ond is addition of soft constraints to guide the clus-
tering performance (Vlachos et al., 2009). This is
useful for situations where a partial (e.g. a flat) verb
classification is available and the goal is to extend it.

Adopting a set of lexical and syntactic features
which have performed well in previous works, we
compare the performance of the two methods on test
sets extracted from Levin and VerbNet. When eval-
uated on a flat clustering task, HGFC outperforms
AGG and performs very similarly with the best flat
clustering method reported on the same test set (Sun
and Korhonen, 2009). When evaluated on a hierar-
chical task, HGFC performs considerably better than
AGG at all levels of gold standard classification. The
constrained version of HGFC performs the best, as
expected, demonstrating the usefulness of soft con-
straints for extending partial classifications.

Our qualitative analysis shows that HGFC is ca-
pable of detecting novel information not included in
our gold standards. The unconstrained version can
be used to acquire novel classifications from scratch
while the constrained version can be used to extend
existing ones with additional class members, classes
and levels of hierarchy.

2 Target classification and test sets

The taxonomy of Levin (1993) groups English verbs
(e.g. break, fracture, rip) into classes (e.g. 45.1
Break verbs) on the basis of their shared mean-
ing components and (morpho-)syntactic behaviour,
defined in terms of diathesis alternations (e.g. the
causative/inchoative alternation, where an NP frame
alternates with an intransitive frame: Tony broke the
window ↔ The window broke). It classifies over
3000 verbs in 57 top level classes, some of which
divide further into subclasses. The extended version
of the taxonomy in VerbNet (Kipper, 2005) classifies
5757 verbs. Its 5 level taxonomy includes 101 top
level and 369 subclasses. We used three gold stan-
dards (and corresponding test sets) extracted from
these resources in our experiments:

T1: The first gold standard is a flat gold standard
which includes 13 classes appearing in Levin’s orig-
inal taxonomy (Stevenson and Joanis, 2003). We in-
cluded this small gold standard in our experiments
so that we could compare the flat version of our
method against previously published methods. Fol-
lowing Stevenson and Joanis (2003), we selected 20
verbs from each class which occur at least 100 times
in our corpus. This gave us 260 verbs in total.

T2: The second gold standard is a large, hi-
erarchical gold standard which we extracted from
VerbNet as follows: 1) We removed all the verbs
that have less than 1000 occurrences in our cor-
pus. 2) In order to minimise the problem of pol-
ysemy, we assigned each verb to the class which,
according to VerbNet, corresponds to its predomi-
nant sense in WordNet (Miller, 1995). 3) In order
to minimise the sparse data problem with very fine-
grained classes, we converted the resulting classifi-
cation into a 3-level representation so that the classes
at the 4th and 5th level were combined. For exam-
ple, the sub-classes of Declare verbs (numbered as
29.4.1.1.{1,2,3}) were combined into 29.4.1. 4) The
classes that have fewer than 5 members were dis-
carded. The total number of verb senses in the re-
sulting gold standard is 1750, which is 33.2% of the
verbs in VerbNet. T2 has 51 top level, 117 second
level, and 133 third level classes.

T3: The third gold standard is a subset of T2
where singular classes (top level classes which do
not divide into subclasses) are removed. This gold
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standard was constructed to enable proper evalua-
tion of the constrained version of HGFC (introduced
in the following section) where we want to com-
pare the impact of constraints across several levels
of classification. T3 provides classification of 357
verbs into 11 top level, 14 second level, and 32 third
level classes.

For each verb appearing in T1-T3, we extracted
all the occurrences (up to 10,000) from the British
National Corpus (Leech, 1992) and North American
News Text Corpus (Graff, 1995).

3 Method

3.1 Features and feature extraction

Previous works on Levin style verb classification
have investigated optimal features for this task
(Stevenson and Joanis, 2003; Li and Brew, 2008;
Sun and Korhonen, 2009)). We adopt for our exper-
iments a set of features which have performed well
in recent verb clustering works:
A: Subcategorization frames (SCFs) and their rela-

tive frequencies with individual verbs.
B: A with SCFs parameterized for prepositions.
C: B with SCFs parameterized for subjects appear-

ing in grammatical relations associated with the
verb in parsed data.

D: B with SCFs parameterized for objects appear-
ing in grammatical relations associated with the
verb in parsed data.

These features are purely syntactic. Although
semantic features – verb selectional preferences –
proved the best (when used in combination with syn-
tactic features) in the recent work of Sun and Ko-
rhonen (2009), we left such features for future work
because we noticed that different levels of classifi-
cation are likely to require semantic features at dif-
ferent granularities.

We extracted the syntactic features using the sys-
tem of Preiss et al. (2007). The system tags, lemma-
tizes and parses corpus data using the RASP (Robust
Accurate Statistical Parsing toolkit (Briscoe et al.,
2006)), and on the basis of the resulting grammat-
ical relations, assigns each occurrence of a verb as
a member of one of the 168 verbal SCFs. We pa-
rameterized the SCFs as described above using the
information provided by the system.

3.2 Clustering

We introduce the agglomerative clustering (AGG)
and Hierarchical Graph Factorization Clustering
(HGFC) methods in the following two subsec-
tions, respectively. The subsequent two subsections
present our extensions to HGFC: (i) automatically
determining the cluster structure and (ii) adding soft
constraints to guide clustering performance.

3.2.1 Agglomerative clustering

AGG is a method which treats each verb as a
singleton cluster and then successively merges two
closest clusters until all the clusters have been
merged into one. We used the SciPy’s imple-
mentation (Oliphant, 2007) of the algorithm. The
cluster distance is measured using linkage criteria.
We experimented with four commonly used link-
age criteria: Single, Average, Complete and Ward’s
(Ward Jr., 1963). Ward’s criterion performed the
best and was used in all the experiments in this pa-
per. It measures the increase in variance after two
clusters are merged. The output of AGG tends to
have excessive number of levels. Cut-based meth-
ods (Wu and Leahy, 1993; Shi and Malik, 2000) are
frequently applied to extract a simplified view. We
followed previous verb clustering works and cut the
AGG hierarchy manually.

AGG suffers from two problems. The first is er-
ror propagation. When a verb is misclassified at a
lower level, the error propagates to all the upper lev-
els. The second is local pairwise merging, i.e. the
fact that only two clusters can be combined at any
level. For example, in order to group clusters rep-
resenting Levin classes 9.1, 9.2 and 9.3 into a sin-
gle cluster representing class 9, the method has to
produce intermediate clusters, e.g. 9.{1,2} and 9.3.
Such clusters do not always have a semantic inter-
pretation. Although they can be removed using a
cut-based method, this requires a pre-defined cut-off
value which is difficult to set (Stevenson and Joanis,
2003). In addition, a significant amount of informa-
tion is lost in pair-wise clustering. In the above ex-
ample, only the clusters 9.{1,2} and 9.3 are consid-
ered, while alternative clusters 9.{1,3} and 9.2 are
ignored. Ideally, information about all the possible
intermediate clusters should be aggregated, but this
is intractable in practice.
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3.2.2 Hierarchical Graph Factorization
Clustering

Our new method HGFC derives a probabilistic bi-
partite graph from the similarity matrix (Yu et al.,
2006). The local and global clustering structures are
learned via the random walk properties of the graph.

The method does not suffer from the above prob-
lems with AGG. Firstly, there is no error propagation
because the decision on a verb’s membership at any
level is delayed until the full bipartite graph is avail-
able and until a tree structure can be extracted from
it by aggregating probabilistic information from all
the levels. Secondly, the bipartite graph enables the
construction of a hierarchical structure without any
intermediate classes. For example, we can group
classes 9.{1,2,3} directly into class 9.

We use HGFC with the distributional similarity
measure Jensen-Shannon Divergence (djs(v, v′)).
Given a set of verbs, V = {vn}Nn=1, we
compute a similarity matrix W where Wij =
exp(−djs(v1, v2)). W can be encoded by a undi-
rected graph G (Figure 1(a)), where the verbs are
mapped to vertices and the Wij is the edge weight
between vertices i and j.

The graph G and the cluster structure can be rep-
resented by a bipartite graph K(V,U). V are the
vertices onG. U = {up}mp=1 represent the hiddenm
clusters. For example, looking at Figure 1(b), V on
G can be grouped into three clusters u1, u2 and u3.
The matrix B denotes the n ×m adjacency matrix,
with bip being the connection weight between the
vertex vi and the cluster up. Thus, B represents the
connections between clusters at an upper and lower
level of clustering. A flat clustering algorithm can
be induced by computing B.

The bipartite graph K also induces a similarity
(W ′) between vi and vj : w′ij =

∑m
p=1

bipbjp
λp

=

(BΛ−1BT )ij where Λ = diag(λ1, ..., λm). There-
fore,B can be found by approximating the similarity
matrix W of G using W ′ derived from K. Given a
distance function ζ between two similarity matrices,
B approximates W by minimizing the cost function
ζ(W,BΛ−1BT ). The coupling between B and Λ is
removed by setting H = BΛ−1:

min
H,Λ

ζ(W,HΛHT ), s.t.

n∑

i=1

hip = 1 (1)

We use the divergence distance: ζ(X,Y ) =∑
ij(xij log

xij
yij
−xij+yij). Yu et al. (2006) showed

that this cost function is non-increasing under the
update rule:

h̃ip ∝ hip
∑

j

wij

(HΛHT )ij
λphjp s.t.

∑

i

h̃ip = 1 (2)

λ̃p ∝ λp
∑

j

wij

(HΛHT )ij
hiphjp s.t.

∑

p

λ̃p =
∑

ij

wij (3)

wij can be interpreted as the probability of the di-
rect transition between vi and vj : wij = p(vi, vj),
when

∑
ij wij = 1. bip can be interpreted as:

p(up, uq) = p(up)p(up|uq) =

n∑

i=1

bipbiq
di

= (BTD−1B)pq (4)

D = diag(d1, ..., dn) where di =

m∑

p=0

bip

p(up, uq) is the similarity between the clusters. It
takes into account of a weighted average of contri-
butions from all the data. This is different from the
linkage method where only the data from two clus-
ters are considered.

Given the cluster similarity p(up, uq), we can con-
struct a new graphG1 (Figure 1(d)) with the clusters
U as vertices. The cluster algorithm can be applied
again (Figure 1(e)). This process can go on itera-
tively, leading to a hierarchical graph.

Algorithm 1 HGFC algorithm (Yu et al., 2006)
Require: N verbs V , number of clusters ml for L levels

Compute the similarity matrix W0 from V
Build the graph G0 from W0 , and m0 ← n
for l = 1, 2 to L do

FactorizeGl−1 to obtain bipartite graph Kl with the
adjacency matrix Bl (eq. 1, 2 and 3)
Build a graph Gl with similarity matrix Wl =
BT

l D
−1
l Bl according to equation 4

end for
return BL, BL−1...B1

Additional steps need to be performed in order to
extract a tree from the hierarchical graph. Yu et al.
(2006) performs the extraction via a propagation of
probabilities from the bottom level clusters. For a
verb vi, the probability of assigning it to cluster v(l)p
at level l is given by:

1026



v
1

v
6

v
2

v
4

v
3

v
5

v
7

v
8v

9

(a)

v
1

v
7

v
6

v
9

v
8

v
2

v
3

v
4

v
5

u
1

u
2

u
3

(b)

u
3

u
1

u
2

v
1

v
6

v
2

v
4

v
3

v
5

v
7

v
8v

9

(c)

u
1

u
2

u
3

(d)

v
1

v
7

v
6

v
9

v
8

v
2

v
3

v
4

v
5

u
1

u
2

u
3

q
1

q
2

(e)

Figure 1: (a) An undirected graph G representing the similarity matrix; (b) The bipartite graph showing three clusters
on G; (c) The induced clusters U ; (d) The new graph G1 over clusters U ; (e) The new bipartite graph over G1

p(v(l)
p |vi) =

∑

Vl−1

...
∑

V1

p(v(l)
p |v(l−1))...p(v(1)|vi)

= (D
(−1)
1 B1D

−1
2 B2D

−1
3 B3...D

−1
l Bl)ip (5)

This method might not extract a consistent tree
structure, because the cluster membership at the
lower level does not constrain the upper level mem-
bership. This prevented us from extracting a Levin
style hierarchical classification in our initial experi-
ments. For example, where two verbs were grouped
together at a lower level, they could belong to sepa-
rate clusters at an upper level. We therefore propose
a new tree extraction algorithm (Algorithm 2).

The new algorithm starts from the top level bipar-
tite graph, and generates consistent labels for each
level by taking into account of the tree constraints
set at upper levels.

Algorithm 2 Tree extraction algorithm for HGFC

Require: Given N , (Bl,ml) on each level for L levels
On the top level L, collect the labels TL (eq. 5)
Define C to be a (mL−1 ×mL) zero matrix, Cij ← 1,
where i, j = arg maxi,j{BL

ij}
for l = L− 1 to 1 do

for i = 1 to N do
Compute p(vlp|vi) for each cluster p (eq. 5)
tli = argmaxp{p(vlp|vi)|p = 1...ml, Cptl+1

i
6= 0}

end for
Redefine C to be a (ml−1×ml) zero matrix, Cij ←
1, where i, j = arg maxi,j{Bl

ij}
end for
return Tree consistent labels TL, TL−1...T 1

3.2.3 Automatically determining the number of
clusters for HGFC

HGFC needs the number of levels and clusters at
each level as input. However, this information is not
always available (e.g. when the goal is to actually
learn this information automatically). We therefore
propose a method for inferring the cluster structure
from data. As shown in figure 1, a similarity ma-
trix W models one-hop transitions that follow the
links from vertices to neighbors. A walker can also
go to other vertices via multi-hop transitions. Ac-
cording to the chain rule of the Markov process, the
multi-hop transitions indicate a decaying similarity
function on the graph (Yu et al., 2006). After t tran-
sitions, the similarity matrix (Wt) becomes:

Wt = Wt−1D
−1
0 W0

Yu et al. (2006) proved the correspondence be-
tween the HGFC levels (l) and the random walk time:
t = 2l−1. So the vertices at level l induce a sim-
ilarity matrix of verbs after t-hop transitions. The
decaying similarity function captures the different
scales of clustering structure in the data (Azran and
Ghahramani, 2006b). The upper levels would have
a smaller number of clusters which represent a more
global structure. After several levels, all the verbs
are expected to be grouped into one cluster. The
number of levels and clusters at each level can thus
be learned automatically.

We therefore propose a method that uses the de-
caying similarity function to learn the hierarchical
clustering structure. One simple modification to al-
gorithm 1 is to set the number of clusters at level l
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(ml) to be ml−1 − 1. m is denoted as the number
of clusters that have at least one member according
to eq. 5. We start by treating each verb as a cluster
at the bottom level. The algorithm stops when all
the data points are merged into one cluster. The in-
creasingly decaying similarity causes many clusters
to have 0 members especially at lower levels, which
are pruned in the tree extraction.

3.2.4 Adding constraints to HGFC
The basic version of HGFC makes no prior as-

sumptions about the classification. It is useful
for learning novel verb classifications from scratch.
However, when wishing to extend an existing clas-
sification (e.g. VerbNet) it may be desirable to guide
the clustering performance on the basis of informa-
tion that is already known. We propose a constrained
version of HGFC which makes uses of labels at the
bottom level to learn upper level classifications. We
do this by adding soft constraints to clustering, fol-
lowing Vlachos et al. (2009).

We modify the similarity matrix W as follows: If
two verbs have different labels (li 6= lj), the simi-
larity between them is decreased by a factor a, and
a < 1. We set a to 0.5 in the experiments. The re-
sulting tree is generally consistent with the original
classification. The influence of the underlying data
(domain or features) is reduced according to a.

4 Experimental evaluation

We applied the clustering methods introduced in
section 3 to the test sets described in section 2 and
evaluated them both quantitatively and qualitatively,
as described in the subsequent sections.

4.1 Evaluation methods

We used class based accuracy (ACC) and adjusted
rand index (Radj) to evaluate the results on the flat
test set T1 (see section 2 for details of T1-T3).

ACC is the proportion of members of dominant
clusters DOM-CLUSTi within all classes ci.

ACC =

∑C
i=1 verbs in DOM-CLUSTi

number of verbs

The formula of Radj is (Hubert and Arabie, 1985):

Radj =

∑
i,j

(
nij

2

)
−∑i

(
ni·
2

)∑
j

(
n·j
2

)
/
(
n
2

)

1
2 [
∑

i

(
ni·
2

)
+
∑

j

(
n·j
2

)
]−∑i

(
ni·
2

)∑
j

(
n·j
2

)
/
(
n
2

)

where nij is the size of the intersection between
class i and cluster j.

We used normalized mutual information (NMI)
and F-Score (F) to evaluate hierarchical clustering
results on T2 and T3. NMI measures the amount of
statistical information shared by two random vari-
ables representing the clustering result and the gold-
standard labels. Given random variables A and B:

NMI(A,B) =
I(A;B)

[H(A) +H(B)]/2

I(A,B) =
∑

k

∑

j

|(vk ∩ cj |
N

log
N |vk ∩ cj |
|vk||cj |

where |vk ∩ cj | is the number of shared member-
ship between cluster vk and gold-standard class cj .
The normalized variant of mutual information (MI)
enables the comparison of clustering with different
cluster numbers (Manning et al., 2008).

F is the harmonic mean of precision (P) and re-
call (R). P is calculated using modified purity – a
global measure which evaluates the mean precision
of clusters. Each cluster is associated with its preva-
lent class. The number of verbs in a cluster K that
take this class is denoted by nprevalent(K).

mPUR =

∑
nprevalent(ki)>2

nprevalent(ki)

number of verbs

R is calculated using ACC.

F =
2 ·mPUR · ACC
mPUR + ACC

F is not suitable for comparing results with dif-
ferent cluster numbers (Rosenberg and Hirschberg,
2007). Therefore, we only report NMI when the
number of classes in clustering and gold-standard is
substantially different.

Finally, we supplemented quantitative evaluation
with qualitative evaluation of clusters produced by
different methods.

4.2 Quantitative evaluation

We first evaluated AGG and the basic (uncon-
strained) HGFC on the small flat test set T1. The
main purpose of this evaluation was to compare the
results of our methods against previously published
results on the same test set. The number of clus-
ters (K) and levels (L) were inferred automatically
for HGFC as described in section 3.2.3. However, to
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make the results comparable with previously pub-
lished ones, we cut the resulting hierarchy at the
level of closest match (12 clusters) to the K (13) in
the gold-standard. For AGG, we cut the hierarchy at
13 clusters.

Method ACC Radj

HGFC 41.2 17.4
AGG (reproduced) 32.7 9.9
AGG (Stevenson and Joanis (2003) 31.0 9.0

Table 1: Comparison against Stevenson and Joanis
(2003)’s result on T1 (using similar features).

Table 1 shows our results and the results of
Stevenson and Joanis (2003) on T1 when employing
AGG using Ward as the linkage criterion. In this ex-
periment, we used the same feature set as Stevenson
and Joanis (2003) (set B, see section 3.1) and were
therefore able to reproduce their AGG result with a
difference smaller than 2%. When using this simple
feature set, HGFC outperforms the best performing
AGG clearly: 8.5% in ACC and 7.3% in Radj .

We also compared HGFC against the best reported
clustering method on T1 to date – that of spectral
clustering by Sun and Korhonen (2009). We used
the feature sets C and D which are similar to the
features (SCF parameterized by lexical prefences) in
their experiments. HGFC obtains F of 49.93% on T1
which is 5% lower than the result of Sun and Ko-
rhonen (2009). The difference comes from the tree
consistency requirement. When the HGFC is forced
to produce a flat clustering (a one level tree only), it
achieves the F of 52.55% which is very close to the
performance of spectral clustering.

We then evaluated our methods on the hierarchi-
cal test sets T2 and T3. In the first set of experi-
ments, we pre-defined the tree structure for HGFC

by setting L to 3 and K at each level to be the K
in the hierarchical gold standard. The hierarchy pro-
duced by AGG was cut into 3 levels according to Ks
in the gold standard. This enabled direct evaluation
of the results against the 3 level gold standards using
both NMI and F.

The results are reported in tables 2 and 3. In these
tables, Nc is the number of clusters in HGFC cluster-
ing while Nl is the number of classes in the gold
standard (the two do not always correspond per-
fectly because a few clusters have zero members).

Nc Nl
HGFC
unconstrained

AGG

NMI F NMI F
130 133 57.31 36.65 54.22 32.62
114 117 54.67 37.96 51.35 32.44
50 51 37.75 40.00 32.61 32.78

Table 2: Performance on T2 using a pre-defined tree
structure.

Nc Nl
HGFC
unconstrained

HGFC
constrained

AGG

NMI F NMI F NMI F
31 32 51.65 42.01 91.47 92.07 49.70 40.30
15 14 42.75 47.70 82.16 82.80 39.19 43.69
11 11 38.91 51.17 71.69 75.00 34.88 44.80

Table 3: Performance on T3 using a pre-defined tree
structure.

Table 2 compares the results of the unconstrained
version of HGFC against those of AGG on our largest
test set T2. As with T1, HGFC outperforms AGG

clearly. The benefit can now be seen at 3 different
levels of hierarchy. On average, the HGFC outper-
forms AGG 3.5% in NMI and 4.8% in F. The dif-
ference between the methods becomes clearer when
moving towards the upper levels of the hierarchy.

Table 3 shows the results of both unconstrained
and constrained versions of HGFC and those of
AGG on the test set T3 (where singular classes are
removed to enable proper evaluation of the con-
strained method). The results are generally gener-
ally better on this test set than on T2 – which is to be
expected since T3 is a refined subset of T21.

Recall that the constrained version of HGFC learns
the upper levels of classification on the basis of soft
constraints set at the bottom level, as described ear-
lier in section 3.2.4. As a consequence, NMI and F

are both greater than 90% at the bottom level and
the results at the top level are notably lower because
the impact of the constraints degrades the further
away one moves from the bottom level. Yet, the rela-
tively high result across all levels shows that the con-
strained version of HGFC can be employed a useful
method to extend the hierarchical structure of known
classifications.

1NMI is higher on T2, however, because NMI has a higher
baseline for larger number of clusters (Vinh et al., 2009). NMI

is not ideal for comparing the results of T2 and T3.
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T2 T3
Nc Nl HGFC Nc Nl HGFC

148 133 53.26 64 32 54.91
97 117 49.85 35 32 50.83
46 51 33.55 20 14 44.02
19 51 25.80 10 14 34.41
9 51 19.17 6 11 32.27
3 51 13.06

Table 4: NMI of unconstrained HGFC when trees for T2
and T3 are inferred automatically.

Finally, Table 4 shows the results for the uncon-
strained HGFC on T2 and and T3 when the tree struc-
ture is not pre-defined but inferred automatically as
described in section 3.2.3. 6 levels are learned for
T2 and 5 for T3. The number of clusters produced
ranges from 3 to 148 for T2 and from 6 to 64 for
T3. We can see that the automatically detected clus-
ter numbers distribute evenly across different levels.
The scale of the clustering structure is more com-
plete here than in the gold standards.

In the table, Nc indicates the number of clusters
in the inferred tree, while Nl indicates the closest
match to the number of classes in the gold stan-
dard. This evaluation is not fully reliable because
the match between the gold standard and the cluster-
ing is poor at some levels of hierarchy. However, it
is encouraging to see that the results do not drop dra-
matically until the match between the two is really
poor.

4.3 Qualitative evaluation
To gain a better insight into the performance of
HGFC, we conducted further qualitative analysis of
the clusters the two versions of this method pro-
duced for T3. We focussed on the top level of 11
clusters (in the evaluation against the hierarchical
gold standard, see table 3) as the impact of soft con-
straints is the weakest for the constrained method at
this level.

As expected, the constrained HGFC kept many in-
dividual verbs belonging to same Verbnet subclass
together (e.g. verbs enjoy, hate, disdain, regret, love,
despise, detest, dislike, fear for the class 31.2.1) so
that most clusters simply group lower level classes
and their members together. Three nearly clean clus-
ters were produced which only include sub-classes
of the same class (e.g. 31.2.0 and 31.2.1 which both

belong to 31.2 Admire verbs). However, the remain-
ing 8 clusters group together sub-classes (and their
members) belonging to unrelated parent classes. In-
terestingly, 6 of these make both syntactic and se-
mantic sense. For example, several such 37.7 Say
verbs and 29.5 Conjencture verbs are found together
which share the meaning of communication and
which take similar sentential complements.

In contrast, none of the clusters produced by
the unconstrained HGFC represent a single VerbNet
class. The majority represent a high number of
classes and fewer members per class. Yet many of
the clusters make syntactic and semantic sense. A
good example is a cluster which includes member
verbs from 9.7 Spray/Load verbs, 21.2 Carve verbs,
51.3.1 Roll verbs, and 10.4 Wipe verbs. The verbs
included in this cluster share the meaning of specific
type of motion and show similar syntactic behaviour.

Thorough Levin style investigation of especially
the unconstrained method would require looking at
shared diathesis alternations between cluster mem-
bers. We left this for future work. However,
the analysis we conducted confirmed that the con-
strained method could indeed be used for extend-
ing known classifications, while the unconstrained
method is more suitable for acquiring novel classi-
fications from scratch. The errors in clusters pro-
duced by both methods were mostly due to syntactic
idiosyncracy and the lack of semantic information in
clustering. We plan to address the latter problem in
our future work.

5 Discussion and conclusion

We have introduced a new graph-based method –
HGFC – to hierarchical verb clustering which avoids
some of the problems (e.g. error propagation, pair-
wise cluster merging) reported with the frequently
used AGG method. We modified HGFC so that it can
be used to automatically determine the tree struc-
ture for clustering, and proposed two extensions to
it which make it even more suitable for our task. The
first involves automatically determining the number
of clusters to be produced, which is useful when
this is not known in advance. The second involves
adding soft constraints to guide the clustering per-
formance, which is useful when aiming to extend
existing classification.
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The results reported in the previous section are
promising. On a flat test set (T1), the unconstrained
version of HGFC outperforms AGG and performs
very similarly with the best current flat clustering
method (spectral clustering) evaluated on the same
dataset. On the hierarchical test sets (T2 and T3),
the unconstrained and constrained versions of HGFC

outperform AGG clearly at all levels of classification.
The constrained version of HGFC detects the missing
hierarchy from the existing gold standards with high
accuracy. When the number of clusters and levels
is learned automatically, the unconstrained method
produces a multi-level hierarchy. Our evaluation
against a 3-level gold standard shows that such a hi-
erarchy is fairly accurate. Finally, the results from
our qualitative evaluation show that both constrained
and unconstrained versions of HGFC are capable of
learning valuable novel information not included in
the gold standards.

The previous work on Levin style verb classifica-
tion has mostly focussed on flat classifications us-
ing methods suitable for flat clustering (Schulte im
Walde, 2006; Joanis et al., 2008; Sun et al., 2008; Li
and Brew, 2008; Korhonen et al., 2008; Ó Séaghdha
and Copestake, 2008; Vlachos et al., 2009). How-
ever, some works have employed hierarchical clus-
tering as a method to infer flat clustering.

For example, Schulte im Walde and Brew (2002)
employed AGG to initialize the KMeans clustering
for German verbs. This gave better results than
random initialization. Stevenson and Joanis (2003)
used AGG for flat clustering on T1. They cut the hi-
erarchy at the number of classes in the gold standard
and found that it is difficult to automatically deter-
mine a good cut-off. Our evaluation in the previous
section shows that HGFC outperforms their imple-
mentation of AGG.

AGG was also used by Ferrer (2004) who per-
formed hierarchical clustering of 514 Spanish verbs.
The results were evaluated against a hierarchical
gold standard resembling that of Levin’s classifi-
cation in English (Vázquez et al., 2000). Radj of
0.07 was reported for a 15-way classification which
is comparable to the result of Stevenson and Joanis
(2003).

Hierarchical clustering has also been performed
for the related task of semantic verb classification.
For example, Basili et al. (1993) identified the prob-

lems of AGG, and applied a conceptual clustering al-
gorithm (Fisher, 1987) to Italian verbs. They used
semi-automatically acquired semantic roles and the
concept types as features. No quantitative results
were reported. The qualitative evaluation shows that
the resulting clusters are very fine-grained.

Schulte im Walde (2008) performed hierarchical
clustering of German verbs using human verb asso-
ciation as features and AGG as a method. They fo-
cussed on two small collections of 56 and 104 verbs
and evaluated the result against flat gold standard
extracted from GermaNet (Kunze and Lemnitzer,
2002) and German FrameNet (Erk et al., 2003), re-
spectively. They reported F of 62.69% for the 56
verbs, and F of 34.68% for the 104 verbs.

In the future, we plan to extend this research line
in several directions. First, we will try to deter-
mine optimal features for different levels of clus-
tering. For example, the general syntactic features
(e.g. SCF) may perform the best at top levels of a hi-
erarchy while more specific or refined features (e.g.
SCF+pp) may be optimal at lower levels. We also
plan to investigate incorporating semantic features,
like verb selectional preferences, in our feature set.
It is likely that different levels of clustering require
more or less specific selectional preferences. One
way to obtain the latter is hierarchical clustering of
relevant noun data.

In addition, we plan to apply the unconstrained
HGFC to specific domains to investigate its capabil-
ity to learn novel, previously unknown classifica-
tions. As for the constrained version of HGFC, we
will conduct a larger scale experiment on the Verb-
Net data to investigate what kind of upper level hi-
erarchy it can propose for this resource (which cur-
rently has over 100 top level classes).

Finally, we plan to compare HGFC to other hier-
archical clustering methods that are relatively new
to NLP but have proved promising in other fields,
including Bayesian Hierarchical Clustering (Heller
and Ghahramani, 2005; Teh et al., 2008) and the
method of Azran and Ghahramani (2006a) based on
spectral clustering.
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