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Abstract

Disambiguating named entities in natural-
language text maps mentions of ambiguous
names onto canonical entities like people or
places, registered in a knowledge base such as
DBpedia or YAGO. This paper presents a ro-
bust method for collective disambiguation, by
harnessing context from knowledge bases and
using a new form of coherence graph. It unifies
prior approaches into a comprehensive frame-
work that combines three measures: the prior
probability of an entity being mentioned, the
similarity between the contexts of a mention
and a candidate entity, as well as the coherence
among candidate entities for all mentions to-
gether. The method builds a weighted graph of
mentions and candidate entities, and computes
a dense subgraph that approximates the best
joint mention-entity mapping. Experiments
show that the new method significantly outper-
forms prior methods in terms of accuracy, with
robust behavior across a variety of inputs.

1 Introduction

1.1 Motivation
Web pages, news articles, blog postings, and other
Internet data contain mentions of named entities such
as people, places, organizations, etc. Names are often
ambiguous: the same name can have many different
meanings. For example, given a text like “They per-
formed Kashmir, written by Page and Plant. Page
played unusual chords on his Gibson.”, how can we
tell that “Kashmir” denotes a song by Led Zeppelin
and not the Himalaya region (and that Page refers
to guitarist Jimmy Page and not to Google founder
Larry Page, and that Gibson is a guitar model rather
than the actor Mel Gibson)?

Establishing these mappings between the mentions
and the actual entities is the problem of named-entity
disambiguation (NED).

If the possible meanings of a name are known up-
front - e.g., by using comprehensive gazetteers such
as GeoNames (www.geonames.org) or knowledge
bases such as DBpedia (Auer07), Freebase (www.
freebase.com), or YAGO (Suchanek07), which
have harvested Wikipedia redirects and disambigua-
tion pages - then the simplest heuristics for name res-
olution is to choose the most prominent entity for a
given name. This could be the entity with the longest
Wikipedia article or the largest number of incoming
links in Wikipedia; or the place with the most inhab-
itants (for cities) or largest area, etc. Alternatively,
one could choose the entity that uses the mention
most frequently as a hyperlink anchor text. For the
example sentence given above, all these techniques
would incorrectly map the mention “Kashmir” to the
Himalaya region. We refer to this suite of methods
as a popularity-based (mention-entity) prior.

Key to improving the above approaches is to con-
sider the context of the mention to be mapped, and
compare it - by some similarity measure - to contex-
tual information about the potential target entities.
For the example sentence, the mention “Kashmir”
has context words like “performed” and “chords” so
that we can compare a bag-of-words model against
characteristic words in the Wikipedia articles of the
different candidate entities (by measures such as co-
sine similarity, weighted Jaccard distance, KL diver-
gence, etc.). The candidate entity with the highest
similarity is chosen. Alternatively, labeled training
data can be harnessed to learn a multi-way classifier,
and additional features like entire phrases, part-of-
speech tags, dependency-parsing paths, or nearby
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hyperlinks can be leveraged as well. These methods
work well for sufficiently long and relatively clean
input texts such as predicting the link target of a Wi-
kipedia anchor text (Milne08). However, for short or
more demanding inputs like news, blogs, or arbitrary
Web pages, relying solely on context similarity can-
not achieve near-human quality. Similarity measures
based on syntactically-informed distributional mod-
els require minimal context only. They have been
developed for common nouns and verbs (Thater10),
but not applied to named entities.

The key to further improvements is to jointly con-
sider multiple mentions in an input and aim for a col-
lective assignment onto entities (Kulkarni09). This
approach should consider the coherence of the re-
sulting entities, in the sense of semantic relatedness,
and it should combine such measures with the con-
text similarity scores of each mention-entity pair. In
our example, one should treat “Page”, “Plant” and
“Gibson” also as named-entity mentions and aim to
disambiguate them together with “Kashmir”.

Collective disambiguation works very well when a
text contains mentions of a sufficiently large number
of entities within a thematically homogeneous con-
text. If the text is very short or is about multiple, un-
related or weakly related topics, collective mapping
tends to produce errors by directing some mentions
towards entities that fit into a single coherent topic
but do not capture the given text. For example, a text
about a football game between “Manchester” and
“Barcelona” that takes place in “Madrid” may end up
mapping either all three of these mentions onto foot-
ball clubs (i.e., Manchester United, FC Barcelona,
Real Madrid) or all three of them onto cities. The
conclusion here is that none of the prior methods
for named-entity disambiguation is robust enough to
cope with such difficult inputs.

1.2 Contribution

Our approach leverages recently developed knowl-
edge bases like YAGO as an entity catalog and a
rich source of entity types and semantic relationships
among entities. These are factored into new measures
for the similarity and coherence parts of collectively
disambiguating all mentions in an input text. For
similarity, we also explore an approach that lever-
ages co-occurrence information obtained from large,
syntactically parsed corpora (Thater10).

We cast the joint mapping into the following graph
problem: mentions from the input text and candidate
entities define the node set, and we consider weighted
edges between mentions and entities, capturing con-
text similarities, and weighted edges among entities,
capturing coherence. The goal on this combined
graph is to identify a dense subgraph that contains
exactly one mention-entity edge for each mention,
yielding the most likely disambiguation. Such graph
problems are NP-hard, as they generalize the well-
studied Steiner-tree problem. We develop a greedy
algorithm that provides high-quality approximations,
and is customized to the properties of our mention-
entity graph model.

In addition to improving the above assets for the
overall disambiguation task, our approach gains in
robustness by using components selectively in a self-
adapting manner. To this end, we have devised the
following multi-stage procedure.

• For each mention, we compute popularity priors
and context similarities for all entity candidates
as input for our tests.

• We use a threshold test on the prior to decide
whether popularity should be used (for mentions
with a very high prior) or disregarded (for men-
tions with several reasonable candidates).

• When both the entity priors and the context simi-
larities are reasonably similar in distribution for
all the entity candidates, we keep the best candi-
date and remove all others, fixing this mention
before running the coherence graph algorithm.

We then run the coherence graph algorithm on all
the mentions and their remaining entity candidates.
This way, we restrict the coherence graph algorithm
to the critical mentions, in situations where the goal
of coherence may be misleading or would entail high
risk of degradation.

The paper makes the following novel contribu-
tions: 1) a framework for combining popularity pri-
ors, similarity measures, and coherence into a robust
disambiguation method; 2) new measures for defin-
ing mention-entity similarity; 3) a new algorithm
for computing dense subgraphs in a mention-entity
graph, which produces high-quality mention-entity
mappings; 4) an empirical evaluation on a demand-
ing corpus (based on additional annotations for the
dataset of the CoNLL 2003 NER task), with signifi-
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cant improvements over state-of-the-art opponents.

2 State of the Art

Recognizing named entities (NER tagging) in natural-
language text has been extensively addressed in NLP
research. The output is labeled noun phrases. How-
ever, these are not yet canonical entities, explicitly
and uniquely denoted in a knowledge repository.
Approaches that use Wikipedia for explicit disam-
biguation date back to (Bunescu06) and have been
further pursued by (Cucerzan07; Han09; Milne08;
Nguyen08; Mihalcea07). (Bunescu06) defined a sim-
ilarity measure that compared the context of a men-
tion to the Wikipedia categories of an entity candi-
date. (Cucerzan07; Milne08; Nguyen08) extended
this framework by using richer features for the simi-
larity comparison. (Milne08) additionally introduced
a supervised classifier for mapping mentions to en-
tities, with learned feature weights rather than using
the similarity function directly. (Milne08) introduced
a notion of semantic relatedness between a mention’s
candidate entities and the unambiguous mentions in
the textual context. The relatedness values are de-
rived from the overlap of incoming links in Wikipedia
articles. (Han09) considered another feature: the re-
latedness of common noun phrases in a mention’s
context, matched against Wikipedia article names.
While these features point towards semantic coher-
ence, the approaches are still limited to mapping each
mention separately. Nonetheless, this line of feature-
rich similarity-driven methods achieved very good
results in experiments, especially for the task of pre-
dicting Wikipedia link targets for a given href anchor
text. On broader input classes such as news articles
(called “wikification in the wild” in (Milne08)), the
precision was reported to be about 75 percent.

The first work with an explicit collective-learning
model for joint mapping of all mentions has been
(Kulkarni09). This method starts with a supervised
learner for a similarity prior, and models the pair-
wise coherence of entity candidates for two different
mentions as a probabilistic factor graph with all pairs
as factors. The MAP (maximum a posteriori) es-
timator for the joint probability distribution of all
mappings is shown to be an NP-hard optimization
problem, so that (Kulkarni09) resorts to approxima-
tions and heuristics like relaxing an integer linear

program (ILP) into an LP with subsequent round-
ing or hill-climbing techniques. The experiments in
(Kulkarni09) show that this method is superior to the
best prior approaches, most notably (Milne08). How-
ever, even approximate solving of the optimization
model has high computational costs.

Coreference resolution is the task of mapping
mentions like pronouns or short phrases to a pre-
ceding, more explicit, mention. Recently, interest
has arisen in cross-document coreference resolution
(Mayfield09), which comes closer to NED, but does
not aim at mapping names onto entities in a knowl-
edge base. Word sense disambiguation (McCarthy09;
Navigli09) is the more general task of mapping con-
tent words to a predefined inventory of word senses.
While the NED problem is similar, it faces the chal-
lenges that the ambiguity of entity names tends to be
much higher (e.g., mentions of common lastnames
or firstname-only).

Projects on automatically building knowledge
bases (Doan08) from natural-language text include
KnowItAll (Banko07), YAGO and its tool SOFIE
(Suchanek09; Nakashole11), StatSnowball (Zhu09),
ReadTheWeb (Carlson10), and the factor-graph work
by (Wick09). Only SOFIE maps names onto canon-
ical entities; the other projects produce output with
ambiguous names. SOFIE folds the NED into its
MaxSat-based reasoning for fact extraction. This ap-
proach is computationally expensive and not intended
for online disambiguation of entire texts.

3 Framework

Mentions and Ambiguity: We consider an input
text (Web page, news article, blog posting, etc.) with
mentions (i.e., surface forms) of named entities (peo-
ple, music bands, songs, universities, etc.) and aim
to map them to their proper entries in a knowledge
base, thus giving a disambiguated meaning to entity
mentions in the text. We first identify noun phrases
that potentially denote named entities. We use the
Stanford NER Tagger (Finkel05) to discover these
and segment the text accordingly.

Entity Candidates: For possible entities (with
unique canonical names) that a mention could denote,
we harness existing knowledge bases like DBpedia
or YAGO. For each entity they provide a set of short
names (e.g., “Apple” for Apple Inc. and para-
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phrases (e.g., “Big Apple” for New York City).
In YAGO, these are available by the means relation,
which in turn is harvested from Wikipedia disam-
biguation pages, redirects, and links.

Popularity Prior for Entities: Prominence or
popularity of entities can be seen as a probabilistic
prior for mapping a name to an entity. The most com-
mon way of estimating this are the Wikipedia-based
frequencies of particular names in link anchor texts
referring to specific entities, or number of inlinks.

Context Similarity of Mentions and Entities:
The key for mapping mentions onto entities are the
contexts on both sides of the mapping. We consider
two different approaches. First, for each mention,
we construct a context from all words in the entire
input text. This way, we can represent a mention
as a set of (weighted) words or phrases that it co-
occurs with. Second, we alternatively consider simi-
larity scores based on syntactically-parsed contexts,
based on (Thater10). On the entity side of the map-
ping, we associate each entity with characteristic
keyphrases or salient words, precomputed from Wi-
kipedia articles and similar sources. For example,
Larry Page would have keyphrases like “Stan-
ford”, “search engine”, etc., whereas Jimmy Page
may have keyphrases “Gibson guitar”, “hard rock”,
etc. Now we can define and compute similarity mea-
sures between a mention and an entity candidate,
e.g., the weighted word overlap, the KL divergence,
n-gram-based measures, etc. In addition, we may
use syntactic contextualization techniques, based on
dependency trees, that suggest phrases that are typi-
cally used with the same verb that appears with the
mention in the input text (Thater10).

Coherence among Entities: On the entity side,
each entity has a context in the underlying knowl-
edge base(s): other entities that are connected via
semantic relationships (e.g., memberOf) or have the
same semantic type (e.g., rock musician). An
asset that knowledge bases like DBpedia and YAGO
provide us with is the same-as cross-referencing to
Wikipedia. This way, we can quantify the coherence
between two entities by the number of incoming links
that their Wikipedia articles share. When we consider
candidate entities for different mentions, we can now
define and compute a notion of coherence among the
corresponding entities, e.g., by the overlap among
their related entities or some form of type distance.

Coherence is a key asset because most texts deal with
a single or a few semantically related topics such as
rock music or Internet technology or global warming,
but not everything together.

Overall Objective Function: To aim for the best
disambiguation mappings, our framework combines
prior, similarity, and coherence measures into a
combined objective function: for each mention mi,
i = 1..k, select entity candidates eji , one per men-
tion, such that

α ·
∑

i=1..k

prior(mi, eji)+

β ·
∑

i=1..k

sim(cxt(mi), cxt(eji))+

γ · coh(ej1 ∈ cnd(m1) . . . ejk ∈ cnd(mk)) = max!

where α + β + γ = 1, cnd(mi) is the set of pos-
sible meanings of mi, cxt( ) denotes the context of
mentions and entities, respectively, and coh( ) is the
coherence function for a set of entities.

Section 4 gives details on each of these three com-
ponents. For robustness, our solution selectively en-
ables or disables the three components, based on tests
on the mentions of the input text; see Section 5.

4 Features and Measures

4.1 Popularity Prior
As mentioned above, our framework supports multi-
ple forms of popularity-based priors, but we found a
model based on Wikipedia link anchors to be most
effective: For each surface form that constitutes an
anchor text, we count how often it refers to a partic-
ular entity. For each name, these counts provide us
with an estimate for a probability distribution over
candidate entities. For example, “Kashmir” refers to
Kashmir (the region) in 90.91% of all occurrences
and in 5.45% to Kashmir (Song).

4.2 Mention-Entity Similarity
Keyphrase-based Similarity: On the mention side,
we use all tokens in the document (except stopwords
and the mention itself) as context. We experimented
with a distance discount to discount the weight of
tokens that are further away, but this did not improve
the results for our test data.

On the entity side, the knowledge base knows au-
thoritative sources for each entity, for example, the
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corresponding Wikipedia article or an organizational
or individual homepage. These are the inputs for
an offline data-mining step to determine character-
istic keyphrases for each entity and their statistical
weights. We describe this only for Wikipedia as in-
put corpus, the approach extends to other inputs. As
keyphrase candidates for an entity we consider its
corresponding Wikipedia article’s link anchors texts,
including category names, citation titles, and external
references. We extended this further by considering
also the titles of articles linking to the entity’s article.
All these phrases form the keyphrase set of an entity:
KP (e).

For each word w that occurs in a keyphrase, we
compute a specificity weight with regard to the given
entity: the MI (mutual information) between the en-
tity e and the keyword w, calculating the joint proba-
bilities for MI as follows:

p(e, w) =

∣∣w ∈
(
KP (e) ∪⋃e′∈INe

KP (e′)
)∣∣

N

reflecting if w is contained in the keyphrase set of e
or any of the keyphrase sets of an entity linking to e,
IN(e), with N denoting the total number of entities.
The joint probabilities for the cases p(e, w̄), p(ē, w),
p(ē, w̄) are calculated accordingly.

Keyphrases may occur only partially in an input
text. For example, the phrase “Grammy Award win-
ner” associated with entity Jimmy Page may oc-
cur only in the form “Grammy winner” near some
mention “Page”. Therefore, our algorithm for the
similarity of mention m with regard to entity e com-
putes partial matches of e’s keyphrases in the text.
This is done by matching individual words and re-
warding their proximity in an appropriate score. To
this end we compute, for each keyphrase, the shortest
window of words that contains a maximal number
of words of the keyphrase. We refer to this window
as the phrase’s cover (cf. (Taneva11)). For example,
matching the text “winner of many prizes including
the Grammy” results in a cover length of 7 for the
keyphrase “Grammy award winner”. By this ratio-
nale, the score of partially matching phrase q in a text
is set to:

score(q) = z

(∑
w∈cover weight(w)∑

w∈q weight(w)

)2

where z = # matching words
length of cover(q) andweight(w) is either

the MI weight (defined above) or the collection-wide
IDF weight of the keyphrase word w. Note that the
second factor is squared, so that there is a superlinear
reduction of the score for each word that is missing
in the cover.

For the similarity of a mention m to candidate
entity e, this score is aggregated over all keyphrases
of e and all their partial matches in the text, leading
to the similarity score

simscore(m, e) =
∑

q∈KP (e)

score(q)

Syntax-based Similarity: In addition to surface
features of words and phrases, we leverage informa-
tion about the immediate syntactic context in which
an entity mention occurs. For example, in the sen-
tence “Page played unusual chords”, we can extract
the fact that the mention “Page” is the subject of the
verb “play”. Using a large text corpus for training,
we collect statistics about what kinds of entities tend
to occur as subjects of “play”, and then rank the can-
didate entities according to their compatibility with
the verb.

Specifically, we employ the framework of
(Thater10), which allows us to derive vector represen-
tations of words in syntactic contexts (such as being
the subject of a particular verb). We do not directly
apply this model to derive contextualized representa-
tions of entity mentions, as information about specific
proper names is very sparse in corpora like GigaWord
or Wikipedia. Instead, we consider a set of substi-
tutes for each possible entity e, which we take as its
context cxt(e). For this, we use the WordNet synsets
associated with the entity’s YAGO types and all their
hypernyms. For each substitute, we compute a stan-
dard distributional vector and a contextualized vector
according to (Thater10). Syntax-based similarity be-
tween cxt(e) and the context cxt(m) of the mention
is then defined as the sum of the scalar-product simi-
larity between these two vectors for each substitute.
This results in high similarity if the syntactic contex-
tualization only leads to small changes of the vectors,
reflecting the compatibility of the entity’s substitutes.

In our example, we compute a vector for “gui-
tarist” as subject of “play”, and another one for “en-
trepreneur” in the same context. The former is more
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compatible with the given context than the latter, lead-
ing to higher similarity for the entity Jimmy Page.

4.3 Entity-Entity Coherence

As all entities of interest are registered in a knowl-
edge base (like YAGO), we can utilize the semantic
type system, which is usually a DAG of classes. The
simples measure is the distance between two entities
in terms of type and subclassOf edges.

The knowledge bases also provide same-as cross-
referencing to Wikipedia, amd we quantify the coher-
ence between two entities by the number of incom-
ing links that their Wikipedia articles share. This
approach has been refined by Milne and Witten
(Milne08), taking into account the total number N of
entities in the (Wikipedia) collection:

mw coh(e1, e2) =

1− log (max(|INe1 |, |INe2 |))− log(|INe1 ∩ INe2 |)
log(|N |)− log (min(|INe1 |, |INe2 |))

if > 0 and else set to 0.

5 Graph Model and Algorithms

5.1 Mention-Entity Graph

From the popularity, similarity, and coherence mea-
sures discussed in Section 4, we construct a weighted,
undirected graph with mentions and candidate enti-
ties as nodes. As shown in the example of Figure 1,
the graph has two kinds of edges:

• A mention-entity edge is weighted with a similar-
ity measure or a combination of popularity and
similarity measure. Our experiments will use a
linear combination with coefficients learned from
withheld training data.

• An entity-entity edge is weighted based on
Wikipedia-link overlap, or type distance, or some
combination along these lines.

Our experiments will focus on anchor-based pop-
ularity, keyphrase-based and/or syntactic similarity,
and link-based coherence (mw coh). The mention-
entity graph is dense on the entities side and often has
hundreds or thousands of nodes, as the YAGO knowl-
edge base offers many candidate entities for common
mentions (e.g., country names that could also denote
sports teams, common lastnames, firstnames, etc.).

5.2 Graph Algorithm

Given a mention-entity graph, our goal is to com-
pute a dense subgraph that would ideally contain all
mention nodes and exactly one mention-entity edge
for each mention, thus disambiguating all mentions.
We face two main challenges here. The first is how
to specify a notion of density that is best suited for
capturing the coherence of the resulting entity nodes.
The seemingly most natural approach would be to
measure the density of a subgraph in terms of its total
edge weight. Unfortunately, this will not work ro-
bustly for the disambiguation problem. The solution
could be dominated by a few entity nodes with very
high weights of incident edges, so the approach could
work for prominent targets, but it would not achieve
high accuracy also for the long tail of less prominent
and more sparsely connected entities. We need to
capture the weak links in the collective entity set of
the desired subgraph. For this purpose, we define
the weighted degree of a node in the graph to be the
total weight of its incident edges. We then define the
density of a subgraph to be equal to the minimum
weighted degree among its nodes. Our goal is to
compute a subgraph with maximum density, while
observing constraints on the subgraph structure.

The second critical challenge that we need to face
is the computational complexity. Dense-subgraph
problems are almost inevitably NP-hard as they gen-
eralize the Steiner-tree problem. Hence, exact algo-
rithms on large input graphs are infeasible.

To address this problem, we adopt and extend an
approximation algorithm of (Sozio10) for the prob-
lem of finding strongly interconnected, size-limited
groups in social networks. The algorithm starts from
the full mention-entity graph and iteratively removes
the entity node with the smallest weighted degree.
Among the subgraphs obtained in the various steps,
the one maximizing the minimum weighted degree
will be returned as output. To guarantee that we
arrive at a coherent mention-entity mapping for all
mentions, we enforce each mention node to remain
connected to at least one entity. However, this con-
straint may lead to very suboptimal results.

For this reason, we apply a pre-processing phase to
prune the entities that are only remotely related to the
mention nodes. For each entity node, we compute the
distance from the set of all mention nodes in terms
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They performed 

Kashmir,  

written by  

Page    

and Plant.   

Page played  

unusual chords  

on his Gibson. 

•  Led Zeppelin 
•  Hard rock 
•  Electric guitar 

•  Session guitarist 
•  Led Zeppelin 
•  Gibson 

•  Jimmy Page 
signature model 

•  Hard rock 

Kashmir (song) 

Kashmir (region) 

Larry Page 

Jimmy Page 

Page, Arizona 

Robert Plant 

Gibson Les Paul 

Gibson, Missouri 

Figure 1: Mention-Entity Graph Example

of the sum of the corresponding squared shortest-
path distances. We then restrict the input graph to
the entity nodes that are closest to the mentions. An
experimentally determined good choice for the size
of this set is five times the number of the mention
nodes. Then the iterative greedy method is run on
this smaller subgraph. Algorithm 1 summarizes this
procedure, where an entity is taboo if it is the
last candidate for a mention it is connected to.

Algorithm 1: Graph Disambiguation Algorithm
Input: weighted graph of mentions and entities
Output: result graph with one edge per mention
begin

pre–processing phase;
foreach entity do

calculate distance to all mentions;
keep the closest (5× mentions count)
entities, drop the others;
main loop;
while graph has non-taboo entity do

determine non-taboo entity node
with lowest weighted degree, remove it
and all its incident edges;
if minimum weighted degree increased
then

set solution to current graph;

post–processing phase;
process solution by local search or full
enumeration for best configuration;

The output of the main loop would often be close
to the desired result, but may still have more than one
mention-entity edge for one or more mentions. At
this point, however, the subgraph is small enough to
consider an exhaustive enumeration and assessment
of all possible solutions. This is one of the options
that we have implemented as post-processing step.
Alternatively, we can perform a faster local-search
algorithm. Candidate entities are randomly selected
with probabilities proportional to their weighted de-
grees. This step is repeated for a prespecified number
of iterations, and the best configuration with the high-
est total edge-weight is used as final solution.

5.3 Robustness Tests

The graph algorithm generally performs well. How-
ever, it may be misled in specific situations, namely,
if the input text is very short, or if it is thematically
heterogeneous. To overcome these problems, we in-
troduce two robustness tests for individual mentions
and, depending on the tests’ outcomes, use only a
subset of our framework’s features and techniques.
Prior test: Our first test ensures that the popularity
prior does not unduly dominate the outcome if the
true entities are dominated by false alternatives. We
check, for each mention, whether the popularity prior
for the most likely candidate entity is above some
threshold ρ, e. g. above 90% probability. If this is not
the case, then the prior is completely disregarded for
computing the mention-entity edge weights. Other-
wise, the prior is combined with the context-based
similarity computation to determine edge weights.

788



We never rely solely on the prior.
Coherence test: As a test for whether the coher-
ence part of our framework makes sense or not,
we compare the popularity prior and the similarity-
only measure, on a per-mention basis. For each
mention, we compute the L1 distance between the
popularity-based vector of candidate probabilities
and the similarity-only-based vector of candidate
probabilities:

∑

i=1..k

|prior(m, ei)− simscore(m, ei)|

This difference is always between 0 and 2. If it ex-
ceeds a specified threshold λ (e.g., 1), the disagree-
ment between popularity and similarity-only indi-
cates that there is a situation that coherence may be
able to fix. If, on the other hand, there is hardly any
disagreement, using coherence as an additional as-
pect would be risky for thematically heterogeneous
texts and should better be disabled. In that case, we
choose an entity for the mention at hand, using the
combination of prior and similarity. Only the win-
ning entity is included in the mention-entity graph, all
other candidates are omitted for the graph algorithm.
The robustness tests and the resulting adaptation of
our method are fully automated.

6 Experiments

6.1 Setup

System: All described methods are implemented in
a prototype system called AIDA (Accurate Online
Disambiguation of Named Entities). We use the Stan-
ford NER tagger (Finkel05) to identify mentions in
input texts, the YAGO2 knowledge base (Hoffart11)
as a repository of entities, and the English Wikipe-
dia edition (as of 2010-08-17) as a source of mining
keyphrases and various forms of weights. The graph
algorithm makes use of Webgraph (Boldi04).
Datasets: There is no established benchmark for
NED. The best prior work (Kulkarni09)) compiled
its own hand-annotated dataset, sampled from online
news. Unfortunately, this data set is fairly small (102
short news articles, about 3,500 proper noun men-
tions). Moreover, its entity annotations refer to an old
version of Wikipedia. To avoid unfair comparisons,
we created our own dataset based on CoNLL 2003

articles 1,393
mentions (total) 34,956
mentions with no entity 7,136
words per article (avg.) 216
mentions per article (avg.) 25
distinct mentions per article (avg.) 17
mentions with candidate in KB (avg.) 21
entities per mention (avg) 73
initial annotator disagreement (%) 21.1

Table 1: CoNLL Dataset Properties

data, extensively used in prior work on NER tagging
(Sang03).

This consists of proper noun annotations for 1393
Reuters newswire articles. We hand-annotated all
these proper nouns with corresponding entities in
YAGO2. Each mention was disambiguated by two
students and resolved by us in case of conflict. This
data set is referred to as CoNLL in the following
and fully available at http://www.mpi-inf.mpg.
de/yago-naga/aida/. Table 1 summarizes prop-
erties of the dataset.
Methods under comparison: Our framework in-
cludes many variants of prior methods from the lit-
erature. We report experimental results for some of
them. AIDA’s parameters were tuned by line-search
on 216 withheld development documents. We found
the following to work best:

• threshold for prior test: ρ = 0.9

• weights for popularity, similarity, coherence:
α = 0.43, β = 0.47, γ = 0.10

• initial number of entites in graph: 5 · #mentions

• threshold for coherence test: λ = 0.9

We checked the sensitivity of the hyper-parameter
settings and found the influence of variations to be
small, e. g. when varying λ within the range [0.5,1.3],
the changes in precision@1.0 are within 1%.

The baseline for our experiments is the collective-
inference method of (Kulkarni09), which outper-
forms simpler methods (such as (Milne08)). We
refer to this method as Kul CI. Since program code
for this method is not available, we re-implemented
it using the LP solver CPLEX for the optimization
problem with subsequent rounding, as described in
(Kulkarni09). In addition, we compare against (our
re-implementation of) the method of (Cucerzan07),
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Our Methods Competitors

sim-k prior
sim-k

prior
sim-s

sim-k
sim-s

r-prior
sim-k

r-prior
sim-k
coh

r-prior
sim-k
r-coh

prior Cuc Kul s Kul sp Kul CI

Macro P@1.0 76.53 75.75 71.43 76.40 80.71 80.73 81.91 71.24 43.74 58.06 76.74 76.74
Micro P@1.0 76.09 70.72 66.09 76.13 79.57 81.77 81.82 65.84 51.03 63.42 72.31 72.87
MAP 66.98 83.99 85.97 67.00 85.91 89.05 87.31 86.63 40.06 63.90 86.50 85.44

Table 2: Experimental results on CoNLL (all values in %)

referred to as Cuc. For all methods, weights for
combining components were obtained by training
a SVM classifier on 946 withheld CoNLL training
documents.
Performance measures: The key measures in our
evaluation are precision and recall. We consider
the precision-recall curve, as there is an inherent
trade-off between the two measures. Precision is the
fraction of mention-entity assignments that match
the ground-truth assignment. Recall is the fraction
of the ground-truth assignments that our method(s)
could compute. Both measures can aggregate over of
all mentions (across all texts) or over all input texts
(each with several mentions). The former is called
micro-averaging, the latter macro-averaging.

As we use a knowledge base with millions of enti-
ties, we decided to neglect the situation that a mention
may refer to an unknown entity not registered in the
knowledge base. We consider only mention-entity
pairs where the ground-truth gives a known entity,
and thus ignore roughly 20% of the mentions without
known entity in the ground-truth. This simplifies the
calculation of aggregated precision-recall measures
like (interpolated) MAP (mean average precision):

MAP =
1

m

∑

i=1..m

precision@
i

m

where precision@ i
m is the precision at a specific

recall level. This measure is equivalent to the area
under the precision-recall curve.

For constructing the precision-recall curve, we sort
the mention-entity pairs in descending order of con-
fidence, so that x% recall refers to the x% with the
highest confidence. We use each method’s mention-
entity similarity for the confidence values.

6.2 Results
The results of AIDA vs. the collective-inference
method of (Kulkarni09) and the entity disambigua-

tion method of (Cucerzan07) on 229 test documents
are shown in Table 21. The table includes variants
of our framework, with different choices for the sim-
ilarity and coherence computations. The shorthand
notation for the combinations in the table is as fol-
lows: prior: popularity prior; r-prior: popularity
prior with robustness test; sim-k: keyphrase based
similarity measure; sim-s: syntax-based similarity;
coh: graph coherence; r-coh: graph coherence with
robustness test.

The shorthand names for competitors are: Cuc:
(Cucerzan07) similarity measure; Kul s: (Kulka-
rni09) similarity measure only; Kul sp: Kul s com-
bined with plus popularity prior; Kul CI: Kul sp com-
bined with coherence. All coherence methods use
the Milne-Witten inlink overlap measure mw coh.

The most important measure is macro/micro preci-
son@1.0, which corresponds to the overall correct-
ness of the methods for all mentions that are assigned
to an entity in the ground-truth data. Our sim-k pre-
cision is already very good. Combining it with the
syntax-based similarity improves micro-averaged pre-
cision@1.0, but the macro-averaged results are a bit
worse. Thus, the more advanced configurations of
AIDA did not use syntax-based similarity. Uncondi-
tionally combining prior and sim-k degrades the qual-
ity, but including the prior robustness test (r-prior
sim-k) improves the results significantly. The preci-
sion for our best method, the prior- and coherence-
tested Keyphrase-based mention-entity similarity (r-
prior sim-k r-coh), significantly outperforms all com-
petitors (with a p-value of a paired t-test< 0.01). Our
macro-averaged precision@1.0 is 81.91%, whereas
Kul CI only achieves 76.74%. Even r-prior sim-
k, without any coherence, significantly outperforms

12 of the 231documents in the original test set could not be
processed by Kul CI due to memory limitations. All results are
given for the subset, for the sake of comparability. Results for
the complete set are available on our website.
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Figure 2: Experimental results on CoNLL: precision-recall curves

Kul CI (with coherence) with a p-value of < 0.01.
In micro-average precision@1.0, the differences are
even higher, showing that we perform better through-
out all documents.

The macro-averaged precision-recall curves in Fig-
ure 2 show that the best AIDA method performs
particularly well in the tail of high recall values. The
MAP underlines the robustness of our best methods.

The high MAP for the prior method is because
we rank by mention-entity edge weight; for prior
this is simply the prior probability. As the prior is
most probably correct for mentions with a very high
prior for their most popular entity (by definition), the
initial ranking of the prior is very good, but drops
more sharply. We believe that the main difficulty in
named entity disambiguation lies exactly in the “long
tail” of not-so-prominent entities.

We also tried the (Milne08) web service on a sub-
set of our test collection, but this was obviously
geared for Wikipedia linkage and performed poorly.

6.3 Discussion
Our keyphrase-based similarity measure performs
better than the Kul s measure, which is a combina-
tion of 4 different entity contexts (abstract tokens,
full text tokens, inlink anchor tokens, inlink anchor
tokens + surrounding tokens), 3 similarity measures
(Jaccard, dot product, and tf.idf cosine similarity),
and the popularity prior. Adding the prior to our
similarity measure by linear combination degrades
the performance. We found that our measure already
captures a notion of popularity because popular enti-
ties have more keyphrases and can thus accumulate
a higher total score. The popularity should only be
used when one entitiy has a very high probability, and
introducing the robustness test for the prior achieved
this, improving on both our similarity and Kul sp.

Unconditionally adding the notion of coherence
among entities improves the micro-average precision,

but not the macro-average. Investigating potential
problems, we found that the coherence can be led
astray when parts of the document form a coherent
cluster of entities, and other entities are then forced
to be coherent to this cluster. To overcome this is-
sue, we introduced the coherence robustness test,
and the results with r-coh show that it makes sense
to fix an entity for a mention when the prior and
similarity are in reasonable agreement. Adding this
coherence test leads to a signigicant (p-value < 0.05)
improvement over the non-coherence based measures
in both micro- and macro-average precision. Our ex-
periments showed that when adding this coherence
test, around 2

3 of the mentions are solved using local
similarity only and are assigned an entity before run-
ning the graph algorithm. In summary, we observed
that the AIDA configuration with r-prior, keyphrase-
based sim-k, and r-coh significantly outperformed all
competitors.

7 Conclusions and Future Work

The AIDA system provides an integrated NED
method using popularity, similarity, and graph-based
coherence, and includes robustness tests for self-
adaptive behavior. AIDA performed significantly bet-
ter than state-of-the-art baselines. The system is fully
implemented and accessible online (http://www.
mpi-inf.mpg.de/yago-naga/aida/). Our fu-
ture work will consider additional semantic proper-
ties between entities (types, memberOf/partOf, etc.)
for further enhancing the coherence algorithm.
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