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Abstract

Augmented and alternative communication
(AAC) devices enable users with certain com-
munication disabilities to participate in every-
day conversations. Such devices often rely
on statistical language models to improve text
entry by offering word predictions. These
predictions can be improved if the language
model is trained on data that closely reflects
the style of the users’ intended communica-
tions. Unfortunately, there is no large dataset
consisting of genuine AAC messages. In this
paper we demonstrate how we can crowd-
source the creation of a large set of fictional
AAC messages. We show that these messages
model conversational AAC better than the cur-
rently used datasets based on telephone con-
versations or newswire text. We leverage our
crowdsourced messages to intelligently select
sentences from much larger sets of Twitter,
blog and Usenet data. Compared to a model
trained only on telephone transcripts, our best
performing model reduced perplexity on three
test sets of AAC-like communications by 60–
82% relative. This translated to a potential
keystroke savings in a predictive keyboard in-
terface of 5–11%.

1 Introduction

Users with certain communication disabilities
rely on augmented and alternative communication
(AAC) devices to take part in everyday conversa-
tions. Often these devices consist of a predictive
text input method coupled with text-to-speech out-
put. Unfortunately, the text entry rates provided by

AAC devices are typically low, between 0.5 and 16
words-per-minute (Trnka et al., 2009).

As a consequence, researchers have made nu-
merous efforts to increase AAC text entry rates by
employing a variety of improved language model-
ing techniques. Examples of approaches include
adapting the language model to recently used words
(Wandmacher et al., 2008; Trnka, 2008), using syn-
tactic information (Hunnicutt, 1989; Garay-Vitoria
and González-Abascal, 1997), using semantic in-
formation (Wandmacher and Antoine, 2007; Li
and Hirst, 2005), and modeling topics (Lesher and
Rinkus, 2002; Trnka et al., 2006). For a recent sur-
vey, see Garay-Vitoria and Abascal (2006).

While such language model improvement tech-
niques are undoubtedly helpful, certainly they can
all benefit from starting with a long-span language
model trained on large amounts of closely matched
data. For AAC devices this means closely modeling
everyday face-to-face communications. However,
a long-standing problem in the field is the lack of
good data sources that adequately model such AAC
communications. Due to privacy-reasons and other
ethical concerns, there is no large dataset consist-
ing of genuine AAC messages. Therefore, previous
research has used transcripts of telephone conversa-
tions or newswire text. However, these data sources
are unlikely to be an ideal basis for AAC language
models.

In this paper we show that it is possible to signif-
icantly improve conversational AAC language mod-
eling by first crowdsourcing the creation of a fic-
tional collection of AAC messages on the Amazon
Mechanical Turk microtask market. Using a care-
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fully designed microtask we collected 5890 mes-
sages from 298 unique workers. As we will see,
word-for-word these fictional AAC messages are
better at predicting AAC test sets than a wide-range
of other text sources. Further, we demonstrate that
Twitter, blog and Usenet data outperform telephone
transcripts or newswire text.

While our crowdsourced AAC data is better than
other text sources, it is too small to train high-quality
long-span language models. We therefore investi-
gate how to use our crowdsourced collection to in-
telligently select AAC-like sentences from Twitter,
blog and Usenet data. We compare a variety of
different techniques for doing this intelligent selec-
tion. We find that the best selection technique is the
recently proposed cross-entropy difference method
(Moore and Lewis, 2010). Using this method, we
build a compact and well-performing mixture model
from the Twitter, blog and Usenet sentences most
similar to our crowdsourced data.

We evaluate our mixture model on four different
test sets. On the three most AAC-like test sets, we
found substantial reductions in not only perplexity
but also in potential keystroke savings when used
in a predictive keyboard interface. Finally, to aid
other AAC researchers, we have publicly released
our crowdsourced AAC collection, word lists and
best-performing language models1.

2 Crowdsourcing AAC-like Messages

As we mentioned in the introduction, there are un-
fortunately no publicly available sources of gen-
uine conversational AAC messages. We conjectured
we could create surrogate data by asking workers
on Amazon Mechanical Turk to imagine they were
a user of an AAC device and having them invent
things they might want to say. While crowdsourcing
is commonly used for simple human computation
tasks, such as labeling images and transcribing au-
dio, it is an open research question whether we can
leverage workers’ creativity to invent plausible and
useful AAC-like messages. In this section, we de-
scribe our carefully constructed microtask and com-
pare how well our collected messages correspond to
communications from actual AAC users.

1http://www.aactext.org/imagine/

Figure 1: The interface for HITs of type 1 in our
crowdsourced data collection.

Figure 2: The interface for HITs of type 2 in our
crowdsourced data collection.

2.1 Collection Tasks

To collect our data, we used two different types
of human intelligence tasks (HITs). In type 1, the
workers were told to imagine that due to an accident
or medical condition they had to use a communica-
tion device to speak for them. Workers were asked
to invent a plausible communication. Workers were
prevented from pasting text. After several pilot ex-
periments, we arrived at the instructions shown in
figure 1.

In type 2, a worker first judged the plausibility
of a communication written by a previous worker
(figure 2). After judging, the worker was asked
to “invent a completely new communication” as if
the worker was the AAC user. Workers were pre-
vented from pasting text or typing the identical text
as the one just judged. The same communication
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was judged by three separate workers. In this work
we did not make use of these judgments.

2.2 Data Cleaning
While most workers produced plausible and often
creative communications, some workers entered ob-
vious garbage. These workers were identified by a
quick visual scan of the submitted communications.
We rejected the work of 9% of the workers in type
1 and 4% of the workers in type 2. After removing
these workers, we had 2481 communications from
type 1 and 4440 communications from type 2.

After combining the data from all accepted HITs,
we conducted further semi-automatic data clean-
ing. We first manually reviewed communications
sorted by worker. We removed workers whose text
was non-fluent English or not plausible (e.g. some
workers entered news headlines or proverbs). Iden-
tical communications from the same worker were
removed. We removed communications with an
out-of-vocabulary (OOV) rate of over 20% with re-
spect to a large word list of 330K words obtained
from human-edited dictionaries2. We also removed
communications that were all in upper case, con-
tained common texting abbreviations (e.g. “plz”,
“ru”, “2day”), communications over 80 characters,
and communications with excessive letter repeti-
tions (e.g. “yippeeee”). After cleaning, we had 5890
messages from 298 unique workers.

2.3 Results
Tables 1 and 2 show some example communications
obtained in each HIT type. Sometimes, but not al-
ways, type 2 resulted in the worker writing a similar
communication as the one judged. This is a mixed
blessing. While it may reduce the diversity of com-
munications, we found that workers were more ea-
ger to accept HITs of type 2. The average HIT com-
pletion time was also shorter, 24 seconds in type 2
versus 36 seconds in type 1. While we initially paid
$0.04/HIT for both types, we found in subsequent
rounds that we could pay $0.02/HIT for type 2. We
also had to reject less work in type 2 and qualita-
tively found the communications to be more AAC-
like. Since workers had to imagine themselves in a

2We combined Wiktionary, Webster’s dictionary provided
by Project Gutenberg, the CMU pronouncing dictionary and
GNU aspell.

Is the dog friendly?
Can I have some water please?
I need to start making a shopping list soon.
What I would really like right now is a plate of fruit.
Who will drive me to the doctor’s office tomorrow?

Table 1: Example communications from type 1.

Can you bring my slippers?
I am cold, is there another blanket.
How did Pam take the news?
Bring the fuzzy slippers here.

Did you have breakfast?
why are you so late?
I am pretty hungry, can we go eat?
I had bacon eggs and hashbrowns for breakfast.

Table 2: Example communications from type 2. The
text in bold is the message workers judged. It is fol-
lowed in plain text by the workers’ new messages.

very unfamiliar situation, it appears that providing a
concrete example was helpful to workers.

3 Comparison of Training Sources

In this section, we compare the predictive perfor-
mance of language models trained on our Turk AAC
data with models trained on other text sources. We
use the following training sets:

• NEWS – Newspaper articles from the CSR-III
(Graff et al., 1995) and Gigaword corpora (Graff,
2003). 60M sentences, 1323M words.

• WIKIPEDIA – Current articles and discussion
threads from a snapshot of Wikipedia (January 3,
2008). 24M sentences, 452M words.

• USENET – Messages from a Usenet corpus
(Shaoul and Westbury, 2009). 123M sentences,
1847M words.

• SWITCHBOARD – Transcripts of 2217 telephone
conversations from the Switchboard corpus (God-
frey et al., 1992). Due to its conversational style,
this corpus has been popular for AAC language
modeling (Lesher and Rinkus, 2002; Trnka et al.,
2009). 0.2M sentences, 2.6M words.

• BLOG – Blog posts from the ICWSM corpus
(Burton et al., 2009). 25M sentences, 387M
words.
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• TWITTER – We collected Twitter messages via
the streaming API between December 2010 and
March 2011. We used the free Twitter stream
which provides access to 5% of all tweets. Twit-
ter may be particularly well suited for modeling
AAC communications as tweets are short typed
messages that are often informal person-to-person
communications. Twitter has previously been
proposed as a candidate for modeling conversa-
tions, see for example Ritter et al. (2010). 7M
sentences, 55M words.

• TURKTRAIN – Communications from 80% of the
workers in our crowdsourced collection. 4981
sentences, 24860 words.

WIKIPEDIA, USENET, BLOG and TWITTER all
consisted of raw text that required significant filter-
ing to eliminate garbage, spam, repeated messages,
XML tags, non-English text, etc. Given the large
amount of data available, our approach was to throw
away any text that did not appear to be a sensible
English sentence. For example, we eliminated any
sentence having a large number of words not in our
330K word list.

3.1 Test Sets
We evaluated our models on the following test sets:

• COMM – Sentences written in response to hy-
pothetical communication situations collected by
Venkatagiri (1999). We removed nine sentences
containing numbers. This set is used throughout
the paper. 251 sentences, 1789 words.

• SPECIALISTS – Context specific phrases sug-
gested by AAC specialists3. This set is used
throughout the paper. 952 sentences, 3842 words.

• TURKDEV – Communications from 10% of the
workers in our crowdsourced collection (disjoint
from TURKTRAIN and TURKTEST). This set will
be used for initial evaluations and also to tune our
models. 551 sentences, 2916 words.

• TURKTEST – Communications from 10% of the
workers in our crowdsourced collection (disjoint
from TURKTRAIN and TURKDEV). This set is
used only in the final evaluation section. 563 sen-
tences, 2721 words.
3http://aac.unl.edu/vocabulary.html

Test set Sentence
COMM I love your new haircut.
COMM How many children do you have?
SPECIALISTS Are you sure you don’t mind?
SPECIALISTS I’ll keep an eye on that for you
SWITCHTEST yeah he’s a good actor though
SWITCHTEST what did she have like

Table 3: Examples from three of our test sets.

• SWITCHTEST – Transcripts of three Switchboard
conversations (disjoint from the SWITCHBOARD

training set). This is the same set used in Trnka et
al. (2009). We dropped one sentence containing a
dash. This set is only used in the final evaluation
section. 59 sentences, 508 words.

TURKDEV and TURKTEST contain text similar
to table 1 and 2. Table 3 shows some examples from
the other three test sets. Sentences in COMM tended
to be richer in vocabulary and subject matter than
those in SPECIALISTS. The SPECIALISTS sentences
tended to be general phrases that avoided mention-
ing specific situations, proper names, etc. Sentences
in SWITCHTEST exhibited phenomena typical of
human-to-human voice conversations (filler words,
backchannels, interruptions, etc).

3.2 Language Model Training

All language models were trained using the SRILM
toolkit (Stolcke, 2002). All models used interpo-
lated modified Kneser-Ney smoothing (Kneser and
Ney, 1995; Chen and Goodman, 1998). In this sec-
tion, we trained 3-gram language models with no
count-cutoffs. All text was converted to lowercase
and we removed punctuation except for apostrophes.
We believe punctuation would likely slow down a
user’s conversation for only a small potential advan-
tage (e.g. improving text-to-speech prosody).

All models used a vocabulary of 63K words in-
cluding an unknown word. We obtained our vocab-
ulary by taking all words occurring in TURKTRAIN

and all words occurring four or more times in the
TWITTER training set. We restricted our vocabu-
lary to words from our large list of 330K words.
This restriction prevented the inclusion of com-
mon misspellings prevalent in many of our train-
ing sets. Our 63K vocabulary resulted in low OOV
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(c) SPECIALISTS test set

Figure 3: Perplexity of language models trained on the same amount of data from different sources. The
perplexity is the average of 20 models trained on random subsets of the training data (one standard deviation
error bars).

rates for all test sets: COMM 0%, SPECIALISTS

0.05%, TURKDEV 0.1%, TURKTEST 0.07%, and
SWITCHTEST 0.8%.

3.3 Small Training Size Experiment
We trained language models on each dataset, vary-
ing the number of training words from 4K to 24K
(the limit of the TURKTRAIN set). For each dataset
and training amount, we built 20 different models by
choosing sentences from the full training set at ran-
dom. We computed the mean and standard deviation
of the per-word perplexity of the set of 20 models.

As shown in figure 3, word-for-word the TURK-
TRAIN data was superior for our three most AAC-
like test sets. Thus it appears our crowdsourcing pro-
cedure was successful at generating AAC-like data.
TWITTER was consistently the second best. BLOG,
USENET and SWITCHBOARD also performed well.

3.4 Large Training Size Experiment
The previous experiment used a small amount of
training data. We selected the best three datasets
having tens of millions of words of training data:
USENET, BLOG, and TWITTER. As in the previ-
ous experiment, we computed the mean and stan-
dard deviation of the per-word perplexity of a set
of 20 models. Increasing the amount of training
data substantially reduced perplexity compared to

our small TURKTRAIN collection (figure 4). Tweets
were clearly well suited for modeling AAC-like text
as 3M words of TWITTER data was better than 40M
words of BLOG data.

3.5 Comparison with Real AAC Data
Beukelman et al. (1984) analyzed the communica-
tions made by five nonspeaking adults over 14 days.
All users were experienced using a tape-typewriter
AAC device. Beukelman gives a ranked list of the
top 500 words, the frequency of the top 20 words,
and statistics calculated on the communications.

For the top 10 words in Beukelman’s AAC user
data, we computed the probability of each word in
our various datasets (figure 5). As shown, some
words such as “to” and “a” occur with similar fre-
quency across all datasets. Some words such as
“the” are overrepresented in data such as news text.
Other words such as “I” and “you” are much more
variable. Our Turk data has the closest matching
frequency for the most popular word “I”. Interest-
ingly, our Turk data shows a much higher probabil-
ity for “you” than the AAC data. We believe this re-
sulted from the situation we asked workers to imag-
ine (i.e. communicating via a letter-at-a-time scan-
ning interface). Workers presumed in such a situa-
tion they would need to ask others to do many tasks.
We observed many requests in the data such as “Can
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Figure 4: Perplexity of language models trained on increasing amounts of data from three different training
sources. Results on the TURKDEV, COMM and SPECIALISTS test sets.
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Figure 5: The unigram probabilities of the top 10 words reported by Beukelman et al. (1984).

you change my sheets?” and “Can you walk the dog
for me?”

Beukelman reports 33% of all communications
could be made using only the top 500 words. The
same 500 words allowed writing of 34% of our Turk
communications. Other datasets exhibited much
lower percentages. Note that this is at least partially
due to the longer sentences present in some datasets.
Unfortunately, Beukelman does not report the aver-
age communication length. Our Turk communica-
tions were 5.0 words on average. The next shortest
dataset was TWITTER with 7.5 words per communi-
cation. Despite their short average length, only 10%
of Tweets could be written using the top 500 words.

Beukelman reports that 80% of words in the AAC
users’ communications were in the top 500 words.
81% of the words in our crowdsourced data were in
this word list. For comparison, only 65% of words
in our TWITTER data were in the 500 word vocabu-
lary. While our TURKTRAIN set contains only 2141
unique words, this may in fact be good since it has

been argued that rare words have received too much
attention in AAC (Baker et al., 2000).

4 Using Large Datasets Effectively

In the previous section, we found our crowdsourced
data was good at predicting AAC-like test sets.
However, in order to build a good long-span lan-
guage model, we would require millions of such
communications. Crowdsourcing such a large col-
lection would be prohibitively expensive. There-
fore, we instead investigated how to use our crowd-
sourced data to intelligently select AAC-like data
from other large datasets. For large datasets, we
used TWITTER, BLOG and USENET as they were
both large and well-matched to AAC data.

4.1 Selecting AAC-like Data
For each training sentence, we calculated three val-
ues:

• WER – The minimum word error rate between
the training sentence and one of the crowdsourced
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Figure 6: Perplexity on TURKDEV using different data selection and pruning techniques.

communications. This is the minimum number of
words that must be inserted, substituted or deleted
to transform the training sentence into a TURK-
TRAIN sentence divided by the number of words
in the TURKTRAIN sentence. For example, the
training sentence “I didn’t sleep well Monday
night either” was given a WER of 0.33 because
two word-changes transformed it into a message
written by a worker: “I didn’t sleep well last
night”.

• Cross-entropy, in-domain – The average per-word
cross-entropy of the training sentence under a 3-
gram model trained on TURKTRAIN.

• Cross-entropy, background – The average per-
word cross-entropy of the training sentence un-
der a 3-gram model trained on a random portion
of the training set. The random portion was the
same size as TURKTRAIN.

We used these values to limit training to only
AAC-like sentences. We tried three different selec-
tion methods. In WER selection, only sentences be-
low a threshold on the word error rate were kept in
the training data. This tends to find variants of exist-
ing communications in our Turk collection.

In cross-entropy selection, we used only sen-
tences below a threshold on the per-word cross-
entropy with respect to a TURKTRAIN language
model. This is equivalent to placing a threshold on

the perplexity. Previously this technique has been
used to improve language models based on web data
(Bulyko et al., 2007; Gao et al., 2002) and to con-
struct domain-specific models (Lin et al., 1997).

In cross-entropy difference selection, a sentence’s
score is the in-domain cross-entropy minus the back-
ground cross-entropy (Moore and Lewis, 2010).
This technique has been used to supplement Euro-
pean parliamentary text (48M words) with newswire
data (3.4B words) (Moore and Lewis, 2010). We
were curious how this technique would work given
our much smaller in-domain set of 24K words.

4.2 Data Selection and Pruning

We built models selecting sentences below different
thresholds on the WER, in-domain cross-entropy, or
cross-entropy difference. For comparison, we also
pruned our models using conventional count-cutoff
and entropy pruning (Stolcke, 1998). During en-
tropy pruning, we used a Good-Turing estimated
model for computing the history marginals as the
lower-order Kneser-Ney distributions are unsuitable
for this purpose (Chelba et al., 2010).

We calculated the perplexity of each model on
three test sets. We also tallied the number of model
parameters (all n-gram probabilities plus all backoff
weights). On TURKDEV, cross-entropy difference
selection performed the best for all models sizes and
for all training sets (figure 6). We also found cross-
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Figure 7: Perplexity on TURKDEV varying the
cross-entropy difference threshold.

entropy difference was the best on COMM, reducing
perplexity by 10–20% relative compared to cross-
entropy selection. Results on SPECIALISTS showed
that WER and both forms of cross-entropy selection
performed similarly. All three data selection meth-
ods were superior to count-cutoff or entropy prun-
ing. We use cross-entropy difference selection for
the remainder of this paper.

4.3 Model Order and Optimal Thresholds

We created 2-gram, 3-gram and 4-gram models on
TWITTER, BLOG, and USENET using a range of
cross-entropy difference thresholds. 4-gram models
slightly outperformed 3-gram models (figure 7). The
optimal threshold for 4-gram models were as fol-
lows: TWITTER 0.0, BLOG -0.4, and USENET -0.7.
These thresholds resulted in using 20% of TWIT-
TER, 5% of BLOG, and 1% of USENET.

4.4 Mixture Model

We created a mixture model using linear interpo-
lation from the TWITTER, USENET and BLOG 4-
gram models created with each set’s optimal thresh-
old. The mixture weights were optimized with re-
spect to TURKDEV using SRILM. The final mix-
ture weights were: TWITTER 0.42, BLOG 0.29, and
USENET 0.29. Our final 4-gram mixture model had
43M total parameters and a compressed disk size of
316 MB.

5 Evaluation

In this section, we compare our mixture model
against baseline models. We show performance with

respect to usage in a typical AAC text entry interface
based on word prediction.

5.1 Predictive Text Entry
Many AAC communication devices use word pre-
dictions. In a word prediction interface users type
letters and the interface offers word completions
based on the prefix of the current word and often the
prior text. By selecting one of the predictions, the
user can potentially save keystrokes as compared to
typing out every letter of each word.

We assume a hypothetical predictive keyboard in-
terface that displays five word predictions. Our key-
board makes predictions based on up to three words
of prior context. Our keyboard predicts words even
before the first letter of a new word is typed. As
a user types letters, predictions are limited to words
consistent with the typed letters. If the system makes
a correct prediction, we assume it takes only one
keystroke to enter the word and any following space.

We only predict words in our 63K word vocab-
ulary (empty prediction slots are possible). We dis-
play a word even if it was already a proposed predic-
tion for a shorter prefix of the current word. The first
word in a sentence is conditioned on the sentence-
start pseudo-word. If an out-of-vocabulary word is
typed, the word is replaced in the language model’s
context with the unknown pseudo-word.

We evaluate our predictive keyboard using the
common metric of keystroke savings (KS):

KS =

(
1−

(
kp
ka

))
× 100%,

where kp is the number of keystrokes required with
word predictions and ka is the number of keystrokes
required without word prediction.

5.2 Predictive Performance Experiment
We compared our mixture model using cross-
entropy difference selection with three baseline
models trained on all of TWITTER, SWITCHBOARD

and TURKTRAIN. The baseline models were un-
pruned 4-gram models trained using interpolated
modified Kneser-Ney smoothing. They had 72M,
5M, and 129K parameters respectively.

As shown in table 4, our mixture model per-
formed the best on the three most AAC-like test
sets (COMM, SPECIALISTS, and TURKTEST). The
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LM Test set PPL KS
Mixture COMM 47.9 62.5%
Twitter COMM 55.9 60.9%
Switchboard COMM 151.1 54.4%
Turk COMM 165.9 52.7%
Mixture SPECIALISTS 25.7 63.1%
Twitter SPECIALISTS 27.3 61.9%
Switchboard SPECIALISTS 64.5 57.7%
Turk SPECIALISTS 85.9 52.8%
Mixture TURKTEST 31.2 62.0%
Twitter TURKTEST 42.3 59.3%
Switchboard TURKTEST 172.5 50.6%
Turk TURKTEST 51.0 57.6%
Mixture SWITCHTEST 174.3 52.8%
Twitter SWITCHTEST 142.6 54.9%
Switchboard SWITCHTEST 79.2 58.8%
Turk SWITCHTEST 642.5 42.9%

Table 4: Perplexity (PPL) and keystroke savings
(KS) of different language models on four test sets.
The bold line shows the best performing language
model on each test set.

mixture model provided substantial increases in
keystroke savings compared to a model trained
solely on Switchboard. The mixture model also per-
formed better than simply training a model on a
large amount of Twitter data. The model trained on
only 24K words of Turk data did surprisingly well
given its extremely limited training data.

Our Switchboard model performed the best on
SWITCHTEST with a keystroke savings of 58.8%.
For comparison, past work reported a keystroke sav-
ings of 55.7% on SWITCHTEST using a 3-gram
model trained on Switchboard (Trnka et al., 2009).
While our mixture model performed less well on
SWITCHTEST (52.8%), it is likely the other three
test sets better represent AAC communications.

5.3 Larger Mixture Model Experiment
Our mixture language model used the best thresh-
olds with respect to TURKDEV. This resulted in
throwing away most of the training data. This might
be suboptimal in practice if an AAC user’s com-
munications are somewhat different or more diverse
than the language generated by the Turk workers.

We trained a series of mixture models in which
we varied the cross-entropy difference thresholds
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Figure 8: Keystroke savings on mixture models
varying a constant added to the optimal thresholds
with respect to TURKDEV.

by adding a constant to all three thresholds. The
mixture weights for each new model were opti-
mized with respect to TURKDEV. Using somewhat
larger models did improve keystroke savings for all
test sets except for TURKTEST (figure 8). How-
ever, using too large thresholds eventually hurt per-
formance except on SWITCHTEST. Performance
on SWITCHTEST steadily increased from 52.8% to
56.6%. These gains however came at the cost of big-
ger models. The model using +1.0 of the optimal
thresholds had 384M parameters and a compressed
size of 3.0 GB.

6 Discussion

Given the ethical implications of collecting mes-
sages from actual AAC users, it is unlikely that a
large corpus of genuine AAC messages will ever be
available to researchers. An important finding in
this paper is that crowdsourcing can be an effective
way to obtain surrogate data for improving AAC lan-
guage models. Another finding is that Twitter pro-
vides a continuous stream of large amounts of very
AAC-like data. Twitter also has the advantage of al-
lowing models to be continually updated to reflect
current events, new vocabulary, etc.

6.1 Limitations and Implications

We collected data from a large number of workers,
some of whom may have written only a single com-
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munication. This may have resulted in more mes-
sages about simple situations and perceived needs
which could differ from true AAC usage.

Our data does not contain long-term two-sided
conversations. Thus it may not be as useful for eval-
uating techniques that adapt to past messages or that
use the conversation partner’s communications.

We asked workers to imagine they were using
a scanning-style AAC device. We believe this led
workers to presume they would require assistance
in many routine physical tasks. Our workers were
(presumably) without cognitive or language impair-
ments. Thus our collection is more representative
of one subgroup of AAC communicators (scanning
users with normal cognitive function and language
skills). By modifying the situation given to workers,
it is likely we can expand our collection to better rep-
resent other groups of AAC users, such as those us-
ing predictive keyboards or eye-trackers. However,
obtaining data representative of users with cognitive
or language impairments via crowdsourcing would
probably be difficult.

While we were unable to obtain real AAC mes-
sages for testing, we believe the COMM and SPE-
CIALIST test sets provide a good indication of the
real-world potential for our methods. Our collected
Turk data was compared with reported data from ac-
tual AAC users (though this comparison was neces-
sarily coarse-grained). We hope that by releasing
our data and models it may be possible for those
privy to real AAC communications to validate and
report about the techniques described in this paper.

We evaluated our models in terms of perplexity
and keystrokes savings within the auspices of a pre-
dictive keyboard. Further work is needed to inves-
tigate how our numeric gains translate to real-world
benefits to users. However, past work indicates more
accurate predictions do in fact yield improvements
in human performance (Trnka et al., 2009).

Finally, while the predictive keyboard is a com-
monly studied interface, it is not appropriate for all
AAC users. Eye-tracker users may prefer an in-
terface such as Dasher (Ward and MacKay, 2002).
Single-switch users may prefer an interface such as
Nomon (Broderick and MacKay, 2009). Any AAC
interface based on word- or letter-based predictions
stands to benefit from the methods described in this
paper.

7 Conclusions

In this paper we have shown how workers’ creativity
on a microtask crowdsourcing market can be used
to create fictional but plausible AAC communica-
tions. We have demonstrated that these messages
model conversational AAC better than the currently
used datasets based on telephone conversations or
newswire text. We used our new crowdsourced
dataset to intelligently select sentences from Twit-
ter, blog and Usenet data.

We compared a variety of different techniques for
intelligent training data selection. We found that
even for our small amount of in-domain data, the
recently proposed cross-entropy difference method
was consistently the best (Moore and Lewis, 2010).
Finally, compared to a model trained only on
Switchboard, our best performing model reduced
perplexity by 60-82% relative on three AAC-like test
sets. This translated to a potential keystroke savings
in a predictive keyboard interface of 5–11%.

In conclusion, we have shown how to create long-
span AAC language models using openly avail-
able resources. Our models significantly outperform
models trained on the commonly used data sources
of telephone transcripts and newswire text. To aid
other researchers, we have publicly released our
crowdsourced AAC collection, word lists and best-
performing models. We hope complementary tech-
niques such as topic modeling and language model
adaptation will provide additive gains to those ob-
tained by training models on large amounts of AAC-
like data. We plan to use our models to design and
test new interfaces that enable faster communication
for AAC users.
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