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Abstract

We present an inference algorithm that orga-
nizes observed words (tokens) into structured
inflectional paradigms (types). It also natu-
rally predicts the spelling of unobserved forms
that are missing from these paradigms, and dis-
covers inflectional principles (grammar) that
generalize to wholly unobserved words.

Our Bayesian generative model of the data ex-
plicitly represents tokens, types, inflections,
paradigms, and locally conditioned string edits.
It assumes that inflected word tokens are gen-
erated from an infinite mixture of inflectional
paradigms (string tuples). Each paradigm is
sampled all at once from a graphical model,
whose potential functions are weighted finite-
state transducers with language-specific param-
eters to be learned. These assumptions natu-
rally lead to an elegant empirical Bayes infer-
ence procedure that exploits Monte Carlo EM,
belief propagation, and dynamic programming.
Given 50–100 seed paradigms, adding a 10-
million-word corpus reduces prediction error
for morphological inflections by up to 10%.

1 Introduction
1.1 Motivation

Statistical NLP can be difficult for morphologically
rich languages. Morphological transformations on
words increase the size of the observed vocabulary,
which unfortunately masks important generalizations.
In Polish, for example, each lexical verb has literally
100 inflected forms (Janecki, 2000). That is, a single
lexeme may be realized in a corpus as many different
word types, which are differently inflected for person,
number, gender, tense, mood, etc.
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All this makes lexical features even sparser than
they would be otherwise. In machine translation
or text generation, it is difficult to learn separately
how to translate, or when to generate, each of these
many word types. In text analysis, it is difficult to
learn lexical features (as cues to predict topic, syntax,
semantics, or the next word), because one must learn
a separate feature for each word form, rather than
generalizing across inflections.

Our engineering goal is to address these problems
by mostly-unsupervised learning of morphology. Our
linguistic goal is to build a generative probabilistic
model that directly captures the basic representations
and relationships assumed by morphologists. This
model suffices to define a posterior distribution over
analyses of any given collection of type and/or token
data. Thus we obtain scientific data interpretation as
probabilistic inference (Jaynes, 2003). Our computa-
tional goal is to estimate this posterior distribution.

1.2 What is Estimated
Our inference algorithm jointly reconstructs token,
type, and grammar information about a language’s
morphology. This has not previously been attempted.

Tokens: We will tag each word token in a corpus
with (1) a part-of-speech (POS) tag,1 (2) an inflection,
and (3) a lexeme. A token of brokenmight be tagged
as (1) a VERB and more specifically as (2) the past
participle inflection of (3) the abstract lexeme �b&r��a�k.2

Reconstructing the latent lexemes and inflections
allows the features of other statistical models to con-
sider them. A parser may care that broken is a
past participle; a search engine or question answer-
ing system may care that it is a form of �b&r��a�k; and a
translation system may care about both facts.

1POS tagging may be done as part of our Bayesian model or
beforehand, as a preprocessing step. Our experiments chose the
latter option, and then analyzed only the verbs (see section 8).

2We use cursive font for abstract lexemes to emphasize that
they are atomic objects that do not decompose into letters.
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singular plural
present 1st-person breche brechen

2nd-person brichst brecht
3rd-person bricht brechen

past 1st-person brach brachen
2nd-person brachst bracht
3rd-person brach brachen

Table 1: Part of a morphological paradigm in German,
showing the spellings of some inflections of the lexeme
�b&r��a�k (whose lemma is brechen), organized in a grid.

Types: In carrying out the above, we will recon-
struct specific morphological paradigms of the lan-
guage. A paradigm is a grid of all the inflected forms
of some lexeme, as illustrated in Table 1. Our recon-
structed paradigms will include our predictions of
inflected forms that were never observed in the cor-
pus. This tabular information about the types (rather
than the tokens) of the language may be separately
useful, for example in translation and other genera-
tion tasks, and we will evaluate its accuracy.

Grammar: We estimate parameters ~θ that de-
scribe general patterns in the language. We learn
a prior distribution over inflectional paradigms by
learning (e.g.) how a verb’s suffix or stem vowel
tends to change when it is pluralized. We also learn
(e.g.) whether singular or plural forms are more com-
mon. Our basic strategy is Monte Carlo EM, so these
parameters tell us how to guess the paradigms (Monte
Carlo E step), then these reconstructed paradigms tell
us how to reestimate the parameters (M step), and so
on iteratively. We use a few supervised paradigms to
initialize the parameters and help reestimate them.

2 Overview of the Model

We begin by sketching the main ideas of our model,
first reviewing components that we introduced in
earlier papers. Sections 5–7 will give more formal
details. Full details and more discussion can be found
in the first author’s dissertation (Dreyer, 2011).

2.1 Modeling Morphological Alternations

We begin with a family of joint distributions p(x, y)
over string pairs, parameterized by ~θ. For example,
to model just the semi-systematic relation between a
German lemma and its 3rd-person singular present
form, one could train ~θ to maximize the likelihood
of (x, y) pairs such as (brechen, bricht). Then,
given a lemma x, one could predict its inflected form

y via p(y | x), and vice-versa.
Dreyer et al. (2008) define such a family via a

log-linear model with latent alignments,

p(x, y) =
∑

a

p(x, y, a) ∝
∑

a

exp(~θ · ~f(x, y, a))

Here a ranges over monotonic 1-to-1 character align-
ments between x and y. ∝means “proportional to” (p
is normalized to sum to 1). ~f extracts a vector of local
features from the aligned pair by examining trigram
windows. Thus ~θ can reward or penalize specific
features—e.g., insertions, deletions, or substitutions
in specific contexts, as well as trigram features of x
and y separately.3 Inference and training are done by
dynamic programming on finite-state transducers.

2.2 Modeling Morphological Paradigms
A paradigm such as Table 1 describes how some ab-
stract lexeme (�b&r��a�k) is expressed in German.4 We
evaluate whole paradigms as linguistic objects, fol-
lowing word-and-paradigm or realizational morphol-
ogy (Matthews, 1972; Stump, 2001). That is, we pre-
sume that some language-specific distribution p(π)
defines whether a paradigm π is a grammatical—and
a priori likely—way for a lexeme to express itself
in the language. Learning p(π) helps us reconstruct
paradigms, as described at the end of section 1.2.

Let π = (x1, x2, . . .). In Dreyer and Eisner (2009),
we showed how to model p(π) as a renormalized
product of many pairwise distributions prs(xr, xs),
each having the log-linear form of section 2.1:

p(π) ∝
∏

r,s

prs(xr, xs) ∝ exp(
∑

r,s

~θ·−→frs(xr, xs, ars))

This is an undirected graphical model (MRF) over
string-valued random variables xs; each factor prs
evaluates the relationship between some pair of
strings. Note that it is still a log-linear model, and pa-
rameters in ~θ can be reused across different rs pairs.

To guess at unknown strings in the paradigm,
Dreyer and Eisner (2009) show how to perform ap-
proximate inference on such an MRF by loopy belief

3Dreyer et al. (2008) devise additional helpful features based
on enriching the aligned pair with additional latent information,
but our present experiments drop those for speed.

4Our present experiments focus on orthographic forms, be-
cause we are learning from a written corpus. But it would be
natural to use phonological forms instead, or to include both in
the paradigm so as to model their interrelationships.
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X1pl

X2pl

X3pl

XLem

X1sg

X2sg

X3sg

brichen
brechen ... ? brichen

brechen ... ?

bricht
brecht ... ?

briche
breche ... ?

brichst
brechst ... ?

bricht brechen

Figure 1: A distribution over paradigms modeled as an
MRF over 7 strings. Random variables XLem, X1st, etc.,
are the lemma, the 1st person form, etc. Suppose two
forms are observed (denoted by the “lock” icon). Given
these observations, belief propagation estimates the poste-
rior marginals over the other variables (denoted by “?”).

propagation, using finite-state operations. It is not
necessary to include all rs pairs. For example, Fig. 1
illustrates the result of belief propagation on a simple
MRF whose factors relate all inflected forms to a
common (possibly unobserved) lemma, but not di-
rectly to one another.5

Our method could be used with any p(π). To speed
up inference (see footnote 7), our present experiments
actually use the directed graphical model variant of
Fig. 1—that is, p(π) = p1(x1) ·

∏
s>1 p1s(xs | x1),

where x1 denotes the lemma.

2.3 Modeling the Lexicon (types)

Dreyer and Eisner (2009) learned ~θ by partially ob-
serving some paradigms (type data). That work,
while rather accurate at predicting inflected forms,
sometimes erred: it predicted spellings that never oc-
curred in text, even for forms that “should” be com-
mon. To fix this, we shall incorporate an unlabeled
or POS-tagged corpus (token data) into learning.

We therefore need a model for generating tokens—
a probabilistic lexicon that specifies which inflections
of which lexemes are common, and how they are
spelled. We do not know our language’s probabilistic
lexicon, but we assume it was generated as follows:

1. Choose parameters ~θ of the MRF. This defines
p(π): which paradigms are likely a priori.

2. Choose a distribution over the abstract lexemes.
5This view is adopted by some morphological theorists (Al-

bright, 2002; Chan, 2006), although see Appendix E.2 for a
caution about syncretism. Note that when the lemma is unob-
served, the other forms do still influence one another indirectly.

3. For each lexeme, choose a distribution over its
inflections.

4. For each lexeme, choose a paradigm that will
be used to express the lexeme orthographically.

Details are given later. Briefly, step 1 samples ~θ
from a Gaussian prior. Step 2 samples a distribution
from a Dirichlet process. This chooses a countable
number of lexemes to have positive probability in the
language, and decides which ones are most common.
Step 3 samples a distribution from a Dirichlet. For
the lexeme �t�h�i�n�k, this might choose to make 1st-
person singular more common than for typical verbs.
Step 4 just samples IID from p(π).

In our model, each part of speech generates its own
lexicon: VERBs are inflected differently from NOUNs
(different parameters and number of inflections). The
size and layout of (e.g.) VERB paradigms is language-
specific; we currently assume it is given by a linguist,
along with a few supervised VERB paradigms.

2.4 Modeling the Corpus (tokens)
At present, we use only a very simple exchangeable
model of the corpus. We assume that each word was
independently sampled from the lexicon given its
part of speech, with no other attention to context.

For example, a token of brechen may have been
chosen by choosing frequent lexeme �b&r��a�k from the
VERB lexicon; then choosing 1st-person plural given
�b&r��a�k; and finally looking up that inflection’s spelling
in �b&r��a�k’s paradigm. This final lookup is determinis-
tic since the lexicon has already been generated.

3 A Sketch of Inference and Learning

3.1 Gibbs Sampling Over the Corpus
Our job in inference is to reconstruct the lexicon that
was used and how each token was generated from it
(i.e., which lexeme and inflection?). We use collapsed
Gibbs sampling, repeatedly guessing a reanalysis of
each token in the context of all others. Gradually, sim-
ilar tokens get “clustered” into paradigms (section 4).

The state of the sampler is illustrated in Fig. 2.
The bottom half shows the current analyses of the
verb tokens. Each is associated with a particular slot
in some paradigm. We are now trying to reanalyze
brechen at position ¼. The dashed arrows show
some possible analyses.
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singular plural

1st

2nd

3rd bricht

brichst
brechst... ?

briche
breche... ?

brechen

bricht
brecht... ?

brichen
brechen... ?

springst
sprengst... ?

springe
sprenge... ?

springt
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...
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Figure 2: A state of the Gibbs sampler (note that the
assumed generative process runs roughly top-to-bottom).
Each corpus token i has been tagged with part of speech ti,
lexeme `i and inflection si. Token ¶ has been tagged as
�b&r��a�k and 3rd sg., which locked the corresponding type
spelling in the paradigm to the spelling w1 = bricht;
similarly for ¸ and º. Now w7 is about to be reanalyzed.

The key intuition is that the current analyses of the
other verb tokens imply a posterior distribution over
the VERB lexicon, shown in the top half of the figure.

First, because of the current analyses of ¶ and ¸,
the 3rd-person spellings of �b&r��a�k are already con-
strained to match w1 and w3 (the “lock” icon).

Second, belief propagation as in Fig. 1 tells us
which other inflections of �b&r��a�k (the “?” icon) are
plausibly spelled as brechen, and how likely they
are to be spelled that way.

Finally, the fact that other tokens are associated
with �b&r��a�k suggest that this is a popular lexeme, mak-
ing it a plausible explanation of ¼ as well. (This is
the “rich get richer” property of the Chinese restau-
rant process; see section 6.6.) Furthermore, certain
inflections of �b&r��a�k appear to be especially popular.

In short, given the other analyses, we know which
inflected lexemes in the lexicon are likely, and how
likely each one is to be spelled as brechen. This lets
us compute the relative probabilities of the possible
analyses of token ¼, so that the Gibbs sampler can
accordingly choose one of these analyses at random.

3.2 Monte Carlo EM Training of ~θ

For a given ~θ, this Gibbs sampler converges to the
posterior distribution over analyses of the full corpus.
To improve our ~θ estimate, we periodically adjust ~θ
to maximize or increase the probability of the most
recent sample(s). For example, having tagged w5 =

springt as s5 = 2nd-person plural may strengthen
our estimated probability that 2nd-person spellings
tend to end in -t. That revision to ~θ, in turn, will
influence future moves of the sampler.

If the sampler is run long enough between calls to
the ~θ optimizer, this is a Monte Carlo EM procedure
(see end of section 1.2). It uses the data to optimize a
language-specific prior p(π) over paradigms—an em-
pirical Bayes approach. (A fully Bayesian approach
would resample ~θ as part of the Gibbs sampler.)

3.3 Collapsed Representation of the Lexicon

The lexicon is collapsed out of our sampler, in the
sense that we do not represent a single guess about the
infinitely many lexeme probabilities and paradigms.
What we store about the lexicon is information about
its full posterior distribution: the top half of Fig. 2.

Fig. 2 names its lexemes as �b&r��a�k and �j�u�m�p for ex-
pository purposes, but of course the sampler cannot
reconstruct such labels. Formally, these labels are col-
lapsed out, and we represent lexemes as anonymous
objects. Tokens ¶ and ¸ are tagged with the same
anonymous lexeme (which will correspond to sitting
at the same table in a Chinese restaurant process).

For each lexeme ` and inflection s, we maintain
pointers to any tokens currently tagged with the slot
(`, s). We also maintain an approximate marginal
distribution over the spelling of that slot:6

1. If (`, s) points to at least one token i, then we
know (`, s) is spelled as wi (with probability 1).

2. Otherwise, the spelling of (`, s) is not known.
But if some spellings in `’s paradigm are known,
store a truncated distribution that enumerates the
25 most likely spellings for (`, s), according to
loopy belief propagation within the paradigm.

3. Otherwise, we have observed nothing about `:
it is currently unused. All such ` share the same
marginal distribution over spellings of (`, s):
the marginal of the prior p(π). Here a 25-best
list could not cover all plausible spellings. In-
stead we store a probabilistic finite-state lan-
guage model that approximates this marginal.7

6Cases 1 and 2 below must in general be updated whenever
a slot switches between having 0 and more than 0 tokens. Cases
2 and 3 must be updated when the parameters ~θ change.

7This character trigram model is fast to build if p(π) is de-
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A hash table based on cases 1 and 2 can now be
used to rapidly map any word w to a list of slots of
existing lexemes that might plausibly have generated
w. To ask whether w might instead be an inflection s
of a novel lexeme, we score w using the probabilistic
finite-state automata from case 3, one for each s.

The Gibbs sampler randomly chooses one of these
analyses. If it chooses the “novel lexeme” option,
we create an arbitrary new lexeme object in mem-
ory. The number of explicitly represented lexemes is
always finite (at most the number of corpus tokens).

4 Interpretation as a Mixture Model

It is common to cluster points in Rn by assuming
that they were generated from a mixture of Gaussians,
and trying to reconstruct which points were generated
from the same Gaussian.

We are similarly clustering word tokens by assum-
ing that they are generated from a mixture of weighted
paradigms. After all, each word token was obtained
by randomly sampling a weighted paradigm (i.e., a
cluster) and then randomly sampling a word from it.

Just as each Gaussian in a Gaussian mixture is
a distribution over all points Rn, each weighted
paradigm is a distribution over all spellings Σ∗ (but
assigns probability > 0 to only a finite subset of Σ∗).

Inference under our model clusters words together
by tagging them with the same lexeme. It tends to
group words that are “similar” in the sense that the
base distribution p(π) predicts that they would tend
to co-occur within a paradigm. Suppose a corpus
contains several unlikely but similar tokens, such
as discombobulated and discombobulating.
A language might have one probable lexeme from
whose paradigm all these words were sampled. It is
much less likely to have several probable lexemes that
all coincidentally chose spellings that started with
discombobulat-. Generating discombobulat-

only once is cheaper (especially for such a long pre-
fix), so the former explanation has higher probability.
This is like explaining nearby points in Rn as sam-
ples from the same Gaussian. Of course, our model
is sensitive to more than shared prefixes, and it does
not merely cluster words into a paradigm but assigns
them to particular inflectional slots in the paradigm.
fined as at the end of section 2.2. If not, one could still try belief
propagation; or one could approximate by estimating a language
model from the spellings associated with slot s by cases 1 and 2.

4.1 The Dirichlet Process Mixture Model

Our mixture model uses an infinite number of mix-
ture components. This avoids placing a prior bound
on the number of lexemes or paradigms in the lan-
guage. We assume that a natural language has an
infinite lexicon, although most lexemes have suffi-
ciently low probability that they have not been used
in our training corpus or even in human history (yet).

Our specific approach corresponds to a Bayesian
technique, the Dirichlet process mixture model. Ap-
pendix A (supplementary material) explains the
DPMM and discusses it in our context.

The DPMM would standardly be presented as gen-
erating a distribution over countably many Gaussians
or paradigms. Our variant in section 2.3 instead broke
this into two steps: it first generated a distribution
over countably many lexemes (step 2), and then gen-
erated a weighted paradigm for each lexeme (steps
3–4). This construction keeps distinct lexemes sepa-
rate even if they happen to have identical paradigms
(polysemy). See Appendix A for a full discussion.

5 Formal Notation

5.1 Value Types

We now describe our probability model in more for-
mal detail. It considers the following types of mathe-
matical objects. (We use consistent lowercase letters
for values of these types, and consistent fonts for
constants of these types.)

A word w, such as broken, is a finite string of
any length, over some finite, given alphabet Σ.

A part-of-speech tag t, such as VERB, is an ele-
ment of a certain finite set T , which in this paper we
assume to be given.

An inflection s,8 such as past participle, is an ele-
ment of a finite set St. A token’s part-of-speech tag
t ∈ T determines its set St of possible inflections.
For tags that do not inflect, |St| = 1. The sets St
are language-specific, and we assume in this paper
that they are given by a linguist rather than learned.
A linguist also specifies features of the inflections:
the grid layout in Table 1 shows that 4 of the 12
inflections in SVERB share the “2nd-person” feature.

8We denote inflections by s because they represent “slots” in
paradigms (or, in the metaphor of section 6.7, “seats” at tables in
a Chinese restaurant). These slots (or seats) are filled by words.

620



A paradigm for t ∈ T is a mapping π : St → Σ∗,
specifying a spelling for each inflection in St. Table 1
shows one VERB paradigm.

A lexeme ` is an abstract element of some lexical
space L. Lexemes have no internal semantic struc-
ture: the only question we can ask about a lexeme is
whether it is equal to some other lexeme. There is no
upper bound on how many lexemes can be discovered
in a text corpus; L is infinite.

5.2 Random Quantities

Our generative model of the corpus is a joint probabil-
ity distribution over a collection of random variables.
We describe them in the same order as section 1.2.

Tokens: The corpus is represented by token vari-
ables. In our setting the sequence of words ~w =
w1, . . . , wn ∈ Σ∗ is observed, along with n. We
must recover the corresponding part-of-speech tags
~t = t1, . . . , tn ∈ T , lexemes ~̀ = `1, . . . , `n ∈ L,
and inflections ~s = s1, . . . , sn, where (∀i)si ∈ Sti .

Types: The lexicon is represented by type
variables. For each of the infinitely many lex-
emes ` ∈ L, and each t ∈ T , the paradigm
πt,` is a function St → Σ∗. For example,
Table 1 shows a possible value πVERB,�b&r��a�k.
The various spellings in the paradigm, such as
πVERB,�b&r��a�k(1st-person sing. pres.)=breche, are
string-valued random variables that are correlated
with one another.

Since the lexicon is to be probabilistic (section 2.3),
Gt(`) denotes tag t’s distribution over lexemes ` ∈
L, while Ht,`(s) denotes the tagged lexeme (t, `)’s
distribution over inflections s ∈ St.

Grammar: Global properties of the language are
captured by grammar variables that cut across lex-
ical entries: our parameters ~θ that describe typical
inflectional alternations, plus parameters ~φt, αt, α′t, ~τ
(explained below). Their values control the overall
shape of the probabilistic lexicon that is generated.

6 The Formal Generative Model

We now fully describe the generative process that
was sketched in section 2. Step by step, it randomly
chooses an assignment to all the random variables of
section 5.2. Thus, a given assignment’s probability—
which section 3’s algorithms consult in order to re-
sample or improve the current assignment—is the

product of the probabilities of the individual choices,
as described in the sections below. (Appendix B
provides a drawing of this as a graphical model.)

6.1 Grammar Variables p(~θ), p(−→φt), p(αt), p(α′t)
First select the grammar variables from a prior. (We
will see below how these variables get used.) Our
experiments used fairly flat priors. Each weight in ~θ
or
−→
φt is drawn IID from N (0, 10), and each αt or α′t

from a Gamma with mode 10 and variance 1000.

6.2 Paradigms p(πt,` | ~θ)
For each t ∈ T , let Dt(π) denote the distribution
over paradigms that was presented in section 2.2
(where it was called p(π)). Dt is fully specified by
our graphical model for paradigms of part of speech
t, together with its parameters ~θ as generated above.

This is the linguistic core of our model. It consid-
ers spellings: DVERB describes what verb paradigms
typically look like in the language (e.g., Table 1).

Parameters in ~θ may be shared across parts of
speech t. These “backoff” parameters capture gen-
eral phonotactics of the language, such as prohibited
letter bigrams or plausible vowel changes.

For each possible tagged lexeme (t, `), we now
draw a paradigm πt,` fromDt. Most of these lexemes
will end up having probability 0 in the language.

6.3 Lexical Distributions p(Gt | αt)
We now formalize section 2.3. For each t ∈ T , the
language has a distribution Gt(`) over lexemes. We
draw Gt from a Dirichlet process DP(G,αt), where
G is the base distribution over L, and αt > 0 is
a concentration parameter generated above. If αt
is small, then Gt will tend to have the property that
most of its probability mass falls on relatively few
of the lexemes in Lt def

= {` ∈ L : Gt(`) > 0}. A
closed-class tag is one whose αt is especially small.

For G to be a uniform distribution over an infinite
lexeme set L, we need L to be uncountable.9 How-
ever, it turns out10 that with probability 1, each Lt
is countably infinite, and all the Lt are disjoint. So
each lexeme ` ∈ L is selected by at most one tag t.

9For example, L def
= [0, 1], so that �b&r��a�k is merely a sugges-

tive nickname for a lexeme such as 0.2538159.
10This can be seen by considering the stick-breaking construc-

tion of the Dirichlet process that (Sethuraman, 1994; Teh et al.,
2006). A separate stick is broken for each Gt. See Appendix A.
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6.4 Inflectional Distributions p(Ht,` |
−→
φt, α′t)

For each tagged lexeme (t, `), the language specifies
some distribution Ht,` over its inflections.

First we construct backoff distributions Ht that are
independent of `. For each tag t ∈ T , let Ht be some
base distribution over St. As St could be large in
some languages, we exploit its grid structure (Table 1)
to reduce the number of parameters of Ht. We take
Ht to be a log-linear distribution with parameters

−→
φt

that refer to features of inflections. E.g., the 2nd-
person inflections might be systematically rare.

Now we model each Ht,` as an independent draw
from a finite-dimensional Dirichlet distribution with
meanHt and concentration parameter α′t. E.g., �t�h�i�n�k
might be biased toward 1st-person sing. present.

6.5 Part-of-Speech Tag Sequence p(~t | ~τ)

In our current experiments, ~t is given. But in general,
to discover tags and inflections simultaneously, we
can suppose that the tag sequence ~t (and its length n)
are generated by a Markov model, with tag bigram or
trigram probabilities specified by some parameters ~τ .

6.6 Lexemes p(`i | Gti)
We turn to section 2.4. A lexeme token depends on
its tag: draw `i from Gti , so p(`i | Gti) = Gti(`i).

6.7 Inflections p(si | Hti,`i)

An inflection slot depends on its tagged lexeme: we
draw si from Hti,`i , so p(si | Hti,`i) = Hti,`i(si).

6.8 Spell-out p(wi | πti,`i(si))
Finally, we generate the word wi through a determin-
istic spell-out step.11 Given the tag, lexeme, and in-
flection at position i, we generate the word wi simply
by looking up its spelling in the appropriate paradigm.
So p(wi | πti,`i(si)) is 1 if wi = πti,`i(si), else 0.

6.9 Collapsing the Assignment
Again, a full assignment’s probability is the product
of all the above factors (see drawing in Appendix B).

11To account for typographical errors in the corpus, the spell-
out process could easily be made nondeterministic, with the
observed word wi derived from the correct spelling πti,`i(si)
by a noisy channel model (e.g., (Toutanova and Moore, 2002))
represented as a WFST. This would make it possible to analyze
brkoen as a misspelling of a common or contextually likely
word, rather than treating it as an unpronounceable, irregularly
inflected neologism, which is presumably less likely.

But computationally, our sampler’s state leaves the
Gt unspecified. So its probability is the integral of
p(assignment) over all possible Gt. As Gt appears
only in the factors from headings 6.3 and 6.6, we can
just integrate it out of their product, to get a collapsed
sub-model that generates p(~̀ | ~t, ~α) directly:
∫

GADJ

· · ·
∫

GVERB

dG

(∏

t∈T
p(Gt | αt)

)(
n∏

i=1

p(`i | Gti)
)

= p(~̀ | ~t, ~α) =
n∏

i=1

p(`i | `1, . . . `i−1 ~t, ~α)

where it turns out that the factor that generates `i is
proportional to |{j < i : `j = `i and tj = ti}| if that
integer is positive, else proportional to αtiG(`i).

Metaphorically, each tag t is a Chinese restaurant
whose tables are labeled with lexemes. The tokens
are hungry customers. Each customer i = 1, 2, . . . , n
enters restaurant ti in turn, and `i denotes the label
of the table she joins. She picks an occupied table
with probability proportional to the number of pre-
vious customers already there, or with probability
proportional to αti she starts a new table whose label
is drawn from G (it is novel with probability 1, since
G gives infinitesimal probability to each old label).

Similarly, we integrate out the infinitely many
lexeme-specific distributionsHt,` from the product of
6.4 and 6.7, replacing it by the collapsed distribution

p(~s | ~̀,~t,−→φt,
−→
α′) [recall that

−→
φt determines Ht]

=

n∏

i=1

p(si | s1, . . . si−1, ~̀,~t,
−→
φt,
−→
α′)

where the factor for si is proportional to |{j < i :
sj = si and (tj , `j) = (ti, `i)}|+ α′tiHti(si).

Metaphorically, each table ` in Chinese restaurant
t has a fixed, finite set of seats corresponding to the
inflections s ∈ St. Each seat is really a bench that
can hold any number of customers (tokens). When
customer i chooses to sit at table `i, she also chooses
a seat si at that table (see Fig. 2), choosing either an
already occupied seat with probability proportional to
the number of customers already in that seat, or else
a random seat (sampled from Hti and not necessarily
empty) with probability proportional to α′ti .

7 Inference and Learning

As section 3 explained, the learner alternates between
a Monte Carlo E step that uses Gibbs sampling to
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sample from the posterior of (~s, ~̀,~t) given ~w and the
grammar variables, and an M step that adjusts the
grammar variables to maximize the probability of the
(~w,~s, ~̀,~t) samples given those variables.

7.1 Block Gibbs Sampling
As in Gibbs sampling for the DPMM, our sampler’s
basic move is to reanalyze token i (see section 3).
This corresponds to making customer i invisible and
then guessing where she is probably sitting—which
restaurant t, table `, and seat s?—given knowledge
of wi and the locations of all other customers.12

Concretely, the sampler guesses location (ti, `i, si)
with probability proportional to the product of
• p(ti | ti−1, ti+1, ~τ) (from section 6.5)
• the probability (from section 6.9) that a new cus-

tomer in restaurant ti chooses table `i, given the
other customers in that restaurant (and αti)

13

• the probability (from section 6.9) that a new
customer at table `i chooses seat si, given the
other customers at that table (and

−→
φti and α′ti)

13

• the probability (from section 3.3’s belief propa-
gation) that πti,`i(si) = wi (given ~θ).

We sample only from the (ti, `i, si) candidates for
which the last factor is non-negligible. These are
found with the hash tables and FSAs of section 3.3.

7.2 Semi-Supervised Sampling
Our experiments also consider the semi-supervised
case where a few seed paradigms—type data—are
fully or partially observed. Our samples should also
be conditioned on these observations. We assume
that our supervised list of observed paradigms was
generated by sampling from Gt.14 We can modify
our setup for this case: certain tables have a host
who dictates the spelling of some seats and attracts
appropriate customers to the table. See Appendix C.

7.3 Parameter Gradients
Appendix D gives formulas for the M step gradients.

12Actually, to improve mixing time, we choose a currently
active lexeme ` uniformly at random, make all customers {i :
`i = `} invisible, and sequentially guess where they are sitting.

13This is simple to find thanks to the exchangeability of the
CRP, which lets us pretend that i entered the restaurant last.

14Implying that they are assigned to lexemes with non-
negligible probability. We would learn nothing from a list of
merely possible paradigms, since Lt is infinite and every con-
ceivable paradigm is assigned to some ` ∈ Lt (in fact many!).

50 seed paradigms 100 seed paradigms
Corpus size 0 106 107 0 106 107

Accuracy 89.9 90.6 90.9 91.5 92.0 92.2
Edit dist. 0.20 0.19 0.18 0.18 0.17 0.17

Table 2: Whole-word accuracy and edit distance of pre-
dicted inflection forms given the lemma. Edit distance to
the correct form is measured in characters. Best numbers
per set of seed paradigms in bold (statistically signifi-
cant on our large test set under a paired permutation test,
p < 0.05). Appendix E breaks down these results per
inflection and gives an error analysis and other statistics.

8 Experiments

8.1 Experimental Design
We evaluated how well our model learns German
verbal morphology. As corpus we used the first 1
million or 10 million words from WaCky (Baroni
et al., 2009). For seed and test paradigms we used
verbal inflectional paradigms from the CELEX mor-
phological database (Baayen et al., 1995). We fully
observed the seed paradigms. For each test paradigm,
we observed the lemma type (Appendix C) and eval-
uated how well the system completed the other 21
forms (see Appendix E.2) in the paradigm.

We simplified inference by fixing the POS tag
sequence to the automatic tags delivered with the
WaCky corpus. The result that we evaluated for each
variable was the value whose probability, averaged
over the entire Monte Carlo EM run,15 was highest.
For more details, see (Dreyer, 2011).

All results are averaged over 10 different train-
ing/test splits of the CELEX data. Each split sampled
100 paradigms as seed data and used the remain-
ing 5,415 paradigms for evaluation.16 From the 100
paradigms, we also sampled 50 to obtain results with
smaller seed data.17

8.2 Results
Type-based Evaluation. Table 2 shows the results
of predicting verb inflections, when running with no
corpus, versus with an unannotated corpus of size 106

and 107 words. Just using 50 seed paradigms, but

15This includes samples from before ~θ has converged, some-
what like the voted perceptron (Freund and Schapire, 1999).

16100 further paradigms were held out for future use.
17Since these seed paradigms are sampled uniformly from a

set of CELEX paradigms, most of them are regular. We actually
only used 90 and 40 for training, reserving 10 as development
data for sanity checks and for deciding when to stop.
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Bin Frequency # Verb Forms
1 0–9 116,776
2 10–99 4,623
3 100–999 1,048
4 1,000–9,999 95
5 10,000– 10

all any 122,552

Table 3: The inflected verb forms from 5,615 inflectional
paradigms, split into 5 token frequency bins. The frequen-
cies are based on the 10-million word corpus.

no corpus, gives an accuracy of 89.9%. By adding
a corpus of 10 million words we reduce the error
rate by 10%, corresponding to a one-point increase
in absolute accuracy to 90.9%. A similar trend can
be seen when we use more seed paradigms. Sim-
ply training on 100 seed paradigms, but not using a
corpus, results in an accuracy of 91.5%. Adding a
corpus of 10 million words to these 100 paradigms re-
duces the error rate by 8.3%, increasing the absolute
accuracy to 92.2%. Compared to the large corpus,
the smaller corpus of 1 million words goes more than
half the way; it results in error reductions of 6.9%
(50 seed paradigms) and 5.8% (100 seed paradigms).
Larger unsupervised corpora should help by increas-
ing coverage even more, although Zipf’s law implies
a diminishing rate of return.18

We also tested a baseline that simply inflects each
morphological form according to the basic regular
German inflection pattern; this reaches an accuracy
of only 84.5%.

Token-based Evaluation. We now split our results
into different bins: how well do we predict the
spellings of frequently expressed (lexeme, inflection)
pairs as opposed to rare ones? For example, the third
person singular indicative of �g�i�v� (geben) is used
significantly more often than the second person plural
subjunctive of �b$a�s�k (aalen);19 they are in different
frequency bins (Table 3). The more frequent a form
is in text, the more likely it is to be irregular (Jurafsky
et al., 2000, p. 49).

The results in Table 4 show: Adding a corpus of
either 1 or 10 million words increases our prediction
accuracy across all frequency bins, often dramati-
cally. All methods do best on the huge number of

18Considering the 63,778 distinct spellings from all of our
5,615 CELEX paradigms, we find that the smaller corpus con-
tains 7,376 spellings and the 10× larger corpus contains 13,572.

19See Appendix F for how this was estimated from text.

50 seed paradigms 100 seed paradigms
Bin 0 106 107 0 106 107

1 90.5 91.0 91.3 92.1 92.4 92.6
2 78.1 84.5 84.4 80.2 85.5 85.1
3 71.6 79.3 78.1 73.3 80.2 79.1
4 57.4 61.4 61.8 57.4 62.0 59.9
5 20.7 25.0 25.0 20.7 25.0 25.0

all 52.6 57.5 57.8 53.4 58.5 57.8
all (e.d.) 1.18 1.07 1.03 1.16 1.02 1.01

Table 4: Token-based analysis: Whole-word accuracy re-
sults split into different frequency bins. In the last two
rows, all predictions are included, weighted by the fre-
quency of the form to predict. Last row is edit distance.

rare forms (Bin 1), which are mostly regular, and
worst on on the 10 most frequent forms of the lan-
guage (Bin 5). However, adding a corpus helps most
in fixing the errors in bins with more frequent and
hence more irregular verbs: in Bins 2–5 we observe
improvements of up to almost 8% absolute percent-
age points. In Bin 1, the no-corpus baseline is already
relatively strong.

Surprisingly, while we always observe gains from
using a corpus, the gains from the 10-million-word
corpus are sometimes smaller than the gains from the
1-million-word corpus, except in edit distance. Why?
The larger corpus mostly adds new infrequent types,
biasing ~θ toward regular morphology at the expense
of irregular types. A solution might be to model irreg-
ular classes with separate parameters, using the latent
conjugation-class model of Dreyer et al. (2008).

Note that, by using a corpus, we even improve
our prediction accuracy for forms and spellings that
are not found in the corpus, i.e., novel words. This
is thanks to improved grammar parameters. In the
token-based analysis above we have already seen that
prediction accuracy increases for rare forms (Bin 1).
We add two more analyses that more explicitly show
our performance on novel words. (a) We find all
paradigms that consist of novel spellings only, i.e.
none of the correct spellings can be found in the
corpus.20 The whole-word prediction accuracies for
the models that use corpus size 0, 1 million, and
10 million words are, respectively, 94.0%, 94.2%,
94.4% using 50 seed paradigms, and 95.1%, 95.3%,
95.2% using 100 seed paradigms. (b) Another, sim-

20This is measured on the largest corpus used in inference, the
10-million-word corpus, so that we can evaluate all models on
the same set of paradigms.
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pler measure is the prediction accuracy on all forms
whose correct spelling cannot be found in the 10-
million-word corpus. Here we measure accuracies
of 91.6%, 91.8% and 91.8%, respectively, using 50
seed paradigms. With 100 seed paradigms, we have
93.0%, 93.4% and 93.1%. The accuracies for the
models that use a corpus are higher, but do not al-
ways steadily increase as we increase the corpus size.

The token-based analysis we have conducted here
shows the strength of the corpus-based approach pre-
sented in this paper. While the integrated graphi-
cal models over strings (Dreyer and Eisner, 2009)
can learn some basic morphology from the seed
paradigms, the added corpus plays an important role
in correcting its mistakes, especially for the more fre-
quent, irregular verb forms. For examples of specific
errors that the models make, see Appendix E.3.

9 Related Work

Our word-and-paradigm model seamlessly handles
nonconcatenative and concatenative morphology
alike, whereas most previous work in morphological
knowledge discovery has modeled concatenative mor-
phology only, assuming that the orthographic form
of a word can be split neatly into stem and affixes—a
simplifying asssumption that is convenient but often
not entirely appropriate (Kay, 1987) (how should one
segment English stopping, hoping, or knives?).

In concatenative work, Harris (1955) finds mor-
pheme boundaries and segments words accordingly,
an approach that was later refined by Hafer and
Weiss (1974), Déjean (1998), and many others. The
unsupervised segmentation task is tackled in the
annual Morpho Challenge (Kurimo et al., 2010),
where ParaMor (Monson et al., 2007) and Morfessor
(Creutz and Lagus, 2005) are influential contenders.
The Bayesian methods that Goldwater et al. (2006b,
et seq.) use to segment between words might also be
applied to segment within words, but have no notion
of paradigms. Goldsmith (2001) finds what he calls
signatures—sets of affixes that are used with a given
set of stems, for example (NULL, -er, -ing, -s).
Chan (2006) learns sets of morphologically related
words; he calls these sets paradigms but notes that
they are not substructured entities, in contrast to the
paradigms we model in this paper. His models are
restricted to concatenative and regular morphology.

Morphology discovery approaches that han-
dle nonconcatenative and irregular phenomena
are more closely related to our work; they are
rarer. Yarowsky and Wicentowski (2000) identify
inflection-root pairs in large corpora without supervi-
sion. Using similarity as well as distributional clues,
they identify even irregular pairs like take/took.
Schone and Jurafsky (2001) and Baroni et al. (2002)
extract whole conflation sets, like “abuse, abused,
abuses, abusive, abusively, . . . ,” which may
also be irregular. We advance this work by not only
extracting pairs or sets of related observed words,
but whole structured inflectional paradigms, in which
we can also predict forms that have never been ob-
served. On the other hand, our present model does
not yet use contextual information; we regard this as
a future opportunity (see Appendix G). Naradowsky
and Goldwater (2009) add simple spelling rules to
the Bayesian model of (Goldwater et al., 2006a), en-
abling it to handle some systematically nonconcate-
native cases. Our finite-state transducers can handle
more diverse morphological phenomena.

10 Conclusions and Future Work

We have formulated a principled framework for si-
multaneously obtaining morphological annotation,
an unbounded morphological lexicon that fills com-
plete structured morphological paradigms with ob-
served and predicted words, and parameters of a non-
concatenative generative morphology model.

We ran our sampler over a large corpus (10 million
words), inferring everything jointly and reducing the
prediction error for morphological inflections by up
to 10%. We observed that adding a corpus increases
the absolute prediction accuracy on frequently occur-
ring morphological forms by up to almost 8%. Future
extensions to the model could leverage token context
for further improvements (Appendix G).

We believe that a major goal of our field should be
to build full-scale explanatory probabilistic models
of language. While we focus here on inflectional
morphology and evaluate the results in isolation, we
regard the present work as a significant step toward
a larger generative model under which Bayesian
inference would reconstruct other relationships as
well (e.g., inflectional, derivational, and evolution-
ary) among the words in a family of languages.
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