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Abstract

This paper introduces a psycholinguistic
model of sentence processing which combines
a Hidden Markov Model noun phrase chun-
ker with a co-reference classifier. Both mod-
els are fully incremental and generative, giv-
ing probabilities of lexical elements condi-
tional upon linguistic structure. This allows
us to compute the information theoretic mea-
sure of surprisal, which is known to correlate
with human processing effort. We evaluate
our surprisal predictions on the Dundee corpus
of eye-movement data show that our model
achieve a better fit with human reading times
than a syntax-only model which does not have
access to co-reference information.

1 Introduction

Recent research in psycholinguistics has seen a
growing interest in the role of prediction in sentence
processing. Prediction refers to the fact that the hu-
man sentence processor is able to anticipate upcom-
ing material, and that processing is facilitated when
predictions turn out to be correct (evidenced, e.g.,
by shorter reading times on the predicted word or
phrase). Prediction is presumably one of the factors
that contribute to the efficiency of human language
understanding. Sentence processing is incremental
(i.e., it proceeds on a word-by-word basis); there-
fore, it is beneficial if unseen input can be antici-
pated and relevant syntactic and semantic structure
constructed in advance. This allows the processor to
save time and makes it easier to cope with the con-
stant stream of new input.

Evidence for prediction has been found in a range
of psycholinguistic processing domains. Semantic

prediction has been demonstrated by studies that
show anticipation based on selectional restrictions:
listeners are able to launch eye-movements to the
predicted argument of a verb before having encoun-
tered it, e.g., they will fixate an edible object as soon
as they hear the word eat (Altmann and Kamide,
1999). Semantic prediction has also been shown in
the context of semantic priming: a word that is pre-
ceded by a semantically related prime or by a seman-
tically congruous sentence fragment is processed
faster (Stanovich and West, 1981; Clifton et al.,
2007). An example for syntactic prediction can be
found in coordinate structures: readers predict that
the second conjunct in a coordination will have the
same syntactic structure as the first conjunct (Fra-
zier et al., 2000). In a similar vein, having encoun-
tered the word either, readers predict that or and a
conjunct will follow it (Staub and Clifton, 2006).
Again, priming studies corroborate this: Compre-
henders are faster at naming words that are syntacti-
cally compatible with prior context, even when they
bear no semantic relationship to it (Wright and Gar-
rett, 1984).

Predictive processing is not confined to the sen-
tence level. Recent experimental results also provide
evidence for discourse prediction. An example is the
study by van Berkum et al. (2005), who used a con-
text that made a target noun highly predictable, and
found a mismatch effect in the ERP (event-related
brain potential) when an adjective appeared that was
inconsistent with the target noun. An example is (we
give translations of their Dutch materials):

(1) The burglar had no trouble locating the secret
family safe.
a. Of course, it was situated behind a
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bigneu but unobtrusive paintingneu.
b. Of course, it was situated behind a

bigcom but unobtrusive bookcasecom.

Here, the adjective big, which can have neutral or
common gender in Dutch, is consistent with the pre-
dicted noun painting in (1-a), but inconsistent with it
in (1-b), leading to a mismatch ERP on big in (1-b)
but not in (1-a).

Previous results on discourse effects in sentence
processing can also be interpreted in terms of pre-
diction. In a classical paper, Altmann and Steed-
man (1988) demonstrated that PP-attachment pref-
erences can change through discourse context: if the
context contains two potential referents for the tar-
get NP, then NP-attachment of a subsequent PP is
preferred (to disambiguate between the two refer-
ents), while if the context only contains one target
NP, VP-attachment is preferred (as there is no need
to disambiguate). This result (and a large body of
related findings) is compatible with an interpretation
in which the processor predicts upcoming syntactic
attachment based on the presence of referents in the
preceding discourse.

Most attempts to model prediction in human lan-
guage processing have focused on syntactic pre-
diction. Examples include Hale’s (2001) surprisal
model, which relates processing effort to the con-
ditional probability of the current word given the
previous words in the sentence. This approach has
been elaborated by Demberg and Keller (2009) in a
model that explicitly constructs predicted structure,
and includes a verification process that incurs ad-
ditional processing cost if predictions are not met.
Recent work has attempted to integrate semantic
and discourse prediction with models of syntactic
processing. This includes Mitchell et al.’s (2010)
approach, which combines an incremental parser
with a vector-space model of semantics. However,
this approach only provides a loose integration of
the two components (through simple addition of
their probabilities), and the notion of semantics used
is restricted to lexical meaning approximated by
word co-occurrences. At the discourse level, Dubey
(2010) has proposed a model that combines an incre-
mental parser with a probabilistic logic-based model
of co-reference resolution. However, this model
does not explicitly model discourse effects in terms

of prediction, and again only proposes a loose in-
tegration of co-reference and syntax. Furthermore,
Dubey’s (2010) model has only been tested on two
experimental data sets (pertaining to the interaction
of ambiguity resolution with context), no broad cov-
erage evaluation is available.

The aim of the present paper is to overcome these
limitations. We propose a computational model that
captures discourse effects on syntax in terms of pre-
diction. The model comprises a co-reference com-
ponent which explicitly stores discourse mentions
of NPs, and a syntactic component which adjust
the probabilities of NPs in the syntactic structure
based on the mentions tracked by the discourse com-
ponent. Our model is HMM-based, which makes
it possible to efficiently process large amounts of
data, allowing an evaluation on eye-tracking cor-
pora, which has recently become the gold-standard
in computational psycholinguistics (e.g., Demberg
and Keller 2008; Frank 2009; Boston et al. 2008;
Mitchell et al. 2010).

The paper is structured as follows: In Section 2,
we describe the co-reference and the syntactic mod-
els and evaluate their performance on standard data
sets. Section 3 presents an evaluation of the overall
model on the Dundee eye-tracking corpus. The pa-
per closes with a comparison with related work and
a general discussion in Sections 4 and 5.

2 Model

This model utilises an NP chunker based upon a hid-
den Markov model (HMM) as an approximation to
syntax. Using a simple model such as an HMM fa-
cilitates the integration of a co-reference component,
and the fact that the model is generative is a prereq-
uisite to using surprisal as our metric of interest (as
surprisal require the computation of prefix probabil-
ities). The key insight in our model is that human
sentence processing is, on average, facilitated when
a previously-mentioned discourse entity is repeated.
This facilitation depends upon keeping track of a list
of previously-mentioned entities, which requires (at
the least) shallow syntactic information, yet the fa-
cilitation itself is modeled primarily as a lexical phe-
nomenon. This allows a straightforward separation
of concerns: shallow syntax is captured using the
HMM’s hidden states, whereas the co-reference fa-
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cilitation is modeled using the HMM’s emissions.
The vocabulary of hidden states is described in Sec-
tion 2.1 and the emission distribution in Section 2.2

2.1 Syntactic Model

A key feature of the co-reference component of our
model (described below) is that syntactic analysis
and co-reference resolution happen simultaneously.
This could potentially slow down the syntactic anal-
ysis, which tends to already be quite slow for ex-
haustive surprisal-based incremental parsers. There-
fore, rather than using full parsing, we use an HMM-
based NP chunker which allows for a fast analysis.
NP chunking is sufficient to extract NP discourse
mentions and, as we show below, surprisal values
computed using HMM chunks provide a useful fit
on the Dundee eye-movement data.

To allow the HMM to handle possessive construc-
tions as well as NP with simple modifiers and com-
plements, the HMM decodes NP subtrees with depth
of 2, by encoding the start, middle and end of a
syntactic category X as ‘(X’, ‘X’ and ‘X)’, respec-
tively. To reduce an explosion in the number of
states, the category begin state ‘(X’ only appears at
the rightmost lexical token of the constituent’s left-
most daughter. Likewise, ‘X)’ only appears at the
leftmost lexical token of the constituent’s rightmost
daughter. An example use of this state vocabulary
can be seen in Figure 1. Here, a small degree of re-
cursion allows for the NP ((new york city’s) general
obligation fund) to be encoded, with the outer NP’s
left bracket being ‘announced’ at the token ’s, which
is the rightmost lexical token of the inner NP. Hid-
den states also include part-of-speech (POS) tags,
allowing simultaneous POS tagging. In the exam-
ple given in Figure 1, the full state can be read by
listing the labels written above a word, from top to
bottom. For example, the full state associated with
’s is (NP-NP)-POS. As ’s can also be a contraction
of is, another possible state for ’s is VBZ (without
recursive categories as we are only interested in NP
chunks).

The model uses unsmoothed bi-gram transition
probabilities, along with a maximum entropy dis-
tribution to guess unknown word features. The re-
sulting distribution has the form P(tag|word) and is
therefore unsuitable for computing surprisal values.

However, using Bayes’ theorem we can compute:

P(word|tag) =
P(tag|word)P(word)

P(tag)
(1)

which is what we need for surprisal. The pri-
mary information from this probability comes from
P(tag|word), however, reasonable estimates of
P(tag) and P(word) are required to ensure the prob-
ability distribution is proper. P(tag) may be esti-
mated on a parsed treebank. P(word), the probabil-
ity of a particular unseen word, is difficult to esti-
mate directly. Given that our training data contains
approximately 106 words, we assume that this prob-
ability must be bounded above by 10−6. As an ap-
proximation, we use this upper bound as the proba-
bility of P(word).

Training The chunker is trained on sections 2–
22 of the Wall Street Journal section of the Penn
Treebank. CoNLL 2000 included chunking as a
shared task, and the results are summarized by Tjong
Kim Sang and Buchholz (2000). Our chunker is not
comparable to the systems in the shared task for sev-
eral reasons: we use more training data, we tag si-
multaneously (the CoNLL systems used gold stan-
dard tags) and our notion of a chunk is somewhat
more complex than that used in CoNLL. The best
performing chunker from CoNLL 2000 achieved an
F-score of 93.5%, and the worst performing system
an F-score of 85.8%. Our chunker achieves a com-
parable F-score of 85.5%, despite the fact that it si-
multaneously tags and chunks, and only uses a bi-
gram model.

2.2 Co-Reference Model

In a standard HMM, the emission probabilities are
computed as P(wi|si) where wi is the ith word and si

is the ith state. In our model, we replace this with a
choice between two alternatives:

P(wi|si) =

{
λPseen before(wi|si)

(1−λ)Pdiscourse new(wi|si)
(2)

The ‘discourse new’ probability distribution is the
standard HMM emission distribution. The ‘seen be-
fore’ distribution is more complicated. It is in part
based upon caching language models. However, the
contents of the cache are not individual words but
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(NP NP NP NP)
(NP NP) (NP NP NP NP) NP (NP NP NP)
JJ NN IN NNP NNP NNP POS JJ NN NNS VBN RP DT NN NN

strong demand for new york city ’s general obligation bonds propped up the municipal market

Figure 1: The chunk notation of a tree from the training data.

Variable Type
l, l′ List of trie nodes
w,wi Words
t Tag
n,n′ Trie nodes

l← List(root of mention trie)
for w← w0 to wn do

l′← l
l← /0
Clear tag freq array f t
Clear word freq array f wt
for t ∈ tag set do

for n ∈ l′ do
f t(t)← f t(t)+FreqO f (n, t)
n′← Getchild(w, t)
if n′ 6= /0 then

f wt(t)← f wt(t)+FreqO f (n′,w, t)
l← n′ :: l

end if
end for

end for
Pseen before(w|t) = f t(t)/ f wt(t)

end for

Figure 2: Looking up entries from the NP Cache

rather a collection of all NPs mentioned so far in the
document.

Using a collection of NPs rather than individual
words complicates the decoding process. If m is the
size of a document, and n is the size of the current
sentence, decoding occurs in O(mn) time as opposed
to O(n), as the collection of NPs needs to be ac-
cessed at each word. However, we do not store the
NPs in a list, but rather a trie. This allows decoding
to occur in O(n logm) time, which we have found
to be quite fast in practise. The algorithm used to
keep track of currently active NPs is presented in
Figure 2. This shows how the distribution Pseen before
is updated on a word-by-word basis. At the end of
each sentence, the NPs of the Viterbi parse are added
to the mention trie after having their leading arti-
cles stripped. A weakness of the algorithm is that
mentions are only added on a sentence-by-sentence
basis (disallowing within-sentence references). Al-
though the algorithm is intended to find whole-string
matches, in practise, it will count any NP whose pre-
fix matches as being co-referent.

A consequence of Equation 2 is that co-reference
resolution is handled at the same time as HMM de-
coding. Whenever the ‘seen before’ distribution is
applied, an NP is co-referent with one occurring ear-
lier. Likewise, whenever the ‘discourse new’ dis-
tribution is applied, the NP is not co-referent with
any NP appearing previously. As one choice or the
other is made during decoding, the decoder there-
fore also selects a chain of co-referent entities. Gen-
erally, for words which have been used in this dis-
course, the magnitude of probabilities in the ‘seen
before’ distribution are much higher than in the ‘dis-
course new’ distribution. Thus, there is a strong
bias to classify NPs which match word-for-word as
being co-referent. There remains a possibility that
the model primarily captures lexical priming, rather
than co-reference. However, we note that string
match is a strong indicator of two NPs being corefer-
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ent (cf. Soon et al. 2001), and, moreover, the match-
ing is done on an NP-by-NP basis, which is more
suitable for finding entity coreference, rather than a
word-by-word basis, which would be more suitable
for lexical priming.

An appealing side-effect of using a simple co-
reference decision rule which is applied incremen-
tally is that it is relatively simple to incremen-
tally compute the transitive closure of co-reference
chains, resulting in the entity sets which are then
used in evaluation.

The co-reference model only has one free param-
eter, λ, which is estimated from the ACE-2 corpus.
The estimate is computed by counting how often a
repeated NP actually is discourse new. In the current
implementation of the model, λ is constant through-
out the test runs. However, λ could possibly be
a function of the previous discourse, allowing for
more complicated classification probabilities.

3 Evaluation

3.1 Data

Our evaluation experiments were conducted upon
the Dundee corpus (Kennedy et al., 2003), which
contains the eye-movement record of 10 participants
each reading 2,368 sentences of newspaper text.
This data set has previously been used by Demberg
and Keller (2008) and Frank (2009) among others.

3.2 Evaluation

Eye tracking data is noisy for a number of rea-
sons, including the fact that experimental partici-
pants can look at any word which is currently dis-
played. While English is normally read in a left-
to-right manner, readers often skip words or make
regressions (i.e., look at a word to the left of the
one they are currently fixating). Deviations from
a strict left-to-right progression of fixations moti-
vate the need for several different measures of eye
movement. The model presented here predicts the
Total Time that participants spent looking at a re-
gion, which includes any re-fixations after looking
away. In addition to total time, other possible mea-
sures include (a) First Pass, which measures the ini-
tial fixation and any re-fixations before looking at
any other word (this occurs, for instance, if the eye
initially lands at the start of a long word – the eye

will tend to re-fixate on a more central viewing lo-
cation), (b) Right Bounded reading time, which in-
cludes all fixations on a word before moving to the
right of the word (i.e., re-fixations after moving left
are included), and (c) Second Pass, which includes
any re-fixation on a word after looking at any other
word (be it to the left or the right of the word of inter-
est). We found that the model performed similarly
across all these reading time metrics, we therefore
only report results for Total Time.

As mentioned above, reading measures are hy-
pothesised to correlate with Surprisal, which is de-
fined as:

S(wt) =− log(P(wt |w1...wt1) (3)

We compute the surprisal scores for the syntax-only
HMM, which does not have access to co-reference
information (henceforth referred to as ‘HMM’)
and the full model, which combines the syntax-
only HMM with the co-reference model (henceforth
‘HMM+Ref’). To determine if our Dundee corpus
simulations provide a reasonable model of human
sentence processing, we perform a regression anal-
ysis with the Dundee corpus reading time measure
as the dependent variable and the surprisal scores as
the independent variable.

To account for noise in the corpus, we also use
a number of additional explanatory variables which
are known to strongly influence reading times.
These include the logarithm of the frequency of a
word (measured in occurrences per million) and the
length of a word in letters. Two additional explana-
tory variables were available in the Dundee corpus,
which we also included in the regression model.
These were the position of a word on a line, and
which line in a document a word appeared in. As
participants could only view one line at a time (i.e.,
one line per screen), these covariates are known as
line position and screen position, respectively.

All the covariates, including the surprisal es-
timates, were centered before including them in
the regression model. Because the HMM and
HMM+Ref surprisal values are highly collinear, the
HMM+Ref surprisal values were added as residuals
of the HMM surprisal values.

In a normal regression analysis, one must either
assume that participants or the particular choice of
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items add some randomness to the experiment, and
either each participant’s responses for all items must
be averaged (treating participants as a random fac-
tor), or all participant’s responses for each item is
averaged (treating items as a random factor). How-
ever, in the present analysis we utilise a mixed ef-
fects model, which allows both items and partici-
pants to be treated as random factors.1

The are a number of criteria which can be used
to test the efficacy of one regression model over an-
other. These include the Aikake Information Cri-
terion (AIC), the Bayesian Information Criterion
(BIC), which trade off model fit and number of
model parameters (lower scores are better). It is also
common to compare the log-likelihood of the mod-
els (higher log-likelihood is better), in which case a
χ2 can be used to evaluate if a model offers a sig-
nificantly better fit, given the number of parameters
is uses. We test three models: (i) a baseline, with
only low-level factors as independent variables; (ii)
the HMM model, with the baseline factors plus sur-
prisal computed by the syntax-only HMM; and (iii)
the HMM+Ref model which includes the raw sur-
prisal values of the syntax-only HMM and the sur-
prisal of the HMM+Ref models as computed as a
residual of the HMM surprisal score. We compare
the HMM and HMM+Ref to the baseline, and the
HMM+Ref model against the HMM model.

Some of the data needed to be trimmed. If, due to
data sparsity, the surprisal of a word goes to infinity
for one of the models, we entirely remove that word
from the analysis. This occurred seven times form
the HMM+Ref model, but did not occur at all with
the HMM model. Some of the eye-movement data
was trimmed, as well. Fixations on the first and last
words of a line were excluded, as were tracklosses.
However, we did not trim any items due to abnor-

1We assume that each participant and item bias the reading
time of the experiment. Such an analysis is known as having
random intercepts of participant and item. It is also possible
to assume a more involved analysis, known as random slopes,
where the participants and items bias the slope of the predictor.
The model did not converge when using random intercept and
slopes on both participant and item. If random slopes on items
were left out, the HMM regression model did converge, but not
the HMM+Ref model. As the HMM+Ref is the model of inter-
est random slopes were left out entirely to allow a like-with-like
comparison between the HMM and HMM+Ref regression mod-
els.

mally short or abnormally long fixation durations.

3.3 Results

The result of the model comparison on Total Time
reading data is summarised in Table 1. To allow this
work to be compared with other models, the lower
part of the table gives the abosolute AIC, BIC and
log likelihood of the baseline model, while the upper
part gives delta AIC, BIC and log likelihood scores
of pairs of models.

We found that both the HMM and HMM+Ref
provide a significantly better fit with the reading
time data than the Baseline model; all three crite-
ria agree: AIC and BIC lower than for the base-
line, and log-likelihood is higher. Moreover, the
HMM+Ref model provides a significantly better fit
than the HMM model, which demonstrates the bene-
fit of co-reference information for modeling reading
times. Again, all three measures provide the same
result.

Table 2 corroborates this result. It list the
mixed-model coefficients for the HMM+Ref model
and shows that all factors are significant predic-
tors, including both HMM surprisal and residualized
HMM+Ref surprisal.

4 Related Work

There have been few computational models of hu-
man sentence processing that have incorporated
a referential or discourse-level component. Niv
(1994) proposed a parsing model based on Com-
binatory Categorial Grammar (Steedman, 2001), in
which referential information was used to resolve
syntactic ambiguities. The model was able to cap-
ture effects of referential information on syntactic
garden paths (Altmann and Steedman, 1988). This
model differs from that proposed in the present pa-
per, as it is intended to capture psycholinguistic pref-
erences in a qualitative manner, whereas the aim
of the present model is to provide a quantitative
fit to measures of processing difficulty. Moreover,
the model was not based on a large-scale grammar,
and was not tested on unrestricted text. Spivey and
Tanenhaus (1998) proposed a sentence processing
model that examined the effects of referential infor-
mation, as well as other constraints, on the resolu-
tion of ambiguous sentences. Unlike Niv (1994),
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From To ∆ AIC ∆ BIC ∆ logLik χ2 Significance
Baseline HMM -80 -69 41 82.112 p < .001
Baseline HMM+Ref -99 -89 51 101.54 p < .001
HMM HMM+Ref -19 -8 11 21.424 p < .001

Model AIC BIC logLik
Baseline 10567789 10567880 -5283886

Table 1: Model comparison (upper part) and absolute scores for the Baseline model (lower part)

Coefficient Estimate Std Error t-value
(Intercept) 991.4346 23.7968 41.66

log(Word Frequency) -55.3045 1.4830 -37.29
Word Length 128.6216 1.4677 87.63

Screen Position -1.7769 0.1326 -13.40
Line Position 10.1592 0.7387 13.75

HMM 12.1287 1.3366 9.07
HMM+Ref 19.2772 4.1627 4.63

Table 2: Coefficients of the HMM+Ref model on Total Reading Times. Note that t > 2 indicates that the factor in
question is a significant predictor.

Spivey and Tanenhaus’s (1998) model was specifi-
cally designed to provide a quantitative fit to reading
times. However, the model lacked generality, being
designed to deal with only one type of sentence. In
contrast to both of these earlier models, the model
proposed here aims to be general enough to provide
estimated reading times for unrestricted text. In fact,
as far as we are aware, the present paper represents
the first wide-coverage model of human parsing that
has incorporated discourse-level information.

5 Discussion

The primary finding of this work is that incorporat-
ing discourse information such as co-reference into
an incremental probabilistic model of sentence pro-
cessing has a beneficial effect on the ability of the
model to predict broad-coverage human parsing be-
haviour.

Although not thoroughly explored in this paper,
our finding is related to an ongoing debate about the
structure of the human sentence processor. In par-
ticular, the model of Dubey (2010), which also sim-
ulates the effect of discourse on syntax, is aimed at
examining interactivity in the human sentence pro-
cessor. Interactivity describes the degree to which
human parsing is influenced by non-syntactic fac-

tors. Under the weakly interactive hypothesis, dis-
course factors may prune or re-weight parses, but
only when assuming the strongly interactive hypoth-
esis would we argue that the sentence processor pre-
dicts upcoming material due to discourse factors.
Dubey found that a weakly interactive model sim-
ulated a pattern of results in an experiment (Grodner
et al., 2005) which was previously believed to pro-
vide evidence for the strongly interactive hypothesis.
However, as Dubey does not provide broad-coverage
parsing results, this leaves open the possibility that
the model cannot generalise beyond the experiments
expressly modeled in Dubey (2010).

The model presented here, on the other hand,
is not only broad-coverage but could also be de-
scribed as a strongly interactive model. The strong
interactivity arises because co-reference resolution
is strongly tied to lexical generation probabilities,
which are part of the syntactic portion of our model.
This cannot be achieve in a weakly interactive
model, which is limited to pruning or re-weighting
of parses based on discourse information. As our
analysis on the Dundee corpus showed, the lexical
probabilities (in the form of HMM+Ref surprisal)
are key to improving the fit on eye-tracking data.
We therefore argue that our results provide evidence
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against a weakly interactive approach, which may be
sufficient to model individual phenomena (as shown
by Dubey 2010), but is unlikely to be able to match
the broad-coverage result we have presented here.
We also note that psycholinguistic evidence for dis-
course prediction (such as the context based lexi-
cal prediction shown by van Berkum et al. 2005,
see Section 1) is also evidence for strong interac-
tivity; prediction goes beyond mere pruning or re-
weighting and requires strong interactivity.
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