Confidence in Structured-Prediction using Confidence-Weighted Models

Avihai Mejer
Department of Computer Science
Technion-Israel Institute of Technology
Haifa 32000, Israel
amejer@tx.technion.ac.il

Abstract

Confidence-Weighted linear classifiers (CW)
and its successors were shown to perform
well on binary and multiclass NLP prob-
lems. In this paper we extend the CW ap-
proach for sequence learning and show that it
achieves state-of-the-art performance on four
noun phrase chucking and named entity recog-
nition tasks. We then derive few algorith-
mic approaches to estimate the prediction’s
correctness of each label in the output se-
quence. We show that our approach provides
a reliable relative correctness information as
it outperforms other alternatives in ranking
label-predictions according to their error. We
also show empirically that our methods output
close to absolute estimation of error. Finally,
we show how to use this information to im-
prove active learning.

1 Introduction

In the past decade structured classification has seen
much interest by the machine learning community.
After the introduction of conditional random fields
(CRFs) (Lafferty et al., 2001), and maximum mar-
gin Markov networks (Taskar et al., 2003), which
are batch algorithms, new online method were in-
troduced. For example the passive-aggressive algo-
rithm was adapted to chunking (Shimizu and Haas,
2006), parsing (McDonald et al., 2005b), learning
preferences (Wick et al., 2009) and text segmenta-
tion (McDonald et al., 2005a). These new online
algorithms are fast to train and simple to implement,
yet they generate models that output merely a pre-

971

Koby Crammer
Department of Electrical Engineering
Technion-Israel Institute of Technology
Haifa 32000, Israel
koby@ee.technion.ac.il

diction with no additional information, as opposed
to probabilistic models like CRFs or HMMs.

In this work we fill this gap proposing few al-
ternatives to compute confidence in the output of
discriminative non-probabilistic algorithms. As be-
fore, our algorithms output the highest-scoring la-
beling. However, they also compute additional la-
belings, that are used to compute the per word con-
fidence in its labelings. We build on the recently
introduced confidence-weighted learning (Dredze et
al., 2008; Crammer et al., 2009b) and induce a dis-
tribution over labelings from the distribution main-
tained over weight-vectors.

We show how to compute confidence estimates
in the label predicted per word, such that the con-
fidence reflects the probability that the label is not
correct. We then use this confidence information
to rank all labeled words (in all sentences). This
can be thought of as a retrieval of the erroneous
words, which can than be passed to human anno-
tator for an examination, either to correct these mis-
takes or as a quality control component. Next, we
show how to apply our techniques to active learning
over sequences. We evaluate our methods on four
NP chunking and NER datasets and demonstrate the
usefulness of our methods. Finally, we report the
performance of obtained by CW-like adapted to se-
quence prediction, which are comparable with cur-
rent state-of-the-art algorithms.

2 Confidence-Weighted Learning

Consider the following online binary classification
problem that proceeds in rounds. On the ith round
the online algorithm receives an input x; € R< and

Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, pages 971-981,
MIT, Massachusetts, USA, 9-11 October 2010. (©)2010 Association for Computational Linguistics

applies its current rule to make a prediction g; €),
for the binary set) = {—1,+1}. It then receives
the correct label y; €) and suffers a loss £(y;, ¥;)-
At this point, the algorithm updates its prediction
rule with the pair (x;,y;) and proceeds to the next
round. A summary of online algorithms can be
found in (Cesa-Bianchi and Lugosi, 2006).

Online confidence-weighted (CW) learning
(Dredze et al.,, 2008; Crammer et al., 2008),
generalized the passive-aggressive (PA) update
principle to multivariate Gaussian distributions
over the weight vectors - A (u,Y) - for binary
classification. The mean p € R? contains the
current estimate for the best weight vector, whereas
the Gaussian covariance matrix ¥ € R%*¢ captures
the confidence in this estimate. More precisely,
the diagonal elements X, ,, capture the confidence
in the value of the corresponding weight), ; the
smaller the value of X, , is, the more confident
is the model in the value of p,. The off-diagonal
elements ¥, , for p # ¢ capture the correlation
between the values of p, and p,. When the data
is of large dimension, such as in natural language
processing, a model that maintains a full covariance
matrix is not feasible and we back-off to diagonal
covariance matrices.

CW classifiers are trained according to a PA rule
that is modified to track differences in Gaussian dis-
tributions. At each round, the new mean and co-
variance of the weight vector distribution is chosen
to be the solucion of an optimization problem (see
(Crammer et al., 2008) for details). This particu-
lar CW rule may over-fit by construction. A more
recent alternative scheme called AROW (adaptive
regularization of weight-vectors) (Crammer et al.,
2009b) replaces the guaranteed prediction at each
round with the a more relaxed objective (see (Cram-
mer et al., 2009b)). AROW has been shown to
perform well in practice, especially for noisy data
where CW severely overfits.

The solution for the updates of CW and AROW
share the same general form,

Mty = Bty E;rll :2;4.11+5i33iwj , (D
where the difference between CW and AROW is the
specific instance-dependent rule used to set the val-
ues of «; and ;.

972

Algorithm 1 Sequence Labeling CW/AROW

Input: Joint feature mapping ®(z,y) € R?
Initial variance a > 0
Tradeoff Parameter » > 0 (AROW)
or Confidence parameter ¢ (CW)
Initialize: puy =0,%g = al
fori=1,2... do
Getx;, € X
Predict best labeling
Y; = argmax, ;- ®(x;, 2)
Get correct labeling y, € YI*il
Define A; 4 4 = ®(x,y;) — ®(x,7;)
Compute «; and B; (Eq. (3) for CW ;
Egs. (4),5; = 1/r) for AROW)
Set pr; = pri 1 + X 18 y
Set £ = 571 4 By g A, 4
end for

3 Sequence Labeling

In the sequence labeling setting, instances x be-
long to a general input space X and conceptually are
composed of a finite number n of components, such
as words of a sentence. The number of components
n = |x| varies between instances. Each part of an
instance is labelled from a finite set), |V| = K.
That is, a labeling of an entire instance belongs to
the productsety € Y x V... Y (n times).

We employ a general approach (Collins, 2002;
Crammer et al., 2009a) to generalize binary clas-
sification and use a joined feature mapping of an
instance « and a labeling y into a common vector
space, ®(x,y) € R%

Given an input instance and a model g € R?
we predict the labeling with the highest score, y =
arg max, u - ®(x, z). A brute-force approach eval-
uates the value of the score p- ®(x, z) for each pos-
sible labeling =z € Y™, which is not feasible for large
values of n. Instead, we follow standard factoriza-
tion and restrict the joint mapping to be of the form,
D(z,y) =2, 1 P(x,yp) +D 0 B(T,Yg, Yg—1)-
That is, the mapping is a sum of mappings, each tak-
ing into consideration only a label of a single part, or
two consecutive parts. The time required to compute
the max operator is linear in n and quadratic in K
using the dynamic-programming Viterbi algorithm.

After the algorithm made a prediction, it uses

the current labeled instance (x;,y;) to update the
model. We now define the update rule both for a
version of CW and for AROW for strucutred learn-
ing, staring with CW. Given the input parameter ¢
of CW we denote by ¢' =1 + ¢?/2,¢" =1 + ¢
We follow a similar argument as in the single up-
date of (Crammer et al., 2009a, sec. 5.1) to se-
quence labeling by a reduction to binary classifica-
tion. We first define the difference between the fea-
ture vector associated with the current labeling vy,
and the feature vector associated with some label-
ing ztobe, A;,. = ®(x,y;) — ®(x,2) , and
in particular, when we use the prediction gy, we get,
Aiyy=®(x,y;) — P(x,y,;) . The CW update is,

B = g+ @i 18y g
S =00 4 BiA g A 2)

i)y)y z,y,@ Y
where the two scalars «; and (; are set using the
update rule defined by (Crammer et al., 2008) for
binary classification,

.
vi= AT, 3)

1 4
; = max {O, W (_mi¢/ + mfZ + Ui¢2¢//> }
;o 1 2
- (—aiviqb + 1/ a2v?e? + 4%)

— +
B = =g
v

Yic1Aiyg s M =g Dy g

We turn our attention and describe a mod-
ification of AROW for sequence prediction.
Replacing the binary-hinge loss in (Crammer
et al., 2009b, Egs. (1,2)) the first one with the
corresponding multi-class hinge loss for structured
problems we obtain, % (ui—u)TZ;I (p;—p) +
5 (max {0, maxz 2y {d(y. 2) — p - (Aiy2)}})7,
where, d(y,z) = Zﬁl 1y,#z, » is the hamming
distance between the two label sequences y and z.
The last equation is hard to optimize since the max
operator is enumerating over exponential number of
possible labellings z. We thus approximate the enu-
meration over all possible z with the predicted label
sequence §; and get, §(p;—p) B (mi—p) +
e {0,(9,9) ~ 1 (Aiyg)})° . Com:
puting the optimal value of the last equation we get
an update of the form of the first equation of Eq. (2)
where

max {0, d(y;, U;) — My - (Azyy)}

. @
T+ AZy,in—lAivyv@

i =

973

l Dataset Sentences | Words | Features
NP chunking 11K 259K 1.35M
NER English 17.5K 250K 1.76M
NER Spanish 10.2K 317.6K 1.85M
NER Dutch 21K 271.5K 1.76M
Table 1: Properties of datasets.
| | AROW | CW [5-best PA [Perceptron
NP chunking 0.946 | 0.947 0.946 *%0.944
NER English 0.878 | 0.877 *0.870 *0.862
NER Dutch 0.791 | 0.787 0.784 *0.761
NER Spanish 0.775 | 0.774 0.773 *0.756

Table 2: Averaged F-measure of methods. Statistical sig-
nificance (t-test) are with respect to AROW, where * in-
dicates 0.001 and ** indicates 0.01

We proceed with the confidence paramters in
(Crammer et al., 2009b, Egs. (1,2)), which takes into
considiration the change of confidence due to the up-
date. The effective features vector that is used to
update the mean parameters is A; 4, and thus the

structured update is, 1 log (s)—i—%Tr (Z42)+

Q—ITAZ-T’y’QEAi,y,@ . Solving the above equation we
get an update of the form of the second term of
Eq. (2) where 3; = % . The pseudo-code of CW and

AROW for sequence problems appears in Alg. 1.

4 Evaluation

For the experiments described in this paper we used
four large sequential classification datasets taken
from the CoNLL-2000, 2002 and 2003 shared tasks:
noun-phrase (NP) chunking (Kim et al., 2000),
and named-entity recognition (NER) in Spanish,
Dutch (Tjong and Sang, 2002) and English (Tjong
et al., 2003). The properties of the four datasets
are summarized in Table 1. We followed the feature
generation process of (Sha and Pereira, 2003).
Although our primary goal is estimating confi-
dence in prediction and not the actual performance
itself, we first report the results of using AROW and
CW for sequence learning. We compared the perfor-
mance CW and AROW of Alg. 1 with two standard
online baseline algorithms: Averaged-Perceptron al-
gorithm and 5-best PA (the value of five was shown
to be optimal for various tasks (Crammer et al.,
2005)). The update rule described in Alg. 1 assumes
a full covariance matrix, which is not feasible in our

0.948|
0.946|
0.944]

8
$0.942
&

0.938]

o

“4

/

/s

~#~Perceptron|
PA

-©-cw
-8 AROW

0.88
0.87
< 0.86)
g

goss
0.84

0.83

Precision

~8-Perceptron
PA

-©-cw
-8 AROW

=8~ Perceptron|
PA

0.7, -©-cw
=B~ AROW

0.78

0.76|

Precision

0.74

0.72

0.

~8—Perceptron
PA

©-cw
B AROW

0.

0.934 0936 0.938 0.94 0.942 0.944
Recall

081 082 083 084 08 086
Recall

(a) NP Chunking

(b) NER English

0.68 0.7 0.74 0.76

0.72
Recall

(c) NER Dutch

0.7 0.72 0.74

Recall

0.76

(d) NER Spanish

Figure 1: Precision and Recall on four datasets (four panels). Each connected set of ten points corresponds to the performance of
a specific algorithm after each of the 10 iterations, increasing from bottom-left to top-right.

Prec | Recall | F-meas | % Err
NPotunking | o | Goss | 0934 | 093 | 2665
NEREnglish | core | 053 | om0 | 0822 | 3554
NERDuc | o | o7as | o753 | 0764 | 2005
NER Spunish | i | o751 | 030 | 07i0 | 208%

Table 3: Precision, Recall, F-measure and percentage of
mislabeled words results of CW vs. CRF

setting. Three options are possible: compute a full
and then take its diagonal elements; compute a full
inverse 3, take its diagonal elements and then com-
pute its inverse; assume that 3 is diagonal and com-
pute the optimal update for this choice. We found
the first method to work best, and thus employ it
from now on.

The hyper parameters (r for AROW, ¢ for CW, C
for PA) were tuned for each task by a single run over
a random split of the data into a three-fourths train-
ing set and a one-fourth test set. We used parameter
averaging with all methods.

For each of the four datasets we used 10-fold
cross validation. All algorithms (Perceptron, PA,
CW and AROW) are online, and as mentioned above
work in rounds. For each of the ten folds, each of the
four algorithm performed ten (10) iterations over the
training set and the performance (Recall, Precision
and F-measure) was evaluated on the test set after
each iteration.

The F-measure of the four algorithms after 10 it-
erations over the four datasets is summarized in Ta-
ble 2. The general trend is that AROW slightly out-
performs CW, which is better than PA that is bet-

974

ter than the Perceptron. The difference between
AROW and the Perceptron is significant, and be-
tween AROW and PA is significant in two datasets.
The difference between AROW and CW is not sig-
nificant although it is consistent.

We further investigate the convergence properties
of the algorithms in Fig. 1. The figure shows the re-
call and precision results after each training round
averaged across the 10 folds. Each panel summa-
rizes the results on a single dataset, and in each panel
a single set of connected points corresponds to one
algorithm. Points in the left-bottom of the plot cor-
respond to early iterations and points in the right-top
correspond to later iterations. Long segments indi-
cate a big improvement in performance between two
consecutive iterations.

Few points are in order. First, high (in the y-axis)
values indicate better precision and right (in the x-
axis) values indicate better recall. Second, the per-
formance of all algorithms is converging in about 10
iterations as indicated by the fact the points in the
top-right of the plot are close to each other. Third,
the long segments in the bottom-left for the Percep-
tron algorithm indicate that this algorithm benefits
more from more than one pass compared with the
other. Fourth, on the three NER datasets after 10 it-
erations AROW gets slightly higher precision values
than CW, while CW gets slightly higher recall val-
ues than AROW. This is indicated by the fact that
the top-right red square is left and above to the top-
right blue circle. Finally, in two datasets, PA get
slightly better recall than CW and AROW, but pay-
ing in terms of precision and overall F-measure per-
formance.

In addition to online algorithms we also com-
pared the performance of CW with the CRF algo-

[T

0.08 [EIKD-Fixed (K=50)|
[IKD-PC (K=50)
I WKBV (K=30)

Root Mean Squared Error in Confidence

QP chunking NER Engiish NER Spanish _NER Dutch

(b) RMSE CW & CRF

ONP chunking NER English NER Spanish _NER Dutch

(a) AvgP CW & CRF

I <D ixed (<-50]
I KBV (K=30)

Root Mean Squared Error in Confidence

0NF" chunking NER English NER Spanish NER Dutch

(c) AvgP PA

NP chunking NER English NER Spanish _ NER Dutch

(d) RMSE PA

Figure 2: Two left panels: average precision of rankings of
the words of the test-set according to confidence in the predic-
tion of seven methods (left to right bars in each group): CREF,
KD-Fixed, KD-PC, Delta, WKBV, KBV and random ordering,
when training with the CW algorithm (top) and the PA algo-
rithm (bottom). Two right panels: The root-mean-squared-error
of four methods that output absolute valued confidence: CRF,
KD-Fixed, KD-PC and WKBV.

rithm which is a batch algorithm. We used Mal-
let toolkit (McCallum, 2002) for CRF implementa-
tion. For feature generation we used a combination
of standard methods provided with Mallet toolkit
(called pipes). We chose a combination yielding a
feature set that is close as possible to the feature
set we used in our system but it was not a perfect
match, CRF generated about 20% fewer features in
all datasets. Nevertheless, any other combination of
pipes we tried only hurt CRF performance. The pre-
cision, recall, F-measure and percentage of misla-
beled words of CW algorithm compared with CRF
measured over a single split of the data into a three-
fourths training set and a one-fourth test set is sum-
marized in Table 3. We see that in three of the four
datasets CW outperforms CRF and in one dataset
CREF performs better. Some of the performance dif-
ferences may be due to the differences in features.

5 Confidence in the Prediction

Most large-margin-based training algorithms output
models that their prediction is a single labeling of
the input, with no additional confidence information
about the correctness of that prediction. This situ-

975

ation is acceptable when the output of the system
is used anyway, irrespectively of its quality. This
situation is not acceptable when the output of the
system is used as an input of another system that is
sensitive to correctness of the specific prediction or
that integrates various input sources. In such cases,
additional confidence information about the correct-
ness of these feeds for specific input can be used
to improve the total output quality. Another case
where such information is useful, is when there is
additional agent that is validating the output of the
system. The confidence information can be used
to direct the check into small number of suspected
predictions as opposed to random check, which may
miss errors if their rate is small.

Some methods only provide relative confidence
information. This information can be used to rank
all predictions according to their confidence score,
which can be used to direct a quality control com-
ponent to detect errors in the prediction. Note,
the confidence score is meaningless by itself and
in fact, any monotonic transformation of the con-
fidence scores yield equivalent confidence informa-
tion. Other methods are providing confidence in the
predicted output as an absolute information, that is,
the probability of a prediction to be correct. We re-
fer to these probabilistic outputs in a frequentists ap-
proach. When taking a large set of events (predic-
tions) with similar probability confidence value v of
being correct, we expect that about v fraction of the
predictions in the group will be correct.

Algorithms: All of our methods to evaluate confi-
dence, except two (Delta and CRF below), share the
same conceptual approach and work in two stages.
First, a method generates a set of K possible label-
ings for the input sentence (instead of a single pre-
diction). Then, the confidence in a predicted label-
ing for a specific word is defined to be the proportion
of labelings which are consistent with the predicted
label. Formally, let 20 fori = 1...K be the K
labelings for some input x, and let ¢ be the actual
prediction for the input. (We do not assume that
4 = z for some 7). The confidence in the label
Up of word p = 1... |z is defined to be

gp = 2/ K (5)

vp = {i :

CRF
O KBV (K=30)
WKBV (K=30)
% KD-PC (K=50)
O KD-Fixed (K=50)

CRF

O KBV (K=30)
WKBV (K=30)

% KD-PC (K=50) .

O KD-Fixed (K=50) .
Delta

Random

1000

rrectly

800

Delta
¥ Random

No. of Words Classified Incor

1000 2000 3000 4000 5000 1000 2000 3000 4000 5000
Word Index Word Index

(a) NP Chunking (b) NER English

CRF
O KBV (K=30)
WKBV (K=30)
KD-PC (K=50)
O KD-Fixed (K=50)

CRF
O KBV (K=30)
WKBV (K=30)
KD-PC (K=50)
O KD-Fixed (K=50)

No. of Words Classified Incorrect

5
H
3
2

o Wiﬂ d &

No. of Words Classified I

No. of Words Classified Incorrectly

CRF
O KBV (K=30)
WKBV (K=30)
* KD-PC (K=50)
O KD-Fixed (K=50)

CRF
O KBV (K=30)

WKBV (K=30)
KD-PC (K=50)
O KD-Fixed (K=50)

/’ 3 1500

1000|

Delta
% Random

500

No. of Words Classified Incorr

1000 2000 3000 4000 5000 1000 2000 3000 4000 5000
Word Index Word Index

(¢) NER Dutch

(d) NER Spanish

200

"
8
3

150)

rrectly

100

@
3

50

CRF
O KBV (K=30)
WKBV (K=30)
KD-PC (K=50)
O KD-Fixed (K=50)

CRF

O KBV (K=30)
WKBV (K=30)

KD-PC (K=50)

O KD-Fixed (K=50)
Delta

No. of Words Classified Incor

|
o
S

Random

1000 2000 3000 4000 5000 1000 2000 3000 4000 5000
Word Index Word Index

(e) NP Chunking (f) NER English

-100

1000 2000 3000 4000 5000 1000 2000 3000 4000 5000
Word Index Word Index

(g) NER Dutch (h) NER Spanish

Figure 3: Total number of detected erroneous words vs. the number of ranked words (top panels), and relative to the Delta method
(bottom panels). In other words, the lines in the bottom panels are the number of additional erroneous words detected compared to
Delta method. All methods builds on the same weight-vector except CRF (see text).

We tried four approaches to generate the set of K
possible labelings. The first method is valid only
for methods that induce a probability distribution
over predicted labels. In this case, we draw K la-
belings from this distribution. Specifically, we ex-
ploit the Gaussian distribution over weight vectors
w ~ N (p,Y) maintained by AROW and CW, by
inducing a distribution over labelings given an in-
put. The algorithm samples K weight vectors ac-
cording to this Gaussian distribution and outputs the
best labeling with respect to each weight vector. For-
mally, we define the set Z = {z(® 20 =
arg max, w - ®(x, z) where w ~ N (u,)}

The predictions of algorithms that use the mean
weight vector § = arg max, p - ®(x, z) are invari-
ant to the value of the input X (as noted by (Cram-
mer et al., 2008)). However for the purpose of con-
fidence estimation the specific value of X has a huge
affect. Small eigenvalue of ¥ yield that all the ele-
ments of Z will be the same, while large values yield
random elements in the set, ignoring the input.

One possible simple option is to run the algorithm
few times, with few possible initializations of X and
choose one using the training set. However since the
actual predictions of all these versions is the same
(invariance to scaling, see (Crammer et al., 2008))
in practice we run the algorithm once initializing
>, = I. Then, after the training is completed, we

976

try few scalings of the final covariance s for some
positive scalar s, and choose the best value s using
the training set. We refer to this method as KD-PC
for K-Draws by Parameters Confidence.

The second method to estimate confidence fol-
lows the same conceptual steps, except that we used
an isotropic covariance matrix, > = sl for some
positive scale information s. As before, the value
of s was tuned on the training set. We denote this
method KD-Fixed for K Draws by Fixed Stan-
dard Deviation. This method is especially appeal-
ing, since it can be used in combination with training
algorithms that do not maintain confidence informa-
tion, such as the Perceptron or PA.

Our third and fourth methods are deterministic
and do not involve a stochastic process. We mod-
ified the Viterbi algorithm to output the K distinct
labelings with highest score (computed using the
mean weight vector in case of CW or AROW). The
third method assigns uniform importance to each
of the K labelings ignoring the actual score val-
ues. We call this method KBV, for K -best Viterbi.
We thus propose the fourth method in which we de-
fine an importance weight w; to each labeling 2
and evaluate confidence using the weights, v, =

(Zl st Gyt wi) /(> ;wi) , where we set the
weights to be their score value clipped at zero from

below w; = max{0, u - ®(x,2?)}. (In practice,

top score was always positive.) We call this method
WKBYV for weighted K -best Viterbi.

In addition to these four methods we propose a
fifth method that is based on the margin and does
not share the same conceptual structure of the previ-
ous methods. This method provide confidence score
that is only relative and not absolute, namely its out-
put can be used to compare the confidence in two
labelings, yet there is no semantics defined over the
scores. Given an input sentence to be labeled « and a
model we define the confidence in the prediction as-
sociated with the pth word to be the difference in the
highest score and the closest score, where we set the
label of that word to anything but the label with the
highest score. Formally, as before we define the best
labeling §y = arg max, - ®(x, z), then the score
of word p is defined to be, - ®(x, §) —max,,g, p-
®(x, 2|.,—y) , where we define the labeling z|. —,
to be the labeling that agrees with z on all words,
except the pth word, where we define its label to
be u. We refer to this method as Delta where the
confidence information is a difference, aka as delta,
between two score values.

Finally, as an additional baseline, we used a sixth
method based on the confidence values for single
words produced by CRF model. We considered the
marginal probability of the word p to be assigned the
predicted label 7, to be the confide value, this prob-
ability is calculated using the forward-backwards al-
gorithm. This method is close in spirit to the Delta
method as the later can be thought of computing
marginals (in score, rather than probability). It also
close to the K-Draws methods, as both CRF and K-
Draws induce a distribution over labels. For CRF we
can compute the marginals explicitly, while for the
Gaussian models generated by CW (or AROW) the
marginals can not be computed expliclity, and thus a
sample based estimation (K-Draws) is used.

Experimental Setting: We evaluate the above
methods as follows. We trained a classifier using
the CW algorithm running for ten (10) iterations on
three-fourth of the data and applied it to the remain-
ing one-fourth to get a labeling of the test set. There
are between 49K — 54K words to be labeled in
all tasks, except NER Dutch where there are about
74K words. The fraction of words for which the
trained model makes a mistake ranges between 2%

977

(for NER Dutch) to 4.1% for NER Spanish.

We set the value of the hyper parameter ¢ to its
optimal value obtained in the experiments reported
in the previous section. The size of K of the number
of labelings used in the four first methods (KD-PC,
KD-Fixed, KBV, WKBV) and the weighting scalar
s used in KD-PC and KD-Fixed were tuned for each
dataset on a single evaluation on subset of the train-
ing set according to the best measured average pre-
cision. For the parameter s we tried about 20 values
in the range 0.01 to 1.0, and for the number of labels
K we tried the values in 10,20...80. The optimal
values are K = 50 for KD-PC and KD-Fixed, and
K = 30 for KBV and WKBV. We noticed that KD-
PC and KD-Fixed were robust to larger values of K,
while the performance of KBV and WKBYV was de-
graded significantly for large values of K.

We also trained CRF on the same training sets and
applied it to label and assign confidence values to
all the words in the test sets. The fraction of mis-
labeled words produced by the CRF model and the
CW model is summarized in Table 3.

Relative Confidence: For each of the datasets,
we first trained a model using the CW algorithm and
applied each of the confidence methods on the out-
put, ranking from low to high all the words of the
test set according to the confidence in the prediction
associated with them. Ideally, the top ranked words
are the ones for which the classifier made a mistake
on. This task can be thought of as a retrieval task of
the erroneous words.

The average precision is the average of the pre-
cision values computed at all ranks of erroneous
words. The average precision for ranking the words
of the test-set according the confidence in the predic-
tion of seven methods appears in the top-left panel of
Fig. 2. (left to right bars in each group : CRF, KD-
Fixed, KD-PC, Delta, WKBYV, KBV and random or-
dering.) We see that when ordering the words ran-
domly, the average precision is about the frequency
of erroneous word, which is the lowest average pre-
cision. Next are the two methods based on the best
Viterbi labelings, where the weighted approach out-
performing the non-weighted version. Thus, taking
the actual score value into consideration improves
the ability to detect erroneous words. Next in per-
formance is Delta, the margin-induced method. The

Actual Accuracy
o o
> oo N

14
=

o
[N

\

-6~ WKBV(K-30)

8- KD-PC (K=50)
KD-Fixed (K=50)
CRF

Actual Accuracy

o
a

N

o
@

o
o

o
[N

=©-WKBV/(K-30)

-8-KD-PC (K=50)
KD-Fixed (K=50)|
CRF

Actual Accuracy

-

o
@

o
>

)
Iy

o
i

-0~ WKBV/(K-30)
8- KD-PC (K=50)

KD-Fixed (K=50)|
“¥-CRF

Actual Accuracy
o o
> © [

14
=

o
[N

=©-WKBV/(K-30)

g =B8-KD-PC (K=50)
KD-Fixed (K=50)
CRF

=2

0.2 0.4 0.6 0.8
Expected Accuracy (bin center)

(a) NP Chunking

o

0.2 0.4 0.6 0.8
Expected Accuracy (bin center)

(b) NER English

=

0.2 0.4 0.6 0.8
Expected Accuracy (bin center)

(¢) NER Dutch

=2

0.2 0.4 0.6 0.8
Expected Accuracy (bin center)

(d) NER Spanish

Figure 4: Predicted error in each bin vs. the actual frequency of mistakes in each bin. Best performance is obtained by methods
close to the line y = x (black line) for four tasks. Four methods are compared: weighted K-Viterbi (WKBV), K-draws PC

(KD-PC) and K -draws fixed covariance (KD-Fixed) and CRF.

two best performing among the CW based methods
are KD-Fixed and KD-PC, where the former is bet-
ter in three out of four datasets. When compared
to CRF we see that in two cases CRF outperforms
the K-Draws based methods and in the other two
cases it performs equally. We found the relative suc-
cess of KD-Fixed compared to KD-PC surprising,
as KD-Fixed does not take into consideration the ac-
tual uncertainty in the parameters learned by CW,
and in fact replaced it with a fixed value across all
features. Since this method does not need to as-
sume a confidence-based learning approach we re-
peated the experiment, training a model with the
passive-aggressive algorithm, rather than CW. All
confidence estimation methods can be used except
the KD-PC, which does take the confidence infor-
mation into consideration. The results appear in
the bottom-left panel of Fig. 2, and basically tell
the same story, KD-Fixed outperform the margin
based method (Delta), and the Viterbi based meth-
ods (KBV, WKBV).

To better understand the behavior of the various
methods we plot the total number of detected erro-
neous words vs. the number of ranked words (first
5, 000 ranked words) in the top panels of Fig. 3. The
bottom panels show the relative additional number
of words each methods detects on top of the margin-
based Delta method. Clearly, KD-Fixed and KD-
PC detect erroneous words better than the other CW
based methods, finding about 100 more words than
Delta (when ranking 5,000 words) which is about
8% of the total number of erroneous words.

Regarding CREF, it outperforms the K-Draws
methods in NER English and NP chunking datasets,
finding about 150 more words, CRF performed
equally for NER Dutch, and performed worse for

978

NER Spanish finding about 80 less words. We em-
phasize that all methods except CRF were based on
the same exact weight vector, ranking the same pre-
dations, while CRF used an alternative weight vector
that yields different number of erroneous words.

In details, we observe some correlation between
the percentage or erroneous words in the entire set
and the number of erroneous words detected among
the first 5,000 ranked words. For NP chunking
and NER English datasets, CRF has more erroneous
words compared to CW and it detects more erro-
neous words compared to K-Draws. For NER Dutch
dataset CRF and CW have almost same number of
erroneous words and almost same number of erro-
neous words detected, and finally in NER Spanish
dataset CRF has fewer erroneous words and it de-
tected less erroneous words. In other words, where
there are more erroneous words to find (e.g. CRF in
NP chunking), the task of ranking erroneous words
18 easier, and vice-versa.

We hypothesize that part of the performance dif-
ferences we see between the K-Draws and CRF
methods is due to the difference in the number of
erroneous words in the ranked set.

This ranking view can be thought of marking sus-
pected words to be evaluated manually by a human
annotator. Although in general it may be hard for a
human to annotate a single word with no need to an-
notate its close neighbor, this is not the case here. As
the neighbor words are already labeled, and pretty
reliably, as mentioned above.

Absolute Confidence: Our next goal is to eval-
uate how reliable are the absolute confidence val-
ues output by the proposed methods. As before, the
confidence estimation methods (KD-PC, KD-Fixed,

KBV, WKBYV and CRF) were applied on the entire
set of predicted labels. (Delta method is omitted as
the confidence score it produces is not in [0, 1]).

For each of the four datasets and the five algo-
rithms we grouped the words according to the value
of their confidence. Specifically, we used twenty
(20) bins dividing uniformly the confidence range
into intervals of size 0.05. For each bin, we com-
puted the fraction of words predicted correctly from
the words assigned to that bin. Ultimately, the value
of the computed frequency should be about the cen-
ter value of the interval of the bin. Formally, bin
indexed j contains words with confidence value in
the range [(j —1)/20,5/20) for j = 1...20. Let b;
be the center value of bin j, thatis b; = j/20—1/40.
The frequency of correct words in bin j, denoted
by c; is the fraction of words with confidence v €
[(—1)/20, 7/20) that their assigned label is correct.
Ultimately, these two values should be the same,
b; = c;, meaning that the confidence information
is a good estimator of the frequency of correct la-
bels. Methods for which ¢; > b; are too pessimistic,
predicting too high frequency of erroneous labels,
while methods for which ¢; < b; are too optimistic,
predicting too low frequency of erroneous words.

The results are summarized in Fig 4, one panel
per dataset, where we plot the value of the center-
of-bin b; vs. the frequency of correct prediction c;,
connecting the points associated with a single algo-
rithm. Four algorithms are shown: KD-PC, KD-
Fixed, WKBYV and CRF. We omit the results of the
KBV approach - they were substantially inferior to
all other methods. Best performance is obtained
when the resulting line is close to the line y = .

From the plots we observe that WKBYV is too pes-
simistic as its corresponding line (blue square) is
above the line y = z. CRF method is too optimistic,
its corresponding line is below the line y = .
The KD-Fixed method is too pessimistic on NER-
Dutch and too optimistic on NER-English. The best
method is KD-PC which, surprisingly, tracks the line
x = y pretty closely. We hypothesis that its superi-
ority is because it makes use of the uncertainty infor-
mation captured in the covariance matrix > which is
part of the Gaussian distribution.

Finally, these bins plots does not reflect the fact
that different bins were not populated uniformly, the
bins with higher values were more heavily popu-

979

lated. We thus plot in the top-right of Fig. 2 the
root mean-square error in predicting the bin center

value given by \/(Zj nj(bj — cj)2> / (Z] nj> ,
where n; is the number of words in the jth bin.
We observed a similar trend to the one appeared in
the previous figure. WKBYV is the least-performing
method, then KD-Fixed and CRF, and then KD-PC
which achieved lowest RMSE in all four datasets.
Similar plot but when using PA for training appear
in the bottom-right panel of Fig. 2. In this case we
also see that KD-Fixed is better than WKBYV, even
though both methods were not trained with an algo-
rithm that takes uncertainty information into consid-
eration, like CW.

The success of KD-PC and KD-Fixed in evaluat-
ing confidence led us to experiment with using sim-
ilar techniques for inference. Given an input sen-
tence, the inference algorithm samples K times from
the Gaussian distribution and output the best label-
ing according to each sampled weight vector. Then
the algorithm predicts for each word the most fre-
quent label. We found this method inferior to infer-
ence with the mean parameters. This approach dif-
fers from the one used by (Crammer et al., 2009a),
as they output the most frequent labeling in a set,
while the predicted label of our algorithm may not
even belong to the set of predictions.

6 Active Learning

Encouraged by the success of the KD-PC and KD-
Fixed algorithms in estimating the confidence in the
prediction we apply these methods to the task of ac-
tive learning. In active learning, the algorithm is
given a large set of unlabeled data and a small set
of labeled data and works in iterations. On each it-
eration, the overall labeled data at this point is used
to build a model, which is then used to choose new
subset of examples to be annotated.

In our setting, we have a large set of unlabeled
sentences and start with a small set of 50 annotated
sentences. The active learning algorithm is then us-
ing the CW algorithm to build a model, which in turn
is used to rank sentences. The new data items are
then annotated and accumulated to the set of labeled
data points, ready for the next round. Many active
learning algorithms are first computing a prediction
for each of the unlabeled-data examples, which is

then used to choose new examples to be labeled. In
our case the goal is to label sentences, which are
expensive to label. We thus applied the following
setting. First, we chose a subset of 9K sentences
as unlabeled training set, and another subset of size
3K for evaluation. After obtaining a model, the al-
gorithm labels random 1, 000 sentences and chose a
subset of 10 sentences using the active learning rule,
which we will define shortly. After repeating this
process 10 times we then evaluate the current model
using the test data and proceed to choose new un-
labeled examples to be labeled. Each method was
applied to pick 5, 000 sentences to be labeled.

In the previous section, we used the confidence
estimation algorithms to choose individual words to
be annotated by a human. This setting is realistic
since most words in each sentence were already clas-
sified (correctly). However, when moving to active
learning, the situation changes. Now, all the words
in a sentence are not labeled, thus a human may need
to label additional words than the one in target, in or-
der to label the target word. We thus experimented
with the following protocol. On each iteration, the
algorithm defines the score of an entire sentence to
be the score of the least confident word in the sen-
tence. Then the algorithm chooses the least confi-
dent sentence, breaking ties by favoring shorter sen-
tences (assuming they contain relatively more infor-
mative words to be labeled than long sentences).

We evaluated five methods, KD-PC and KD-
Fixed mentioned above. The method that ranks
a sentence by the difference in score between the
top- and second-best labeling, averaged over the
length of sentence, denoted by MinMargin (Tong
and Koller, 2001). A similar approach, motivated
by (Dredze and Crammer, 2008), normalizes Min-
Margin score using the confidence information ex-
tracted from the Gaussian covariance matrix, we call
this method MinConfMargin. Finally, We also eval-
uated an approach that picks random sentences to be
labeled, denoted by RandAvg (averaged 5 times).

The averaged cumulative F-measure vs. num-
ber of words labeled is presented in Figs. 5,6. We
can see that for short horizon (small number of sen-
tences) the MinMargin is worse (in three out of four
data sets), while MinConfMargin is worse in NP
Chunking. Then there is no clear winner, but the
KD-Fixed seems to be the best most of the time. The

980

O KD-PC (50)
KD-Fixed (K=50)
MinMargin 0.4
o MinConfMargin
RandAvg

0.84:¢
2000 4000 6000 8000
“Total No. of Labeled Words.

O KD-PC (50)
KD-Fixed (K=50)

® MinMargin

o MinConfMargin
RandAvg

8000
s

I
10000 2000 4000 6000

Total No. of Labeled Word

10000

(a) NP Chunking (b) NER English

O KD-PC (50) 0.66)
KD-Fixed (K=50)
& MinMargin 0.64|

O MinConfMargin

| RandAvg 0.62

O KD-PC (50)
KD-Fixed (K=50)|

® MinMargin

O MinConfMargin
RandAvg

Total No. of Labeled Words

(c) NP Chunking

Total No. of Labeled Words

(d) NER English

Figure 5: Averaged cumulative F-score vs. total number of
words labeled. The top panels show the results for up to 10, 000
labeled words, while the bottom panels show the results for
more than 10k labeled words.

bottom panels show the results for more than 10k
training words. Here, the random method perform-
ing the worst, while KD-PC and KD-Fixed are the
best, and as shown in (Dredze and Crammer, 2008),
MinConfMargin outperforming MinMargin.

Related Work: Most previous work has fo-
cused on confidence estimation for an entire exam-
ple or some fields of an entry (Culotta and McCal-
lum, 2004) using CRFs. (Kristjansson et al., 2004)
show the utility of confidence estimation is extracted
fields of an interactive information extraction system
by high-lighting low confidence fields for the user.
(Scheffer et al., 2001) estimate confidence of sin-
gle token label in HMM based information extrac-
tion system by a method similar to the Delta method
we used. (Ueffing and Ney, 2007) propose several
methods for word level confidence estimation for the
task of machine translation. One of the methods they
use is very similar to the weighted and non-weighted
K-best Viterbi methods we used with the proper ad-
justments to the machine translation task.

Acknowledgments

The resrach is supported in part by German-Israeli
Foundation grant GIF-2209-1912. KC is a Horev
Fellow, supported by the Taub Foundations. The re-
viewers thanked for their constructive comments.

© 2000 6000 * 2000

0. of Labeled Wor

andAve
10000 8000 10000
s

andAve
8000
s

4000 4000 6000
Total N Total No. of Labeled Word

(a) NER Dutch (b) NER Spanish

0.64/
0.62]
0.6
©
5058
Z

<056
I

O KD-PC (50)
KD~Fixed (K=50)

0.54
O KD-PC (50)
® MinMargin
O MinConfMargin

KD-Fixed (K=50)| 052
MinMargin
O MinConfMargin 0.5
RandAvg RandAvg

@ @ s
10 10 10
Total No. of Labeled Words Total No. of Labeled Words

(c) NER Dutch (d) NER Spanish

Figure 6: See Fig. 5

References

[Cesa-Bianchi and Lugosi2006] N. Cesa-Bianchi and
G. Lugosi. 2006. Prediction, Learning, and Games.
Cambridge University Press, New York, NY, USA.

[Collins2002] M. Collins. 2002. Discriminative training
methods for hidden markov models: Theory and ex-
periments with perceptron algorithms. In EMNLP.

[Crammer et al.2005] K. Crammer, R. Mcdonald, and
F. Pereira. 2005. Scalable large-margin online learn-
ing for structured classification. Tech. report, Dept. of
CIS, U. of Penn.

[Crammer et al.2008] K. Crammer, M. Dredze, and
F. Pereira. 2008. Exact confidence-weighted learning.
In NIPS 22.

[Crammer et al.2009a] K. Crammer, M. Dredze, and
A. Kulesza. 2009a. Multi-class confidence weighted
algorithms. In EMNLP.

[Crammer et al.2009b] K. Crammer, A. Kulesza, and
M. Dredze. 2009b. Adaptive regularization of
weighted vectors. In NIPS 23.

[Culotta and McCallum2004] A. Culotta and A. McCal-
lum. 2004. Confidence estimation for information ex-
traction. In HLT-NAACL, pages 109-112.

[Dredze and Crammer2008] M. Dredze and K. Crammer.
2008. Active learning with confidence. In ACL.

[Dredze et al.2008] M. Dredze, K. Crammer, and
F. Pereira. 2008. Confidence-weighted linear
classification. In ICML.

[Kim et al.2000] E.F. Tjong Kim, S. Buchholz, and
K. Sang. 2000. Introduction to the conll-2000 shared
task: Chunking.

981

[Kristjansson et al.2004] T. Kristjansson, A. Culotta,
P. Viola, and A. McCallum. 2004. Interactive infor-
mation extraction with constrained conditional random
fields. In AAAI, pages 412-418.

[Lafferty et al.2001] J. Lafferty, A. McCallum, and
F. Pereira. 2001. Conditional random fields: Proba-
bilistic models for segmenting and labeling sequence
data.

[McCallum2002] Andrew McCallum. 2002. MALLET:
A machine learning for language toolkit. http://
mallet.cs.umass.edu.

[McDonald et al.2005a] R.T. McDonald, K. Crammer,
and F. Pereira. 2005a. Flexible text segmentation with
structured multilabel classification. In HLT/EMNLP.

[McDonald et al.2005b] Ryan T. McDonald, Koby Cram-
mer, and Fernando C. N. Pereira. 2005b. Online large-
margin training of dependency parsers. In ACL.

[Scheffer et al.2001] Tobias Scheffer, Christian Deco-
main, and Stefan Wrobel. 2001. Active hidden
markov models for information extraction. In IDA,
pages 309-318, London, UK. Springer-Verlag.

[Sha and Pereira2003] Fei Sha and Fernando Pereira.
2003. Shallow parsing with conditional random fields.
In Proc. of HLT-NAACL, pages 213-220.

[Shimizu and Haas2006] N. Shimizu and A. Haas. 2006.
Exact decoding for jointly labeling and chunking se-
quences. In COLING/ACL, pages 763-770.

[Taskar et al.2003] B. Taskar, C. Guestrin, and D. Koller.
2003. Max-margin markov networks. In nips.

[Tjong and Sang2002] Erik F. Tjong and K. Sang. 2002.
Introduction to the conll-2002 shared task: Language-
independent named entity recognition. In CoNLL.

[Tjong et al.2003] E.F. Tjong, K. Sang, and F. De Meul-
der. 2003. Introduction to the conll-2003 shared task:
Language-independent named entity recognition. In
CoNLL, pages 142—-147.

[Tong and Koller2001] S. Tong and D. Koller. 2001.
Support vector machine active learning with applica-
tions to text classification. In JMLR, pages 999-1006.

[Ueffing and Ney2007] Nicola Ueffing and Hermann Ney.
2007. Word-level confidence estimation for machine
translation. Comput. Linguist., 33(1):9-40.

[Wick et al.2009] M. Wick, K. Rohanimanesh, A. Cu-
lotta, and A. McCallum. 2009. Samplerank: Learning
preferences from atomic gradients. In NIPS Workshop
on Advances in Ranking.

