1

A Fast Decoder for Joint Word Segmentation and pos-Tagging Using a
Single Discriminative M odel

Yue Zhang and Stephen Clark
University of Cambridge Computer Laboratory
William Gates Building,
15 JJ Thomson Avenue,
Cambridge CB3 OFD, UK

{yue. zhang,

Abstract

We show that the standard beam-search al-
gorithm can be used as an efficient decoder
for the global linear model of Zhang and
Clark (2008) for joint word segmentation and
POStagging, achieving a significant speed im-
provement. Such decoding is enabled by:
(1) separating full word features from par-
tial word features so that feature templates
can be instantiated incrementally, according to
whether the current character is separated or
appended; (2) deciding teo stag of a poten-
tial word when its first character is processed.
Early-update is used with perceptron training
so that the linear model gives a high score to a
correct partial candidate as well as a full out-
put. Effective scoring of partial structures al-
lows the decoder to give high accuracy with a
small beam-size of 16. In our 10-fold cross-
validation experiments with the Chinese Tree-
bank, our system performed over 10 times as
fast as Zhang and Clark (2008) with little ac-
curacy loss. The accuracy of our system on
the standaratTB 5 test was competitive with
the best in the literature.

Introduction and Motivation

st ephen. cl ark}@l . cam ac. uk

baseline by avoiding segmentation error propagation
and making use of part-of-speech information to im-
prove segmentation.

The single-model approach to joint segmentation
andpostagging offers consistent training of all in-
formation, concerning words, characters and parts-
of-speech. However, exact inference with dynamic
programming can be infeasible if features are de-
fined over a large enough range of the output, such
as over a two-word history. In our previous work
(Zhang and Clark, 2008), which we refer to as
Z&C08 from now on, we used an approximate de-
coding algorithm that keeps track of a set of partially
built structures for each character, which can be seen
as a dynamic programming chart which is greatly re-
duced by pruning.

In this paper we follow the line of single-model
research, in particular the global linear model of
Z&C08. We show that effective decoding can be
achieved with standard beam-search, which gives
significant speed improvements compared to the de-
coding algorithm of Z&C08, and achieves accura-
cies that are competitive with the state-of-the-art.
Our research is also in line with recent research on
improving the speed ofiLP systems with little or

Several approaches have been proposed to soRe accuracy loss (Charniak et al., 2006; Roark and
word segmentation aneostagging jointly, includ- Hollingshead, 2008).

ing the reranking approach (Shi and Wang, 2007; Our speed improvement is achieved by the use
Jiang et al., 2008b), the hybrid approach (Nakagawaf a single-beam decoder. Given an input sentence,
and Uchimoto, 2007; Jiang et al., 2008a), and theandidate outputs are built incrementally, one char-
single-model approach (Ng and Low, 2004; Zhangcter at a time. When each character is processed,
and Clark, 2008; Kruengkrai et al., 2009). Thesd is combined with existing candidates in all possi-
methods led to accuracy improvements over the tréle ways to generate new candidates, and an agenda
ditional, pipelined segmentation ambstagging is used to keep th&/'-best candidate outputs from

843

Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, pages 843-852,
MIT, Massachusetts, USA, 9-11 October 2010. (©)2010 Association for Computational Linguistics

the begining of the sentence to the current charactéie decoder can take the first two characterstn “
Compared to the multiple-beam search algorithm ok 7K (tap water)” as a partial word, and keep it
Z&C08, the use of a single beam can lead to an ordar the beam before the third character is processed.
of magnitude faster decoding speed. One challenge is the representationpafstags for
partial words. Theros of a partial word is unde-
fined without the corresponding full word informa-
An important problem that we solve in this papettion. Though a partial word can make sense with
is the handling of partial words with a single beana particularrostag when it is treated as a com-
decoder for the global model. As we pointed ouplete word, this0stag is not necessarily theo sof
in Z&CO08, it is very difficult to score partial words the full word which contains the partial word. Take
properly when they are compared with full wordsthe three-character sequence fi X” as an exam-
although such comparison is necessary for incrgle. The first character T” represents a single-
mental decoding with a single-beam. To allow comeharacter word “below”, for which theoscan be
parisons with full words, partial words can either bea.C or VV. The first two characters ™ " repre-
treated as full words, or handled differently. sent a two-character word “rain”, for which tire@s

We showed in Z&CO08 that a naive single-beantan bevV. Moreover, all three characters when put
decoder which treats partial words in the same watpgether make the word “rainy day”, for which the
as full words failed to give a competitive accu-pPosis NN. As discussed above, assigningstags
racy. An important reason for the low accuracy ito partial words as if they were full words leads to
over-segmentation during beam-search. Considw accuracy.
the three characters k /K (tap water)”. The first An obvious solution to the above problem is not to
two characters do not make sense when put togethessign eposto a partial word until it becomes a full
as a single word. Rather, when treated as two singlerord. However, lack oPosinformation for partial
character words, they can make sense in a senteneerds makes them less competitive compared to full
such as # (please)f (self) &k (come)# (take)”. words in the beam, since the scores of full words are
Therefore, when using single-beam search to prédther supported byos and Pos ngram informa-
cess “A %k K (tap water)”, the two-character word tion. Therefore, not assigningosto partial words
candidate ‘&l k" is likely to have been thrown off potentially leads to over segmentation. In our exper-
the agenda before the third charactet™is con- iments, this method did not give comparable accura-
sidered, leading to an unrecoverable segmentati@ies to our Z&CO08 system.
error. In this paper, we take a different approach, and

This problem is even more severe for a joint segassign @0stag to a partial word when its first char-
mentor andrpostagger than for a pure word seg-acter is separated from the final character of the pre-
mentor, since th@ostags androstag bigram of vious word. When more characters are appended to
“ B”and “k” further supports them being separatedh partial word, theeosis not changed. The idea is
when "k” is considered. The multiple-beam searcho use theeosof a partial word as the predictebs
decoder we proposed in Z&C08 can be seen asddthe full word it will become. Possible predictions
means to ensure that the three charactérsk’k” are made with the first character of the word, and the
always have a chance to be considered as a sindjleely ones will be kept in the beam for the next pro-
word. It explores candidate segmentations from theessing steps. For example, with the three characters
beginning of the sentence until each character, aridF 1 X", we try to keep two partial words (besides
avoids the problem of processing partial words byull words) in the beam when the first wordF” is
considering only full words. However, since it ex-processed, with theosbeingVvVv andNN, respec-
plores a larger part of the search space than a singtarely. The firstrospredicts the two-character word
beam decoder, its time complexity is correspond-F F” . and the second the three-character word
ingly higher. “F @ X". Now when the second character is pro-

In this paper, we treat partial words differentlycessed, we still need to maintain the possibtes
from full words, so that in the previous example NN in the agenda, which predicts the three-character

1.1 Theprocessing of partial words

844

word “ T X" data, our system ran an order of magnitude faster
As a main contribution of this paper, we show thathan our Z&C08 system with little loss of accuracy.

the mechanism of predicting tir@sat the first char- The accuracy of our system was competitive with

acter gives competitive accuracy. This mechanismther recent models.

can be justified theoretically. Unlike alphabetical

languages, each Chinese character represents so%neMOdd and Feature Templates

specific meanings. Given a character, it is natural fo)e use a linear model to score both partial and full

a human speaker to know immediately what typegandidate outputs. Given an inputthe score of a
of words it can start. The allows the knowledge otandidate outpuj is computed as:

possiblerostags of words that a character can start, .
using information about the character from the train- Scordy) = ¢(y) - w,
ing data. Moreover, theosof the previous words to where ®(y) is the global feature vector extracted
the current word are also useful in deciding possibl&om y, and is the parameter vector of the model.
posfor the word? Figure 1 shows the feature templates for the
The mechanism of first-character decisiorrafs model, where templates 1 — 14 contain only seg-
also boosts the efficiency, since the enumeration ofientation information and templates 15 — 29 contain
POSis unecessary when a character is appended both segmentation arrbsinformation. Each tem-
the end of an existing word. As a result, the complate is instantiated according to the current charac-
plexity of each processing step is reduce by hater in the decoding process. Row “For” shows the
compared to a method withoabsprediction. conditions for template instantiation, where “s” in-
Finally, an intuitive way to represent the status oflicates that the corresponding template is instanti-
a partial word is using a flag explicitly, which meansated when the current character starts a new word,
an early decision of the segmentation of the next irand “a” indicates that the corresponding template is
coming character. We take a simpler alternative apastantiated when the current character does not start
proach, and treat every word as a partial word ure new word. In the row for feature templates, ¢
til the next incoming character is separated from thand c are used to represent a wordpastag and
last character of this word. Before a word is cona character, respectively. The subscripts are based
firmed as a full word, we only apply to it featureson the current character, whete_; represents the
that represent its current partial status, such as chéirst word to the left of the current character, and
acter bigrams, its starting character and its part-ofr_» represents theostag on the second word to
speech, etc. Full word features, including the firsthe left of the current character, and so on. As an
and last characters of a word, are applied immedéxample, feature template 1 is instantiated when the
ately after a word is confirmed as complete. current character starts a new word, and the resulting
An important component for our proposed systerfeature value is the word to the left of this charac-
is the training process, which needs to ensure thtgr. start(w), end(w) andlen(w) represent the first
the model scores a partial word with predicreds character, the last character and the length of word
properly. We use the averaged perceptron (Colling;, respectively. The length of a word is normalized
2002) for training, together with the “early update”to 16 if it is larger than 16cat(c) represents theos
mechanism of Collins and Roark (2004). Ratheeategory of charactet, which is the set oPostags
than updating the parameters after decoding is coraeen on character as we used in Z&CO08.
plete, the modified algorithm updates parameters at Given a partial or complete candidatgits global
any processing step if the correct partial candidateature vecto(y) is computed by instantiating all
falls out of the beam. applicable feature templates from Table 1 for each
In our experiments using the Chinese Treebankharacter irny, according to whether or not the char-
acter is separated from the previous character.

T .
The next incoming characters are also a useful source
of information for predicting theeos However, our system The feature templates are mostly taken from, or

achieved competitive accuracy with Z&C08 without such charispired by, the feature templates of Z&C08. Tem-
acter lookahead features. plates 1, 2, 3, 4, 5, 8, 10, 12, 13, 14, 15, 19, 20,

845

Feature template

T
o
=

function DECODHsent, agenda):

1 - S
2 Z 1w S CLEAR(agenda)
—1 -2 “wn
3 | w1, wherelen(w_1) =1 S ADPITEM(agenda,))
4 | start(w_1)len(w_,) S for index |n_[0..LEN(sent)].
5 | end(w_y)len(w_1) s for cand in agenda: _
6 | end(w_1)co s new «— APPEND(cand, sent[index])
7 e e B a ADDITEM(agenda, new)
—1€o : .
8 | begin(w_1)end(w_1) s for posin TAGSET(): _
9 | w1y s new «— SEP(cand, sent[index], pos)
10 | end(w_o)w_, S ADDITEM(agenda, new)
11| start(w_1)co S agenda < N-BEST(agenda)
12 | end(w_s)end(w_1) S return BEsT(agenda)
13 | w_slen(w_q) s
14 | len(w_2)w_; s Figure 1: The incremental beam-search decoder.
15| w_q1t_4 S
16 t_1tg S .
rent character according to the context, and are the
17 t_ot_1tp S ial f h > . fth | ith
18 | w1t S crucial reason for the effectiveness of the algorithm
-1 with a small beam-size.
19 | t_ow_1 S
20 | w-1t_yend(w-2) S 2.1 Decoding
21 w_1t_1¢g S
22 | ¢c_9c_q1cot_1, s The decoding algorithm builds an output candidate
wherelen(w_1) = 1 incrementally, one character at a time. Each char-
23 | start(wo)to s acter can either be attached to the current word or
24 | t_ystart(w_1) s separated as the start a new word. When the current
25 | toco s, a character starts a new wordpastag is assigned to
26 | cotostart(wo) a the new word. An agenda is used by the decoder to
27 | ct_jend(w_1), s keep theN-best candidates during the incremental
wherec € w_; andc # end(w_1) process. Before decoding starts, the agenda is ini-
28 | cotocat(start(wy)) s tialized with an empty sentence. When a character is
29 | ct_icat(end(w_1)), s processed, existing candidates are removed from the
wherec € w_; ande # end(w_1) agenda and extended with the current character in all
30 | cotoc_1t_q s possible ways, and th&-best newly generated can-
31 | cotoc_1 a didates are put back onto the agenda. After all input

Table 1: Feature templates.

characters have been processed, the highest-scored
candidate from the agenda is taken as the output.

Pseudo code for the decoder is shown in Figure
1. CLEAR removes all items from the agendapA

24, 27 and 29 concern complete word informationpI TEM adds a new item onto the agenda, N<&
and they are used in the model to differentiate coreturns theV highest-scored items from the agenda,
rect and incorrect output structures in the same wagnd BEST returns the highest-scored item from the
as our Z&C08 model. Templates 6, 7, 9, 16, 17agenda. EN returns the number of characters in a
18, 21, 22, 23, 25, 26 and 28 concern partial wordentence, andent[:] returns theith character from
information, whose role in the model is to indicatethe sentence. APEND appends a character to the
the likelihood that the partial word including the cur-last word in a candidate, ance8joins a character
rent character will become a correct full word. Theyas the start of a new word in a candidate, assigning
act as guidance for the action to take for the cumPoOstag to the new word.

846

Both our decoding algorithm and the decoding althe averaged parameter vector (Collins, 2002) as the
gorithm of Z&CO08 run in linear time. However, in final model.
order to generate possible candidates for each char-Pseudocode for the training algorithm is shown in
acter, Z&CO08 uses an extra loop to search for pog-igure 2. It is based on the decoding algorithm in
sible words that end with the current character. Arigure 1, and the main differences are: (1) the train-
restriction to the maximum word length is appliedng algorithm takes the gold-standard output and the
to limit the number of iterations in this loop, with- parameter vector as two additional arguments; (2)
out which the algorithm would have quadratic timehe training algorithm does not return a prediction,
complexity. In contrast, our decoder does not seardsut modifies the parameter vector when necessary;
backword for the possible starting character of ang3) lines 11 to 20 are additional lines of code for pa-
word. Segmentation ambiguities are resolved by brameter updates.
nary choices between the actions append or sepa-Without lines 11 to 16, the training algorithm is
rate for each character, and rosenumeration is exactly the same as the generalized perceptron al-
required when the character is appended. This ingorithm. These lines are added to ensure that the
proves the speed by a significant factor. agenda contains highly probable candidates during
the whole beam-search process, and they are crucial
to the high accuracy of the system. As stated earlier,
The learning algorithm is based on the generalizetthe decoder relies on proper scoring of partial words
perceptron (Collins, 2002), but parameter adjusto maintain a set of high quality candidates in the
ments can be performed at any character during tlagenda. Updating the value of the parameter vector
decoding process, using the “early update” mechder partial outputs can be seen as a means to ensure
nism of Collins and Roark (2004). correct scoring of partial candidates at any character.

The parameter vector of the model is initialized as
all zeros before training, and used to decode traini
examples. Each training example is turned into théve follow Z&CO08 and use several pruning methods,
raw input format, and processed in the same way #80st of which serve to to improve the accuracy by
decoding. After each character is processed, partigmoving irrelevant candidates from the beam. First,
candidates in the agenda are compared to the célre system records the maximum number of charac-
responding gold-standard output for the same chaters that a word with a particul@ostag can have.
acters. If none of the candidates in the agenda af@r example, from the Chinese Treebank that we
correct, the decoding is stopped and the parametesed for our experiments, mosos are associated
vector is updated by adding the global feature vectorith only with one- or two-character words. The
of the gold-standard partial output and subtractingnly Postags that are seen with words over ten char-
the global feature vector of the highest-scored pagcters long are NN (noun), NR (proper noun) and
tial candidate in the agenda. The training processD (numbers). The maximum word length informa-
then moves on to the next example. However, if anton is initialized as all ones, and updated according
item in the agenda is the same as the corresporig-each training example before it is processed.
ing gold-standard, the decoding process moves to Second, a tag dictionary is used to receds
the next character, without any change to the pdags associated with each word. During decoding,
rameter values. After all characters are processefiequent words and words with “closed set” tags
the decoder prediction is compared with the trainingre only allowed,ostags according to the tag dic-
example. If the prediction is correct, the parametionary, while other words are allowed evergstag
ter vector is not changed; otherwise it is updated b make candidate outputs. Whether a word is a fre-
adding the global feature vector of the training exguent word is decided by the number of times it has
ample and subtracting the global feature vector dfeen seen in the training process. Denoting the num-

the decoder prediction, just as the perceptron algo- 2Closed set” tags are the set pbstags which are only

rithm _does- The same traini_ng e_XampleS can be usggkociated with a fixed set of words, according to the Penn Chi-
to train the model for multiple iterations. We usenese Treebank specifications (Xia, 2000).

2.2 Training

Pruning

847

function TRAIN(sent, agenda, gold-standard, w):
01: CLEAR(agenda)

02: ADDITEM(agenda, ")

03: forindexin [0..LEN(sent)]:

04: for cand in agenda:

05: new < APPENDcand, sent[index])
06: ADDITEM(agenda, new)

07: for posin TAGSET():

08: new < SEP(cand, sent[index], pos)
09: ADDITEM(agenda, new)

10: agenda <— N-BESsT(agenda)

11: for cand in agenda:

12: if cand = gold-standard[0:index]:
13: CONTINUE

14. w «— W + ®(gold-standard[0:index])
15: W «— f - P(BEST(agenda))

16: return

17: if BEsT(agenda) # gold-standard:

18: W «— W + P(gold-standard)

19: W «— W - ®(BEST(agenda))

20: return

21: return

Figure 2: The incremental learning function.

ber of times the most frequent word has been se@andidates that are generated by separating the cur-
with M, a word is a frequent word if it has beenrent character as the start of a new word by the sig-
seen more thai//5000 + 5 times. The threshold naturepop_;w_;, and keep only the best among
value is taken from Z&C08, and we did not adjusthose having the samgyp_1w_;. The signature
it during development. Word frequencies are initialpop_1w_1 is decided by the feature templates we
ized as zeros and updated according to each traininge: it can be shown that if two candidatsdl
example before it is processed; the tag dictionary isndcand2 generated at the same step have the same
initialized as empty and updated according to eactignature, and the score cdindl is higher than the
training example before it is processed. score ofcand2, then at any future step, the highest
Third, we make an additional record of the initiaiScored candidate generated froamd1 will always
characters for words with “closed set” tags. Durind1a"e a higher score than the highest scored candidate
decoding, when the current character is added as tHgnerated froncand2.
start of a new word, “closed set” tags are only as- From the above pruning methods, only the third
signed to the word if it is consistent with the recordWas not used by Z&C08. It can be seen as an extra
This type of pruning is used in addition to the tagn€chanism to help keep likely partial words in the
dictionary to prune invalid partial words, while the@genda and improve the accuracy, but which does
tag dictionary is used to prune complete words. ThBOt give our system a speed advantage over Z&CO08.
record for initial character anelosis initially empty, i
and udpated according to each training example bg— Experiments

fore itis processed. We used the Chinese Treebankr§) data to per-
Finally, at any decoding step, we group partiaform one set of development tests and two sets of fi-

848

F-measure

0s ‘ ‘ ‘ ‘ ‘ Figure 3 shows the accuracy curves for joint seg-

P i A mentation andostagging by the number of train-
os| e EEE L ing iterations, using different beam sizes. With the
,,E/D R size of the beam increasing from 1 to 32, the accura-
0rd “ 1 cies generally increase, while the amount of increase
xx becomes small when the size of the beam becomes

16. After the 10th iteration, a beam size of 32 does
not always give better accuracies than a beam size
of 16. We therefore chose 16 as the size of the beam

06 -/

05 beam=1 —— 7]

beams for our system.
o ‘ ‘ ‘ ‘ beamess o The testing times for each beam size between 1
° " . ® ® * and 32 are 7.16s, 11.90s, 18.42s, 27.82s, 46.77s

Training iteration

and 89.21s, respectively. The corresponding speeds

Figure 3: The influence of beam-sizes, and the convejn the number of sentences per second are 111.45,
gence of the perceptron. 67.06, 43.32, 28.68, 17.06 and 8.95, respectively.

Figure 3 also shows that the accuracy increases

o] with an increased number of training iterations, but
nal tests. TheTs 4 was splitinto two parts, with the the amount of increase becomes small after the 25th

CTB 3 being used for a 10-fold gross _validation tesﬁeration. We chose 29 as the number of iterations to
to compare speed and accuracies with Z&C08, ar}ijain our system

the rest being used for development. s 5 was The effect of incremental training: We compare

used to perform the ad.?:lotr;]al set of (taxpeleents he accuracies by incremental training using early
compare accuracies with other recent work. update and normal perceptron training. In the nor-
we us_e the standard F—measure to evallutdte QUtQHE\I perceptron training case, lines 11 to 16 are taken
accuracies. For word segmentation, precision is d&; + o¢ the training algorithm in Figure 2. The algo-
f|_n<_ad as the number of correctly segmented Worq’?[hm reached the best performance at the 22nd iter-
divided by the total number of words in the output, ;1 \with the segmentation F-score bedigs8%
and recall is defined as the number of correctly seg.\ j;)int F-score being3.38%. In the incremental
mented words divided by the total number of WorGI:f’raining case, the algorithm reached the best accu-

in the gold-standard output. For joint segmentatio%Cy at the 30th training iteration, obtaining a seg-
and postagging, precision is defined as the NUMg, o niation F-score af1.14% and a joint F-score of
ber of correctly segmented ambstagged words 84.06%.

divided by the total number of words from the out-

put, and recall is defined as the correctly segmentegh Final testsusing cTB 3

andpPostagged words divided by the total number . .
of words in the gold-standard output. cTB 3 consists ofl50K words in 10364 sentences.

; . We follow Z&C08 and split it into 10 equal-sized
All our experiments were performed on a Linux)
parts. In each test, one part is taken as the test

platform, and a single 2.66GHz Intel Core 2 CPU. data and the other nine are combined together as

3.1 Development tests the training data. We compare the speed and accu-
racy with the joint segmentor and tagger of Z&CO08,

Our development data consists DJ0K words in ich is publicly available as the ZPar system, ver-
4798 sentences.80% of the data were randomly sion 0.3

chosen as the development training data, while the The results are shown in Table 2, where each row

rest were used as the development test data. Our %‘Ffows one cross validation test. The column head-

velopment tests were mainly used to decide the Sizrﬁgs ssf, “if" “time” and “speed” refer to segmen-
of the beam, the number of training iterations, the ef-. ;i) F-measure, joint F-measure, testing time (in
fect of partial features in beam-search decoding, and

the effect of incremental learning (i.e. early update). *http://www.sourceforge.net/projects/zpar

849

Z&C08 this paper

sf if time speed sf if time speed
97.18 93.27 557.97 1.8697.25 93.51 44.20 23.44
97.65 93.81 521.63 1.9997.66 93.97 42.07 24.26
96.08 91.04 444.69 2.3395.55 90.65 39.23 26.41
96.31 91.93 431.04 2.4096.37 92.15 39.54 26.20
96.35 91.94 508.39 2.0495.84 91.51 43.30 23.93
94.48 88.63 482.78 2.1394.25 88.53 43.77 23.67
95.27 90.52 361.95 2.8695.10 90.42 41.76 24.81
94.98 90.01 418.54 2.47194.87 90.30 39.81 26.02
95.23 90.84 471.3 2.2095.21 90.55 42.03 26.65
0 96.49 92.11 500.72 2.08 96.33 92.12 43.12 24.03
average 96.00 91.41 469.90 2.2495.84 91.37 41.88 24.94

P O0O~NOOR~WDNEPR|H

Table 2: Speed and acccuracy comparisons with Z&CO080kfpld cross validation.

seconds) and testing speed (in the number of sen- \ Sections \ Sentence$ Words

tences per second), respectively. Training | 1-270 18,085 493,892
Our system gave a joint segmentation arals 400-931

tagging F-score 0P1.37%, which is only 0.04% 1001-1151

lower than that of ZPar 0.2. The speed of our systemDev 301-325 | 350 6,821

was over 10 times as fast as ZPar 0.2. Test 271-300 | 348 8,008

3.3 Final tetsusing cTB 5 Table 3: Training, development and test datacam 5.

We follow Kruengkrai et al. (2009) and split tiea's EE

5 into training, development testing and testing sets K09 (error-driven)| 97.87 | 93.67

as shown in Table 3. We ignored the developmentour system 97.78| 93.67

test data since our system had been developed in pre09 (baseline) 97.79| 93.60

vious experiments. Jo8a 97.85| 93.41
Kruengkrai et al. (2009) made use of characterJO8b 97.74| 93.37

type knowledge for spaces, numerals, symbols, aliNO7 97.83| 93.32

phabets, Chinese and other characters. In the previ-

ous experiments, our system did not use any know'lr_able 4: Accuracy comparisons with recent studies on

edge beyond the training data. To make the compacr—TB >
ison fairer, we included knowledge of English let-
ters and Arabic numbers in this experiment. Durin§gave comparable accuracies to these recent works,
both training and decoding, English letters and Araobtaining the best (same as the error-driven version
bic numbers are segmented using simple rules, tre&t K09) joint F-score.
ing consecutive English letters or Arabic numbers a
a single word. 2 Related Work

The results are shown in Table 4, where rowrhe effectiveness of our beam-search decoder
“NO7” refers to the model of Nakagawa and Uchishowed that the joint segmentation and tagging
moto (2007), rows “J08a” and “b” refer to the mod-problem may be less complex than previously per-
els of Jiang et al. (2008a) and Jiang et al. (2008beived (Zhang and Clark, 2008; Jiang et al., 2008a).
and row “K09” refers to the models of Kruengkrai etAt the very least, the single model approach with a
al. (2009). Columns “sf” and “jf” refer to segmen- simple decoder achieved competitive accuracies to
tation and joint accuracies, respectively. Our systemrhat has been achieved so far by the reranking (Shi

850

and Wang, 2007; Jiang et al., 2008b) models andcknowledgements
an ensemble model using machine-translation tec(}\-/e

niques (Jiang et al., 2008a). This may shed new light thank Canasai Kruengkrai for d|sc953|on on effl-_
.. | . ciency issues, and the anonymous reviewers for their
on joint segmentation amelostagging methods.

. suggestions. Yue Zhang and Stephen Clark are sup-
Kruengkrai et al. (2009) and Zhang and Clark)
(2008) agre the most(simiI;r {0 our sy?stem amon orted by the European Union Seventh Framework

A FP7-1CT-2009-4 -
related work. Both systems use a discriminativel rogramme (CT-2009-4) under grant agree

¥nent no. 247762.
trained linear model to score candidate outputs. The

work of Kruengkrai et al. (2009) is based on Nak-
agawa and Uchimoto (2007), which separates tHeeferences

processing of known WOFdS.and unknown WordSEugene Charniak, Mark Johnson, Micha Elsner, Joseph
and uses a set of segmentation tags to represent the\sterweil, David Ellis, Isaac Haxton, Catherine Hill,

segmentation of characters. In contrast, our model R. Shrivaths, Jeremy Moore, Michael Pozar, and
is conceptually simpler, and does not differentiate Theresa Vu. 2006. Multilevel coarse-to-fine PCFG
known words and unknown words. Moreover, our parsing. InProceedings of HLT/NAACL, pages 168—
model is based on our previous work, in line with 175, New York City, USA, June. Association for Com-
Zhang and Clark (2007), which does not treat word Putational Linguistics.

segmentation as character sequence labeling. Michael Collins and Brian Roark. 2004. Incremental

. . . parsing with the perceptron algorithm. Pnoceedings
Our learning and decoding algorithms are also of ACL, pages 111118, Barcelona, Spain, July.

different from Kruengkrai et al. (2009). While Kru- \jichael Collins. 2002. Discriminative training meth-
engkrai et al. (2009) perform dynamic programming ods for hidden Markov models: Theory and experi-
andMIRA learning, we use beam-search to perform ments with perceptron algorithms. Rroceedings of
incremental decoding, and the early-update version EMNLP, pages 1-8, Philadelphia, USA, July.

of the perceptron algorithm to train the model. DyWenbin Jiang, Liang Huang, Qun Liu, and Yajuad.L
namic programming is exact inference, for which 2008a. A cascgded linear model for joint C_Zhlnese
the time complexity is decided by the locality of word segmentation and part-of-speech tagging. I

. Proceedings of ACL/HLT, pages 897-904, Columbus,
feature templates. In contrast, beam-search is aP-ohio. June.

proximate and can run in linear time. The paramgenpin Jiang, Haitao Mi, and Qun Liu. 2008b. Word
eter updating for our algorithm is conceptually and |attice reranking for Chinese word segmentation and
computationally simpler thamiRA, though its per- part-of-speech tagging. IRroceedings of COLING,
formance can be slightly lower. However, the early- pages 385-392, Manchester, UK, August.

update mechanism we use is consistent with our if-anasai Kruengkrai, Kiyotaka Uchimoto, Jun’ichi

cremental approach, and improves the learning of Kazama, Yiou Wang, Kentaro Torisawa, and Hitoshi
the beam-search process Isahara. 2009. An error-driven word-character hybrid

model for joint Chinese word segmentation and POS
) tagging. InProceedings of ACL/AFNLP, pages 513—
5 Conclusion 521, Suntec, Singapore, August.

) . Tetsuji Nakagawa and Kiyotaka Uchimoto. 2007. A
We showed that a simple beam-search decoding a"hybrid approach to word segmentation and POS tag-

gorithm can be effectively applied to the decoding ging. In Proceedings of ACL Demo and Poster Ses-
problem for a global linear model for joint word sion, Prague, Czech Republic, June.

segmentation angdostagging. By guiding search Hwee Tou Ng and Jin Kiat Low. 2004. Chinese part-of-
with partial word information and performing learn- ~ speech tagging: One-at-a-time or all-at-once? word-
ing for partial candidates, our system achieved sig- Pased or character-based?Riceedings of EMNLP,

nificantly faster speed with little accuracy loss com:, _BarcReIonI?, Sgali<n:t Holinashead. 2008, Classi
pared to the SyStem Of 7&CO08. ran Roark an rsty nollingsnead. . aSSlfy-

ing chart cells for quadratic complexity context-free

The source code of our joint segmentor &S inference. InProceedings of COLING, pages 745—
tagger can be found at: 752, Manchester, UK, August. Coling 2008 Organiz-
www.sourceforge.net/projects/zpar, version 0.4. ing Committee.

851

Yanxin Shi and Mengqiu Wang. 2007. A dual-layer CRF
based joint decoding method for cascade segmentation
and labelling tasks. IProceedings of 1JCAI, Hyder-
abad, India.

Fei Xia, 2000.The part-of-speech tagging guidelines for
the Chinese Treebank (3.0).

Yue Zhang and Stephen Clark. 2007. Chinese segmenta-
tion with a word-based perceptron algorithm. Rro-
ceedings of ACL, pages 840-847, Prague, Czech Re-
public, June.

Yue Zhang and Stephen Clark. 2008. Joint word segmen-
tation and POS tagging using a single perceptron. In
Proceedings of ACL/HLT, pages 888—896, Columbus,
Ohio, June.

852

