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Abstract 

We present a novel approach to distributional-
only, fully unsupervised, POS tagging, based on 
an adaptation of the EM algorithm for the esti-
mation of a Gaussian mixture. In this approach, 
which we call Latent-Descriptor Clustering 
(LDC), word types are clustered using a series 
of progressively more informative descriptor 
vectors. These descriptors, which are computed 
from the immediate left and right context of 
each word in the corpus, are updated based on 
the previous state of the cluster assignments. 
The LDC algorithm is simple and intuitive. Us-
ing standard evaluation criteria for unsupervised 
POS tagging, LDC shows a substantial im-
provement in performance over state-of-the-art 
methods, along with a several-fold reduction in 
computational cost. 

1 Introduction 

Part-of-speech (POS) tagging is a fundamental 
natural-language-processing problem, and POS 
tags are used as input to many important appli-
cations. While state-of-the-art supervised POS 
taggers are more than 97% accurate (Toutanova 
et al., 2003; Tsuruoka and Tsujii, 2005), unsu-
pervised POS taggers continue to lag far behind. 
Several authors addressed this gap using limited 

supervision, such as a dictionary of tags for each 
word (Goldwater and Griffiths, 2007; Ravi and 
Knight, 2009), or a list of word prototypes for 
each tag (Haghighi and Klein, 2006). Even in 
light of all these advancements, there is still in-
terest in a completely unsupervised method for 
POS induction for several reasons. First, most 
languages do not have a tag dictionary. Second, 
the preparation of such resources is error-prone. 
Third, while several widely used tag sets do ex-
ist, researchers do not agree upon any specific 
set of tags across languages or even within one 
language. Since tags are used as basic features 
for many important NLP applications (e.g. 
Headden et al. 2008), exploring new, statistically 
motivated, tag sets may also be useful. For these 
reasons, a fully unsupervised induction algo-
rithm has both a practical and a theoretical val-
ue. 

In the past decade, there has been a steady 
improvement on the completely unsupervised 
version of POS induction (Schütze, 1995; Clark, 
2001; Clark, 2003; Johnson, 2007; Gao and 
Johnson, 2008; Graça et al., 2009; Abend et al., 
2010; Lamar et al., 2010; Reichart et al., 2010; 
Berg-Kirkpatrick et al., 2010). Some of these 
methods use morphological cues (Clark, 2001; 
Clark, 2003; Abend et al., 2010; Reichart et al., 
2010; Berg-Kirkpatrick et al., 2010), but all rely 
heavily on distributional information, i.e., bi-
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gram statistics. Two recent papers advocate non-
disambiguating models (Abend et al., 2010; 
Lamar et al., 2010): these assign the same tag to 
all tokens of a word type, rather than attempting 
to disambiguate words in context. Lamar et al. 
(2010) motivate this choice by showing how 
removing the disambiguation ability from a 
state-of-the-art disambiguating model results in 
increasing its accuracy. 

 
In this paper, we present a novel approach to 
non-disambiguating, distributional-only, fully 
unsupervised, POS tagging. As in all non-
disambiguating distributional approaches, the 
goal, loosely stated, is to assign the same tag to 
words whose contexts in the corpus are similar. 
Our approach, which we call Latent-Descriptor 
Clustering, or LDC, is an iterative algorithm, in 
the spirit of the K-means clustering algorithm 
and of the EM algorithm for the estimation of a 
mixture of Gaussians. 

In conventional K-means clustering, one is 
given a collection of N objects described as N 
data points in an r-dimensional Euclidean space, 
and one seeks a clustering that minimizes the 
sum of intra-cluster squared distances, i.e., the 
sum, over all data points, of the squared distance 
between that point and the centroid of its as-
signed cluster. In LDC, we similarly state our 
goal as one of finding a tagging, i.e., cluster as-
signment, A, that minimizes the sum of intra-
cluster squared distances. However, unlike in 
conventional K-means, the N objects to be clus-
tered are themselves described by vectors—in a 
suitable manifold—that depend on the clustering 
A. We call these vectors latent descriptors. 

Specifically, each object to be clustered, i.e., 
each word type w, is described in terms of its 
left-tag context and right-tag context. These con-
text vectors are the counts of the K different tags 
occurring, under tagging A, to the left and right 
of tokens of word type w in the corpus. We nor-
malize each of these context vectors to unit 
length, producing, for each word type w, two 
points LA(w) and RA(w) on the (K–1)-
dimensional unit sphere. The latent descriptor 
for w consists of the pair (LA(w), RA(w))—more 
details in Section 2. 

A straightforward approach to this latent-
descriptor K-means problem is to adapt the clas-
sical iterative K-means algorithm so as to handle 

the latent descriptors. Specifically, in each itera-
tion, given the assignment A obtained from the 
previous iteration, one first computes the latent 
descriptors for all word types as defined above, 
and then proceeds in the usual way to update 
cluster centroids and to find a new assignment A 
to be used in the next iteration. 

For reasons to be discussed in Section 5, we 
instead prefer a soft-assignment strategy, in-
spired from the EM algorithm for the estimation 
of a mixture of Gaussians. Thus, rather than the 
hard assignment A, we use a soft-assignment 
matrix P. Pwk, interpreted as the probability of 
assigning word w to cluster k, is, essentially, 
proportional to exp{– dwk

2/2σ2}, where dwk is the 
distance between the latent descriptor for w and 
the centroid, i.e., Gaussian mean, for k. Unlike 
the Gaussian-mixture model however, we use 
the same mixture coefficient and the same Gaus-
sian width for all k. Further, we let the Gaussian 
width σdecrease gradually during the iterative 
process. As is well-known, the EM algorithm for 
Gaussian mixtures reduces in the limit of small σ 
to the simpler K-means clustering algorithm. As 
a result, the last few iterations of LDC effec-
tively implement the hard-assignment K-means-
style algorithm outlined in the previous para-
graph. The soft assignment used earlier in the 
process lends robustness to the algorithm. 
 
The LDC approach is shown to yield substantial 
improvement over state-of-the-art methods for 
the problem of fully unsupervised, distributional 
only, POS tagging. The algorithm is conceptu-
ally simple and easy to implement, requiring less 
than 30 lines of Matlab code. It runs in a few 
seconds of computation time, as opposed to 
hours or days for the training of HMMs. 

2 Notations and Statement of Problem 

The LDC algorithm is best understood in the 
context of the latent-descriptor K-means optimi-
zation problem. In this section, we set up our 
notations and define this problem in detail. For 
simplicity, induced tags are henceforth referred 
to as labels, while tags will be reserved for the 
gold-standard tags, to be used later for evalua-
tion. 

Let W denote the set of word types w1,…,wN, 
and let T denote the set of labels, i.e., induced 
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tags. The sizes of these sets are |W| = N and |T| = 
K. In the experiments presented in Section 4, N 
is 43,766 and K is either 50 or 17. For any word 
token t in the corpus, we denote the word type of 
t by w(t). The frequency of word type w in the 

corpus is denoted f(w); thus, w f(w) = 1. 
For a word type w1, the left-word context of 

w1, L(w1), is defined as the N-dimensional vector 
whose n-th component is the number of bigrams, 
i.e., pairs of consecutive tokens (ti–1, ti) in the 
corpus, such that w(ti) = w1 and w(ti–1) = n. Simi-
larly, we define the right-word context of w1, 
R(w1), as the N-dimensional vector whose n-th 
component is the number of bigrams (ti, ti+1) 
such that w(ti) = w1 and w(ti+1) = n. We let L 
(resp. R) be the N×N matrix whose w-th row is 
L(w) (resp. R(w)). 
 
SK–1 is the unit sphere in the K-dimensional 

Euclidean space ℝK. For any xℝK, we denote 
by (x) the projection of x on SK–1, i.e., (x) = 
x/||x||. 
 
A labeling is a map A: W  T. Given a labeling 

A, we define )(
~

1wLA , the left-label context of 
word type w1, as the K-dimensional vector 
whose k-th component is the number of bigrams 
(ti–1, ti) in the corpus such that w(ti) = w1 and 
A(w(ti–1)) = k. We define the left descriptor of 
word type w as: 
 

))(
~

()( wLwL AA  . 
 

We similarly define the right-label context of w1, 

)(
~

1wRA , as the K-dimensional vector whose k-
th component is the number of bigrams (ti, ti+1) 
such that w(ti) = w1 and A(w(ti+1)) = k, and we 
define the right descriptor of word type w as: 
 

))(
~

()( wRwR AA  . 
 

In short, any labeling A defines two maps, LA 
and RA, each from W to SK–1. 
 
For any function g(w) defined on W, g(w) will 
be used to denote the average of g(w) weighted 
by the frequency of word type w in the corpus: 

g(w) w f(w)g(w). 

For any label k, we define: 
 

CL(k) = ( LA(w): A(w) = k ). 
 
Thus, CL(k) is the projection on SK–1 of the 
weighted average of the left descriptors of the 
word types labeled k. We sometimes refer to 
CL(k) as the left centroid of cluster k. Note that 
CL(k) depends on A in two ways, first in that the 
average is taken on words w such that A(w) = k, 
and second through the global dependency of LA 
on A. We similarly define the right centroids: 

 
CR(k)= (RA(w): A(w) = k ). 

 
Informally, we seek a labeling A such that, for 
any two word types w1 and w2 in W, w1 and w2 

are labeled the same if and only if LA(w1) and 
LA(w2) are close to each other on SK–1 and so are 
RA(w1) and RA(w2). Formally, our goal is to find 
a labeling A that minimizes the objective func-
tion: 
 
F(A)=||LA(w)–CL(A(w))||2+||RA(w)–CR(A(w))||2. 
 
Note that, just as in conventional K-means clus-
tering, F(A) is the sum of the intra-cluster 
squared distances. However, unlike conventional 
K-means clustering, the descriptors of the ob-
jects to be clustered depend themselves on the 
clustering. We accordingly refer to LA and RA as 
latent descriptors, and to the method described 
in the next section as Latent-Descriptor Clus-
tering, or LDC.  
 
Note, finally, that we do not seek the global 
minimum of F(A). This global minimum, 0, is 
obtained by the trivial assignment that maps all 
word types to a unique label. Instead, we seek a 
minimum under the constraint that the labeling 
be non-trivial. As we shall see, this constraint 
need not be imposed explicitly: the iterative 
LDC algorithm, when suitably initialized and 
parameterized, converges to non-trivial local 
minima of F(A)—and these are shown to pro-
vide excellent taggers.  

3 Methods 

Recall that a mixture of Gaussians is a genera-
tive model for a random variable taking values 
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in a Euclidean space ℝr. With K Gaussians, the 
model is parameterized by: 
 

 K mixture parameters, i.e., K non-
negative numbers adding up to 1; 

 K means, i.e., K points µ1,…,µK in ℝr; 
 K variance-covariance d×d matrices. 

 
The collection of all parameters defining the 
model is denoted by . EM is an iterative algo-
rithm used to find a (local) maximizer of the 
likelihood of N observed data points x1,…,xN  

ℝr. Each iteration of the algorithm includes an E 
phase and an M phase. The E phase consists of 
computing, based on the current , a probabilis-
tic assignment of each of the N observations to 
the K Gaussian distributions. These probabilistic 
assignments form an NK stochastic matrix P, 
i.e., a matrix of non-negative numbers in which 
each row sums to 1. The M phase consists of 
updating the model parameters θ, based on the 
current assignments P. For more details, see, 
e.g., Bishop (2006). 
 
The structure of the LDC algorithm is very simi-
lar to that of the EM algorithm. Thus, each itera-
tion of LDC consists of an E phase and an M 
phase. As observations are replaced by latent 
descriptors, an iteration of LDC is best viewed 
as starting with the M phase. The M phase first 
starts by building a pair of latent-descriptor ma-
trices LP and RP, from the soft assignments ob-
tained in the previous iteration. Note that these 
descriptors are now indexed by P, the matrix of 
probabilistic assignments, rather than by hard 
assignments A as in the previous section. 

 
LP and RP are obtained by a straightforward ad-
aptation of the definition given in the previous 
section to the case of probabilistic assignments. 
Thus, the latent descriptors consist of the left-
word and right-word contexts (recall that these 
are given by matrices L and R), mapped into 
left-label and right-label contexts through multi-
plication by the assignment matrix P, and scaled 
to unit length: 
 

LP = λ(LP) 
RP = λ(RP). 

 

With these latent descriptors in hand, we pro-
ceed with the M phase of the algorithm as usual. 
Thus, the left mean µL

k for Gaussian k is the 
weighted average of the left latent descriptors 
LP(w), scaled to unit length. The weight used in 
this weighted average is Pwkf(w) (remember 
that f(w) is the frequency of word type w in the 
corpus). Note that the definition of the Gaussian 
mean µL

k parallels the definition of the cluster 
centroid CL(k) given in the previous section; if 
the assignment P happens to be a hard assign-
ment, µL

k is actually identical to CL(k). The right 
Gaussian mean µR

k is computed in a similar 
fashion. As mentioned, we do not estimate any 
mixture coefficients or variance-covariance ma-
trices. 
 
The E phase of the iteration takes the latent de-
scriptors and the Gaussian means, and computes 
a new NK matrix of probabilistic assignments 
P. These new assignments are given by: 
 

}2/]||)(||||)([||exp{
1 222  R

kP
L
kPwk wRwL

Z
P 

 
with Z a normalization constant such that 

k Pwk = 1. σ is a parameter of the model, which, 
as mentioned, is gradually decreased to enforce 
convergence of P to a hard assignment. 
 
The description of the M phase given above 
does not apply to the first iteration, since the M 
phase uses P from the previous iteration. To ini-
tialize the algorithm, i.e., create a set of left and 
right descriptor vectors in the M phase of the 
first iteration, we use the left-word and right-
word contexts L and R. These matrices however 
are of very high dimension (NN), and thus 
sparse and noisy. We therefore reduce their di-
mensionality, using reduced-rank singular-value 
decomposition. This yields two Nr1 matrices, 
L1 and R1. A natural choice for r1 is r1 = K, and 
this was indeed used for K = 17. For K = 50, we 
also use r1 = 17. The left and right descriptors 
for the first iteration are obtained by scaling 
each row of matrices L1 and R1 to unit length. 
The Gaussian centers µL

k and µR
k, k = 1,…,K, are 

set equal to the left and right descriptors of the K 
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most frequent words in the corpus. This com-
pletes the description of the LDC algorithm.1 
 
While this algorithm is intuitive and simple, it 
does not easily lend itself to mathematical 
analysis; indeed there is no a priori guarantee 
that it will behave as desired. Even for the sim-
pler, hard-assignment, K-means-style version of 
LDC outlined in the previous section, there is no 
equivalent to the statement—valid for the con-
ventional K-means algorithm—that each itera-
tion lowers the intra-cluster sum of squared dis-
tances F(A); this is a mere consequence of the 
fact that the descriptors themselves are updated 
on each iteration. The soft-assignment version of 
LDC does not directly attempt to minimize F(A), 
nor can it be viewed as likelihood maximiza-
tion—as is EM for a Gaussian mixture—since 
the use of latent descriptors precludes the defini-
tion of a generative model for the data. This 
theoretical difficulty is compounded by the use 
of a variable σ. 

 
Empirically however, as shown in the next sec-
tion, we find that the LDC algorithm is very well 
behaved. Two simple tools will be used to aid in 
the description of the behavior of LDC. 

The first tool is an objective function G(P) 
that parallels the definition of F(A) for hard as-
signments. For a probabilistic assignment P, we 
define G(P) to be the weighted average, over all 
w and all k, of ||LP(w) – µL

k||
2 + ||RP(w) – µR

k||
2; 

the weight used in this average is Pwkf(w), just 
as in the computation of the Gaussian means. 
Clearly, G is identical to F on any P that hap-
pens to be a hard assignment. Thus, G is actually 
an extension of the objective function F to soft 
assignments. 

The second tool will allow us to compute a 
tagging accuracy for soft assignments. For this 
purpose, we simply create, for any probabilistic 
assignment P, the obvious labeling A = A*(P) 
that maps w to k with highest Pwk. 

4 Results 

In order to evaluate the performance of LDC, we 
apply it to the Wall Street Journal portion of the 

                                                           
                                                          

1 The LDC code, including tagging accuracy evaluation, is 
available at http://www.dam.brown.edu/people/elie/code/. 

Penn Treebank corpus (1,173,766 tokens, all 
lower-case, resulting in N = 43,766 word types). 
We compare the induced labels with two gold-
standard tagsets: 
 

 PTB45, the standard 45-tag PTB tagset. 
When using PTB45 as the gold standard, 
models induce 50 labels, to allow com-
parison with Gao and Johnson (2008) 
and Lamar et al. (2010). 

 
 PTB17, the PTB tagset coarse-grained 

to 17 tags (Smith and Eisner 2005). 
When using PTB17 as the gold standard, 
models induce 17 labels. 

 
In order to compare the labels generated by the 
unsupervised model with the tags of each tagset, 
we use two map-based criteria: 
 

 MTO: many-to-one tagging accuracy, 
i.e., fraction of correctly-tagged tokens 
in the corpus under the so-called many-
to-one mapping, which takes each in-
duced tag to the gold-standard POS tag 
with which it co-occurs most frequently. 
This is the most prevalent metric in use 
for unsupervised POS tagging, and we 
find it the most reliable of all criteria 
currently in use. Accordingly, the study 
presented here emphasizes the use of 
MTO. 

 
 OTO: best tagging accuracy achievable 

under a so-called one-to-one mapping, 
i.e., a mapping such that at most one in-
duced tag is sent to any POS tag. The 
optimal one-to-one mapping is found 
through the Hungarian algorithm2. 

 
2 Code by Markus Beuhren is available at 
http://www.mathworks.com/matlabcentral/fileexchange/65
43-functions-for-the-rectangular-assignment-problem 
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Figures 1 and 2 show the behavior of the LDC 
algorithm for K = 17 and K = 50 respectively. 
From the G curves as well as from the MTO 
scoring curves (using the labeling A*(P) defined 
at the end of Section 3), it is clear that the algo-
rithm converges. The figures show only the first 
15 iterations, as little change is observed after 
that. The schedule of the σ parameter was given 
the simple form (t) = 1exp{–c(t–1)}, t = 
1,2,…, and the parameters 1 and c were ad-
justed so as to get the best MTO accuracy. With 
the -schedules used in these experiments, P 
typically converges to a hard assignment in 
about 45 iterations,  being then 10–5. 

Figure 1: Convergence of LDC with K = 17. Bottom 
curve: σ -schedule, i.e., sequence of Gaussian widths 
employed. Middle curve: Objective function G(P) 
(see Section 3). Top curve: Many-to-one tagging 
accuracy of labeling A*(P), evaluated against 
PTB17. 

While the objective function G(P) mostly de-
creases, it does show a hump for K = 50 around 
iteration 9. This may be due to the use of latent 
descriptors, or of a variable , or both. The 
MTO score sometimes decreases by a small 
fraction of a percent, after having reached its 
peak around the 15th iteration. 

Note that we start  at 0.4 for K = 17, and at 
0.5 for K = 50. Although we chose two slightly 
different σ schedules for the two tagsets in order 
to achieve optimal performance on each tagset, 
an identical sequence of σ can be used for both 
with only a 1% drop in PTB17 score. 

Figure 2: Same as Figure 1 but with K = 50. Top curve 
shows the MTO accuracy of the labeling evaluated 
against PTB45. 

 
As the width of the Gaussians narrows, each 
vector is steadily pushed toward a single choice 
of cluster. This forced choice, in turn, produces 
more coherent descriptor vectors for all word 
types, and yields a steady increase in tagging 
accuracy. 
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Table 1 compares the tagging accuracy of LDC 
with several recent models of Gao and Johnson 
(2008) and Lamar et al. (2010). 

The LDC results shown in the top half of the 
table, which uses the MTO criterion, were ob-
tained with the same -schedules as used in Fig-
ures 1 and 2. Note that the LDC algorithm is 
deterministic. However, the randomness in the 
sparse-matrix implementation of reduced-rank 
SVD used in the initialization step causes a 
small variability in performance (the standard 
deviation of the MTO score is 0.0004 for PTB17 
and 0.003 for PTB45). The LDC results reported 
are averages over 20 runs. Each run was halted 
at iteration 15, and the score reported uses the 
labeling A*(P) defined at the end of Section 3. 

The LDC results shown in the bottom half of 
the table, which uses the OTO criterion, were 
obtained with a variant of the LDC algorithm, in 
which the M phase estimates not only the Gaus-
sian means but also the mixture coefficients. 
Also, different -schedules were used,3 

For both PTB17 and PTB45, and under both 
criteria, LDC's performance nearly matches or 
exceeds (often by a large margin) the results 
achieved by the other models.  We find the large 

                                                           
3 All details are included in the code available at 
http://www.dam.brown.edu/people/elie/code/. 

increase achieved by LDC in the MTO perform-
ance under the PTB45 tagset particularly com-
pelling. It should be noted that Abend et al. 
(2010) report 71.6% MTO accuracy for PTB45, 
but they treat all punctuation tags differently in 
their evaluation and therefore these results can-
not be directly compared. Berg-Kirkpatrick et al. 
(2010) report 75.5% MTO accuracy for PTB45 
by incorporating other features such as mor-
phology; Table 1 is limited to distributional-only 
methods. 

 

 Criterion  Model  PTB17 PTB45 

MTO LDC  0.751 0.708 
  SVD2 0.740 0.658 
  HMM-EM 0.647 0.621 
  HMM-VB 0.637 0.605 

  HMM-GS 0.674 0.660 

OTO LDC 0.593 0.483 
 SVD2 0.541 0.473 
  HMM-EM 0.431 0.405 
  HMM-VB 0.514 0.461 

  HMM-GS 0.466 0.499 
Table 1. Tagging accuracy comparison between 
several models for two tagsets and two mapping 
criteria.  Note that LDC significantly outperforms 
all HMMs (Gao and Johnson, 2008) in every case 
except PTB45 under the OTO mapping.  LDC also 
outperforms SVD2 (Lamar et al., 2010) in all 
cases. 

 

 

Figure 3:  Mislabeled words per tag, using the 
PTB17 tagset. Black bars indicate mislabeled words 
when 17 clusters are used.  Gray bars indicate words 
that continue to be mislabeled even when every word 
type is free to choose its own label, as if each type 
were in its own cluster—which defines the theoreti-
cally best possible non-disambiguating model. Top: 
fraction of the corpus mislabeled, broken down by 
gold tags. Bottom: fraction of tokens of each tag that 
are mislabeled.  Many of the infrequent tags are 
100% mislabeled because no induced label is 
mapped to these tags under MTO.  

Figure 3 demonstrates the mistakes made by 
LDC under the MTO mapping.  From the top 
graph, it is clear that the majority of the missed 
tokens are open-class words – most notably ad-
jectives and adverbs.  Over 8% of the tokens in 
the corpus are mislabeled adjectives – roughly 
one-third of all total mislabeled tokens (25.8%).  
Furthermore, the corresponding bar in the bot-
tom graph indicates that over half of the adjec-
tives are labeled incorrectly.  Similarly, nearly 
4% of the mislabeled tokens are adverbs, but 
every adverb in the corpus is mislabeled because 
no label is mapped to this tag – a common oc-
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currence under MTO, shared by seven of the 
seventeen tags. 

 
Figure 4: The confusion matrix for LDC's labeling under PTB17.  The area of a black square indicates the number 
of tokens in each element of the confusion matrix.  The diamonds indicate the induced tag under the MTO map-
ping.  Several labels are mapped to N (Noun), and one of these labels causes appreciable confusion between nouns 
and adjectives.  Because multiple labels are dedicated to a single tag (N, V and PREP), several tags (in this case 7) 
are left with no label. 

 
To further illuminate the errors made by LDC, 
we construct the confusion matrix (figure 4).  
Element (i,j) of this matrix stores the fraction of 
all tokens of POS tag i that are given label j by 
the model.  In a perfect labeling, exactly one 
element of each row and each column would be 
non-zero.  As illustrated in figure 4, the confu-
sion matrices produced by LDC are far from 
perfect.  LDC consistently splits the Nouns into 
several labels and often confuses Nouns and Ad-
jectives under a single label.  These types of 
mistakes have been observed as well in models 
that use supervision (Haghighi and Klein, 2006).  
 
 
 

5 Discussion 

When devising a model for unsupervised POS 
induction, one challenge is to choose a model of 
adequate complexity, this choice being related to 
the bias-variance dilemma ubiquitous in statisti-
cal estimation problems. While large datasets are 
available, they are typically not large enough to 
allow efficient unsupervised learnability in mod-
els that are powerful enough to capture complex 
features of natural languages. Ambiguity is one 
of these features. Here we propose a new ap-
proach to this set of issues: start with a model 
that explicitly entertains ambiguity, and gradu-
ally constrain it so that it eventually converges 
to an unambiguous tagger.  

Thus, although the algorithm uses probabilis-
tic assignments, of Gaussian-mixture type, the 
goal is the construction of hard assignments. By 
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requiring the Gaussians to be isotropic with uni-
form width and by allowing that width to shrink 
to zero, the algorithm forces the soft assign-
ments to converge to a set of hard assignments. 
Based on its performance, this simulated-
annealing-like approach appears to provide a 
good compromise in the choice of model com-
plexity. 
 
LDC bears some similarities with the algorithm 
of Ney, Essen and Kneser (1994), further im-
plemented, with extensions, by Clark (2003). 
Both models use an iterative approach to mini-
mize an objective function, and both initialize 
with frequent words. However, the model of 
Ney et al. is, in essence, an HMM where each 
word type is constrained to belong to a single 
class (i.e., in HMM terminology, be emitted by a 
single hidden state). Accordingly, the objective 
function is the data likelihood under this con-
strained HMM. This takes into account only the 
rightward transition probabilities. Our approach 
is conceptually rather different from an HMM. It 
is more similar to the approach of Schütze 
(1995) and Lamar et al. (2010), where each 
word type is mapped into a descriptor vector 
derived from its left and right tag contexts. Ac-
cordingly, the objective function is that of the K-
means clustering problem, namely a sum of in-
tra-cluster squared distances. This objective 
function, unlike the likelihood under an HMM, 
takes into account both left and right contexts. It 
also makes use in a crucial way of cluster cen-
troids (or Gaussian means), a notion that has no 
counterpart in the HMM approach. We note that 
LDC achieves much better results (by about 
10%) than a recent implementation of the Ney et 
al. approach (Reichart et al. 2010). 
 
The only parameters in LDC are the two pa-
rameters used to define the σ schedule, and r1 
used in the first iteration. Performance was gen-
erally found to degrade gracefully with changes 
in these parameters away from their optimal val-
ues. When σ was made too large in the first few 
iterations, it was found that the algorithm con-
verges to the trivial minimum of the objective 
function F(A), which maps all word types to a 
unique label (see section 2). An alternative 
would be to estimate the variance for each Gaus-
sian separately, as is usually done in EM for 

Gaussian mixtures. This would not necessarily 
preclude the use of an iteration-dependent scal-
ing factor, which would achieve the goal of 
gradually forcing the tagging to become deter-
ministic. Investigating this and related options is 
left for future work. 
 
Reduced-rank SVD is used in the initialization 
of the descriptor vectors, for the optimization to 
get off the ground. The details of this initializa-
tion step do not seem to be too critical, as wit-
nessed by robustness against many parameter 
changes. For instance, using only the 400 most 
frequent words in the corpus—instead of all 
words—in the construction of the left-word and 
right-word context vectors in iteration 1 causes 
no appreciable change in performance. 
 
The probabilistic-assignment algorithm was 
found to be much more robust against parameter 
changes than the hard-assignment version of 
LDC, which parallels the classical K-means 
clustering algorithm (see Section 1). We ex-
perimented with this hard-assignment latent-
descriptor clustering algorithm (data not shown), 
and found that a number of additional devices 
were necessary in order to make it work prop-
erly. In particular, we found it necessary to use 
reduced-rank SVD on each iteration of the algo-
rithm—as opposed to just the first iteration in 
the version presented here—and to gradually 
increase the rank r. Further, we found it neces-
sary to include only the most frequent words at 
the beginning, and only gradually incorporate 
rare words in the algorithm. Both of these de-
vices require fine tuning. Provided they are in-
deed appropriately tuned, the same level of per-
formance as in the probabilistic-assignment ver-
sion could be achieved. However, as mentioned, 
the behavior is much less robust with hard clus-
tering. 
 
Central to the success of LDC is the dynamic 
interplay between the progressively harder clus-
ter assignments and the updated latent descriptor 
vectors.  We operate under the assumption that if 
all word types were labeled optimally, words 
that share a label should have similar descriptor 
vectors arising from this optimal labeling.  
These similar vectors would continue to be clus-
tered together, producing a stable equilibrium in 
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the dynamic process.  The LDC algorithm dem-
onstrates that, despite starting far from this op-
timal labeling, the alternation between vector 
updates and assignment updates is able to pro-
duce steadily improving clusters, as seen by the 
steady increase of tagging accuracy.   
 
We envision the possibility of extending this 
approach in several ways.  It is a relatively sim-
ple matter to extend the descriptor vectors to 
include context outside the nearest neighbors, 
which may well improve performance. In view 
of the computational efficiency of LDC, which 
runs in under one minute on a desktop PC, the 
added computational burden of working with the 
extended context is not likely to be prohibitive.   
LDC could also be extended to include morpho-
logical or other features, rather than relying ex-
clusively on context.  Again, we would antici-
pate a corresponding increase in accuracy from 
this additional linguistic information.  
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