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Abstract

We introduce a novel training algorithm
for unsupervised grammar induction, called
Zoomed Learning. Given a training setT and
a test setS, the goal of our algorithm is to
identify subset pairsTi, Si of T and S such
that when the unsupervised parser is trained
on a training subsetTi its results on its paired
test subsetSi are better than when it is trained
on the entire training setT . A successful ap-
plication of zoomed learning improves overall
performance on the full test setS.
We study our algorithm’s effect on the leading
algorithm for the task of fully unsupervised
parsing (Seginer, 2007) in three different En-
glish domains,WSJ, BROWN andGENIA, and
show that it improves the parser F-score by up
to 4.47%.

1 Introduction

Grammar induction is the task of learning grammati-
cal structure from plain text without human supervi-
sion. The task is of great importance both for the
understanding of human language acquisition and
since its output can be used by NLP applications,
avoiding the costly and error prone creation of man-
ually annotated corpora. Many recent works have
addressed the task (e.g. (Klein and Manning, 2004;
Seginer, 2007; Cohen and Smith, 2009; Headden et
al., 2009)) and its importance has increased due to
the recent availability of huge corpora.

A basic challenge to this research direction is
how to utilize training data in the best possible
way. Klein and Manning (2004) report results for

their dependency model with valence (DMV) for
unsupervised dependency parsing when it is trained
and tested on the same corpus (both when sentence
length restriction is imposed, such as forWSJ10,
and when it is not, such as for the entireWSJ). To-
day’s best unsupervised dependency parsers, which
are rooted in this model, train on short sentences
only: both Headen et al., (2009) and Cohen and
Smith (2009) train onWSJ10 even when the test set
includes longer sentences.

Recently, Spitkovsky et al., (2010) demonstrated
that training the DMV model on sentences of up to
15 words length yields better results on the entire
section 23 ofWSJ (with no sentence length restric-
tion) than training with the entireWSJcorpus.

In contrast to these dependency models, the
Seginer constituency parser achieves its best perfor-
mance when trained on the entireWSJ corpus ei-
ther if sentence length restriction is imposed on the
test corpus or not. The sentence length restriction
training protocol of (Spitkovsky et al., 2010), harms
this parser. When the parser is trained with the
entire WSJ corpus its F-score performance on the
WSJ10, WSJ20 and the entireWSJ corpora are 76,
64.8 and 56.7 respectively. When training is done
with WSJ10 (WSJ20) performance degrades to 60
(72.2), 37.4 (61.9) and 29.7 (48) respectively.

In this paper we introduce theZoomed Learn-
ing (ZL) technique for unsupervised parser training:
given a training setT and a test setS, it identifies
subset pairsTi, Si of T and S such that when the
unsupervised parser is trained on a training subset
Ti its results on its paired test subsetSi are better
than when it is trained on the entire training setT . A
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successful application of zoomed learning improves
performance on the full test setS.

We describe ZL algorithms of increasing sophis-
tication. In the simplest algorithm the subsets are
randomly selected while in the more sophisticated
versions subset selection is done using a fully unsu-
pervised measure of constituency parse tree quality.

We apply ZL to the Seginer parser, the best al-
gorithm for fully unsupervised constituency parsing.
The input is a plain text corpus without any annota-
tion, not even POS tagging1, and the output is an
unlabeled bracketing for each sentence.

We experiment in three different English do-
mains:WSJ (economic newspaper),GENIA (biolog-
ical articles) andBROWN (heterogeneous domains),
and show that ZL improves the parser F-score by as
much as 4.47%.

2 Related Work

Unsupervised parsing has attracted researchers for
over a quarter of a century (see (Clark, 2001; Klein,
2005) for reviews). In recent years efforts have been
made to evaluate the algorithms on manually anno-
tated corpora such as the WSJ PennTreebank. Re-
cent works on unlabeled bracketing or dependencies
induction include (Klein and Manning, 2002; Klein
and Manning, 2004; Dennis, 2005; Bod, 2006a;
Bod, 2006b; Bod, 2007; Smith and Eisner, 2006;
Seginer, 2007; Cohen et al., 2008; Cohen and Smith,
2009; Headden et al., 2009). Most of the works
above use POS tag sequences, created either manu-
ally or by a supervised algorithm, as input. The only
exception is Seginer’s parser, which induces brack-
eting from plain text.

Our confidence-based ZL algorithms use the
PUPA unsupervised parsing quality score (Reichart
and Rappoport, 2009b). As far as we know,PUPA is
the only unsupervised quality assessment algorithm
for syntactic parsers that has been proposed. Com-
bining PUPAwith Seginer’s parser thus preserves the
fully unsupervised nature of the task.

Quality assessment of a learning algorithm’s out-
put has been addressed for supervised algorithms

1For clarity of exposition, we still refer to this corpus as our
training corpus. In the algorithms presented in this paper, the
test set is included in the training set which is a common prac-
tice in unsupervised parsing.

(see (Caruana and Niculescu-Mizil, 2006) for a sur-
vey) and specifically for supervised syntactic pars-
ing (Yates et al., 2006; Reichart and Rappoport,
2007; Ravi et al., 2008; Kawahara and Uchimoto,
2008). All these algorithms are based on manually
annotated data and thus do not preserve the unsuper-
vised nature of the task addressed in this paper.

We experiment with the Seginer parser for two
reasons. First, this is the best algorithm for the task
of fully unsupervised parsing which motivates us to
improve its performance. Second, this is the only
publicly available unsupervised parser that induces
constituency trees. ThePUPA score we use in our
confidence-based algorithms is applicable for con-
stituency trees only. When additional constituency
parsers will be made available, we will test ZL with
them as well. Interestingly, the results reported for
other constituency models (the CCM model (Klein
and Manning, 2002) and the U-DOP model (Bod,
2006a; Bod, 2006b)) are reported when the parser is
trained on its test corpus even if the sentences is that
corpus are of bounded length (e.g.WSJ10). This
raises the question if using more training data (e.g.
the entireWSJ) wisely can enhance these models.

Recently, Spitkovsky et al., (2010) proposed three
approaches for improvement of unsupervised gram-
mar induction by considering the complexity of the
training data. The approaches have been applied
to the DMV unsupervised dependency parser (Klein
and Manning, 2004) and improved its performance.
One of these approaches is to train the model with
sentences whose length is up to 15 words. As noted
above, such a training protocol fails to improve the
performance of the Seginer parser.

The other approaches in that paper, bootstrapping
via iterated learning of increasingly longer sentences
and a combination of the bootstrapping and the short
sentences approaches, are not directly applicable to
the Seginer parser since its training method cannot
be trivially bootstrapped with parses created in for-
mer steps (Seginer, 2007).

Related machine learning methods.ZL is re-
lated to ensemble methods. Both ZL and such meth-
ods produce multiple learners, each of them trained
on a different subset of the training data, and decide
which learner to use for a particular test instance.
Bagging (Breiman, 1996) and boosting (Freund and
Schapire, 1996), where the experts utilize the same
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learning algorithm and differ in the sample of the
training data they use for its training, were applied
to supervised parsing (Henderson and Brill, 2000;
Becker and Osborne, 2005). In Section 3 we discuss
the connection of ZL to boosting.

Owing to the fact that ZL produces different
learners, it is natural to use it in conjunction with
an ensemble method, which is what we do in this
paper with ourEZL model (Section 3).

ZL is also related to active learning (AL) (Cohn
and Ladner, 1994). AL also uses training subset se-
lection, with the goal of obtaining a faster learning
curve for an algorithm. AL is done in supervised
settings, usually in order to minimize human anno-
tation costs. AL algorithms providing faster learning
than random subset selection for parsing have been
proposed (Reichart and Rappoport, 2009a; Hwa,
2004). However, we are not aware of AL applica-
tions in which theoverall performance on the test
set has been improved. In addition, our application
here is to an unsupervised problem.

Algorithms that utilize unsupervised clustering
for class decomposition in order to improve classi-
fiers’ performance (e.g. (Vilalta and Rish, 2003)) are
related to ZL. In such methods, examples that be-
long to the same class are clustered, and the induced
clusters are considered as separate classes. These
methods, however, have been applied only to super-
vised classification in contrast to our work that ad-
dresses unsupervised structured learning. Moreover,
after class decomposition a classifier is trained with
the entire training data while the subsets identified
by a ZL algorithm are parsed by a parser trained only
with the sentences they contain.

3 Zoomed Learning Algorithms

Zoomed Learning proposes that performance on a
particular test instance might improve if training is
done on a propersubset of the training set. The
ZL view is clearly applicable when the training data
is comprised of subsets originating from different
sources having different natures. If the test data is
also similarly composed, performance on any partic-
ular test instance might improve if training is done
on a training subset coming from the same source.
However, even when the training and test data are
from the same source, a ZL algorithm may capture

fine differences between subsets.
The ZL idea is therefore related to the notions of

in-domain and out-of-domain (domain adaptation).
In the former, the training and test data are assumed
to originate from the same domain. In the latter, the
test data comes from a different domain, and there-
fore has different statistics from the training data.
Indeed, the performance of NLP algorithms in do-
main adaptation scenarios is markedly lower than in
in-domain ones (McClosky et al., 2006).

ZL takes this observation to the extreme, assum-
ing that a similar situation might existeven in in-
domain scenarios. After all, a ‘domain’ is only a
coarse qualification of the nature of a data set. In
NLP, a domain is usually specified as the genre of
the text involved (e.g., ‘newspapers’). However,
there are additional axes that might influence the
statistics obtained from training data, e.g., the syn-
tactic nature of sentences.

This section presents our ZL algorithms. We start
with the simplest possible ZL algorithm where the
subsets are randomly selected. We then describe ZL
algorithms based on quality-based parse selection.
We first detail a basic version and then an extended
version consisting of another level of parse selec-
tion. Finally, we briefly discuss thePUPA quality
measure that we use to evaluate the quality of a parse
tree.

In all versions of the algorithm the input consists
of a setT of N training sentences, a setS ⊆ T of
test sentences, and an integer numberNH ≤ N .

Zoomed Learning with Random Selection
(RZL). The simplest ZL algorithm randomly assigns
each of the training sentences to one ofn sets (n = 2
in this paper). More explicitly, the set number is
drawn from a uniform distribution on{1, 2, . . . n}.
Each set is then parsed by a parser that is trained
only with the sentences contained in that set.

The intuition behind this algorithm is that differ-
ent sets of sentences are likely to manifest differ-
ent syntactic patterns. Consequently, the best way to
learn the syntactic patterns of any given set of sen-
tences might be to train the parser on the sentences
contained in the set.

While simple, in Section 5 it is shown to improve
the performance of the Seginer parser.

The Basic Quality-Based Algorithm (BZL). The
idea of the basic ZL algorithm is that sentences for
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which the parser provides low quality parses man-
ifest different syntactic patterns than the sentences
for which the parser provides high quality parses.
The main challenge is therefore to estimate the qual-
ity of the produced parses without supervision.

The algorithm has three stages. In the first, we
create the fully-trained model by training the parser
using all of theN sentences ofT . We then parse
theseN sentences using the fully-trained model.

In the second, we compute a parse confidence
score for each of theN sentences, based on theN

parses produced in the first stage. We divide the
training sentences to two subsets: a high quality sub-
set H consisting of the top scoredNH sentences,
and a lower quality subsetL consisting of the other
NL = N −NH sentences.

As is common practice for this problem (Klein
and Manning, 2004; Seginer, 2007), the test set is
contained in the training set. This methodology is
a valid one because the training set is unannotated.
Our test set is thus naturally divided into two sub-
sets, a high quality subsetHT consisting of the test
set sentences contained inH and a lower quality
subsetLT consisting of the test set sentences con-
tained inL.

In the third stage, each of the test subsets is parsed
by a model trained only on its corresponding train-
ing subset. This stage is motivated by our assump-
tion that the high and low quality subsets manifest
dissimilar syntactic patterns, and consequently the
statistics of the parser’s parameters suitable for one
subset differ from those suitable for another.

We compute the confidence score in the second
stage using the unsupervisedPUPA algorithm (Re-
ichart and Rappoport, 2009b). POS tags for it are
induced using the fully unsupervised algorithm of
Clark (2003). The parser we experiment with is the
incremental parser of Seginer (2007), whose input
consists of raw sentences and does not include any
kind of supervised POS tags (created either manu-
ally or by a supervised algorithm). Consequently,
our algorithm is fully unsupervised. The only pa-
rameter it has isNH but ZL improves parser perfor-
mance for mostNH values.

BZL is related to boosting. In boosting after train-
ing one member of the ensemble, examples are re-
weighted such that examples that are classified cor-
rectly are down-weighted.BZL does something sim-

ilar: it usesPUPA to estimate which sentences are
given high quality parse trees, and down-weights ex-
amples with high (low)PUPA score to 0 when train-
ing theL-trained (H-trained) model. However, in
boosting the entire test set is annotated by the same
learning model, while ZL parses each test subset
with a model trained on its corresponding training
subset.

The Extended Quality-Based Algorithm (EZL).
The basic algorithm produces an ensemble of two
parsing experts: the one trained onH and the one
trained onL. It uses the ensemble to parse the test
set by applying theH-trained expert toHT and the
L-trained expert toLT . Naturally, there are other
ways to utilize the ensemble to parse the test set. In
addition, even if parse trees generated by the experts
are better with high probability than those of the
fully trained parser, they are not guaranteed to be so.
The fully trained parser is therefore also a valuable
member in the ensemble. Consequently, we intro-
duce an extended zoomed learning algorithm (EZL).

The extended version is implemented as a final
fourth stage of the previously described basic algo-
rithm. In this stage, the two test subsets are parsed
by the fully trained parsing model, in addition to be-
ing parsed by the zooming parsing models. We now
have two parses for each test sentences: PZ(s), the
parse created by a parser trained with the sentences
contained in its corresponding training subset, and
PF (s), created by the fully trained parser.

For each of the two parses of each test sentence,
a confidence score is computed byPUPA. As will
be reviewed below,PUPA uses aset of parsed sen-
tences to compute the statistics on which its scores
are based. Therefore, there are two sources for a dif-
ference between the scores of the two parse trees of a
given test sentence: the difference between the trees
themselves, and the difference between the parses of
the other sentences in the set.

The PUPA score forPZ(s) is computed using the
parses created for the sentences contained in the test
subset ofs by a parser trained with the correspond-
ing training subset. ThePUPA score forPF (s) is
computed using the parses created for the entire test
set by the fully trained parser.

The algorithm now outputs a final parse by select-
ing for each sentence the parse tree having the higher
PUPA score.
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The PUPA Confidence Score.In the second and
fourth stages of the confidence-based algorithms, an
unsupervised confidence score is computed for each
of the induced parse trees. The confidence score
algorithm we use is the POS-based Unsupervised
Parse Assessment (PUPA) algorithm (Reichart and
Rappoport, 2009b). We provide here a brief descrip-
tion of this algorithm.

The input toPUPA is a setI of parsed sentences,
and its output consists of a confidence score in[0, 1]
assigned to each sentence inI.

The PUPA algorithm collects statistics of the syn-
tactic structures (parse tree constituents) contained
in the setI of parsed sentences. The constituent rep-
resentation is based on the POS tags of the words in
the yield of the constituent and of the words in the
yields of neighboring constituents. We follow Re-
ichart and Rappoport (2009b) and induce the POS
tags using the fully unsupervised POS induction al-
gorithm of Clark (2003).

The algorithm then goes over each individual tree
in the setI and scores it according to the collected
statistics ThePUPA algorithm is guided by the idea
that syntactic structures that are frequently created
by the parser are more likely to be correct than struc-
tures the parser produces less frequently. Therefore,
constituents that are more frequent in the setI re-
ceive higher scores after proper regularization is ap-
plied to prevent potential biases. The tree score is a
combination of the scores of its constituents.

Full details of thePUPA algorithm are given in
(Reichart and Rappoport, 2009b). The resulting
score was shown to be strongly correlated with the
extrinsic quality of the parse tree, defined to be its F-
score similarity to the manually created (gold stan-
dard) parse tree of the sentence.

4 Experimental Setup

We experimented with three English corpora: the
WSJ Penn Treebank (Marcus et al., 1993) consist-
ing of economic newspaper texts, theBROWN cor-
pus (Francis and Kucera, 1979) consisting of texts
of various English genres (e.g. fiction, humor, ro-
mance, mystery and adventure) and theGENIA cor-
pus (Kim et al., 2003) consisting of abstracts of sci-
entific articles from the biological domain. All cor-
pora were stripped of all annotation (bracketing and

POS tags).
For all corpora we report the parser perfor-

mance on the entire corpus (WSJ: 49206 sentences,
BROWN: 24243 sentences,GENIA: 4661 sentences).
For WSJ we also provide an analysis of the per-
formance of the parser when applied to sentences
of bounded length. These sub-corpora are WSJ10
(7422 sentences), WSJ20 (25522 sentences) and
WSJ40 (47513 sentences) where WSJY denotes
the subset of WSJ containing sentences of length at
most Y (excluding punctuation).

Seginer’s parser achieves its best reported results
when trained on the full WSJ corpus. Consequently,
for all corpora, we compare the performance of the
parser when trained with the ZL algorithms to its
performance when trained with the full corpus.

The POS tags required as input by thePUPA al-
gorithm are induced by the fully unsupervised POS
induction algorithm of Clark (2003)2. Reichart and
Rappoport (2009b) demonstrated an unsupervised
technique for the estimation of the number of in-
duced POS tags with which the correlation between
PUPA’s score and the parse F-score is maximized.
When exploring an experimental setup identical to
our WSJ setup, they set the number of induced tags
to be 5. We therefore induced 5 POS tags for each
corpus, using all its sentences as input for Clark’s al-
gorithm. Our implementation of thePUPA algorithm
will be made available on line.

For each corpus we performedK experiments
with each of the three ZL algorithms, whereK
equals to the number of sentences in the corpus di-
vided by 1000 (rounded upwards). In each experi-
ment the size of the high qualityH and lower quality
L training subsets is different.H consists of theNH

top ranked sentences according toPUPA (or NH ran-
domly selected sentences for RZL), withNH chang-
ing from 1000 upwards in steps of 1000.L consists
of the rest of the sentences in the training corpus
(WSJ). The results reported forRZL are averaged
over 10 runs.

We report the parser performance on the test cor-
pus for each training protocol. Following the un-
supervised parsing literature multiple brackets and
brackets covering a single word are not counted, but
the sentence level bracket is. We exclude punctua-

2www.cs.rhul.ac.uk/home/alexc/RHUL/Downloads.html
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WSJ10, F(Full) = 76 WSJ20, F(Full) = 64.82 WSJ40, F(Full) = 57.54 WSJ, F(Full) = 56.7
NH 25% 50% 75% 25% 50% 75% 25% 50% 75% 25% 50% 75%
EZL 76.38 76.80 76.14 65.75 66.14 65.66 58.32 58.75 58.56 57.47 57.90 57.73

+0.38 +0.80 +0.14 +0.93 +1.30 +0.82 +0.78 +1.21 +1.02 +0.77 +1.20 + 1.13
BZL 75.07 75.78 75.02 65.08 65.74 64.79 58.13 58.70 58.21 57.30 57.88 57.66

-0.93 -0.22 -0.98 +0.26 +0.92 -0.03 +0.59 +1.16 +0.67 +0.60 +1.18 +1.06
RZL 75.41 75.00 75.32 64.43 64.66 65.32 57.27 57.63 58.39 56.44 56.84 57.59

-0.59 -1.00 -0.68 -0.39 -0.16 +0.50 -0.27 +0.09 +0.85 -0.26 +0.14 +0.89

WSJ10 WSJ20 WSJ40 WSJ
|LT | 10% 20% 30% 10% 20% 30% 10% 20% 30% 10% 20% 30%
EZL 1.32 0.95 0.61 2.98 3.13 1.76 2.60 2.80 2.62 2.44 2.40 2.50

BZL 0.37 0.80 0.53 2.38 3.12 1.23 2.34 3.20 3.35 2.28 2.50 3.23

RZL -2.10 -1.88 -1.20 -0.91 -0.50 0.72 0.30 0.35 1.50 0.34 0.50 1.60

Table 1: Performance of theEZL, BZL andRZL algorithms in theWSJ experiments (results forBROWN andGENIA

are shown in Table 2). Results are presented for four test corporaWSJ10, WSJ20, WSJ40 and the entireWSJ. Top
table: Results for various values ofNH (the number of sentences in the high quality training subset). Evaluation
is performed for all sentences in the test corpora. For each algorithm, the top line is its F-score performance and
the bottom line is the difference from the F-score of the fully-trained Seginer parser (denoted by F(Full)). TheEZL

algorithm is superior.Bottom table: Results for various lower quality test subsets. Presented are the differences from
the F-score of the fully-trained Seginer parser. The test subsets selected by different algorithms for a specificNH

value are not necessarily identical and for the sub-corporathey are not necessarily of identical size. Reported are the
improvements for theLT ’s of smallest size which is over 10%, 20%, and 30% of the test corpus (the top table reports
results for the entire test set, which is why we can report F-scores there). TheLT set size is denoted with|LT |.

tion and null elements as in (Klein, 2005). To evalu-
ate the quality of a parse tree with respect to its gold
standard, the unlabeled parsing F-score is used.

5 Results

Entire Corpus Results. We start by discussing
the effect of ZL on the performance of the Seginer
parser when no length restriction is imposed on the
test corpus sentences (WSJ, BROWN andGENIA).

Table 1 (top, right section, forWSJ), Figure 1 (top
line, right graph, forWSJ), and Table 2 (the left sec-
tion of each table, top table forBROWN and bot-
tom table forGENIA) present the difference between
the F-score performance of the Seginer parser when
trained with the ZL algorithms and the parser’s per-
formance when trained with the entire corpus.

For all test corpora and sizes of the high quality
training subset (NH ), zoomed learning improves the
parser performance. ZL improves the parser perfor-
mance by 1.13% (WSJ), 1.46% (BROWN, the number
does not appear in the table) and 4.47% (GENIA).

ForWSJ, the most substantial improvement is pro-

vided byEZL, while for BROWN andGENIA the best
results for someNH values are achieved byBZL and
for others byEZL (and for GENIA with small NH

values even byRZL).
Note, that for all three corpora zoomed learning

with random selection (RZL) improves the parser
performance on the entire test corpus, although to a
lesser extent than confidence-based ZL. This is true
for almost allNH values, including those that do not
appear in the tables. See Figure 1 (top line, right-
most graph) forWSJ.

We follow the unsupervised parsing literature and
provide performance analysis for WSJ sentences of
bounded length (WSJ10, WSJ20 andWSJ40). To
prevent clutter, forBROWN and GENIA we report
only entire corpus results.

Table 1 (top, left three sections) and Figure 1
(top line, three leftmost graphs) present results for
WSJ10, WSJ20 andWSJ40.

The result patterns for the sub-corpora are similar
to those reported for the entireWSJcorpus.EZL and
BZL both improve over the fully-trained parser, and
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BROWN ENTIRE CORPUS(F = 57.19) LT HT
NH 10% 30% 50% 70% 10% 30% 50% 70% 10% 30% 50% 70%

EZL 0.55 0.69 0.64 0.66 0.65 0.82 1.15 1.31 -1.44 -0.03 0.04 0.30
BZL 1.11 0.80 0.02 -0.10 1.42 1.20 0.76 0.51 -4.80 -1.30 -0.79 -0.37
RZL 0.257 0.755 0.49 0.24 0.23 0.75 0.60 0.53 0.44 0.76 0.42 0.12

GENIA ENTIRE CORPUS(F = 42.71) LT HT
NH 10% 30% 50% 70% 10% 30% 50% 70% 10% 30% 50% 70%

EZL 0.01 0.83 1.10 1.66 -0.01 0.76 0.80 3.37 0.34 1.00 1.40 1.55
BZL -0.46 1.40 2.74 4.47 -0.54 0.40 0.96 4.09 0.42 4.29 4.60 5.49
RZL 0.61 1.70 2.09 1.99 0.28 2.08 3.30 3.86 3.04 3.22 2.80 1.85

Table 2: Results for theBROWN (top table) andGENIA (bottom table) corpora. Results are presented for the entire
corpus (left column section), the low quality test subset (middle column section,LT ) and the high quality test subset
(right column section,HT ) of each corpus, as a function of the high quality training set size (NH). Since the tables
present entire corpus results, the training and test subsets are identical.

the improvement of the former is more substantial.

Baselines.A key principle of ZL is the selection
of subsets that are better parsed by a parser trained
only with the sentences they contain than with a
parser trained with the entire training corpus. To
verify the importance of this principle we consid-
ered two alternative training protocols.

In the first, the entire test corpus is parsed with
a parser that was trained with a subset of randomly
selected sentences from the training set. We run this
protocol for all three corpora (and for theWSJ sub-
corpora) with various training set sizes and obtained
substantial degradation in the parser performance.
The performance monotonically increases with the
training set size and reached its maximum when the
entire corpus is used. We conclude that using less
training material harms the parser performance if a
test subset is not carefully selected.

The second protocol is the ‘less is more proto-
col of Spitkovsky et al., (2010) in which we parsed
each test corpus using a parser that was trained with
all training sentences of a bounded length. Unlike
in their paper, in which this protocol improves the
perofrmance of theDMV unsupervised dependency
parser (Klein and Manning, 2004), for the Seginer
parser the protocol harms the results. When pars-
ing the entireWSJ with a WSJ10-trained parser or
with a WSJ20-trained parser, the F-score results are
59.99% and 72.22% compared to 76.00% of the
fully-trained parser. ForGENIA the numbers are
15.61 and 35.87 compared to 42.71 and forBROWN

they are 36.05 and 50.02 compared to 57.193.
It is also interesting that sentence length is gen-

erally not a good subset selection criterion for ZL.
When parsingWSJ10 with aWSJ10-trained parser,
F-score results are 59.29 while the F-score of the
fully-trained parser on this corpus is 76.00. The
same phenomenon is observed withWSJ20 (F-score
of 61.90 with WSJ20 training and of 64.82 with
the entireWSJ training), and for theBROWN corpus
(65.01 vs. 69.43 forBROWN10 and 61.90 vs 62.92
for BROWN20). ForGENIA, however, while parsing
GENIA10 with aGENIA10-trained parser harms the
performance (45.28 vs. 60.23), parsingGENIA20
with a GENIA20-trained parser enhances the perfor-
mance (53.23 vs. 50.00).

These results emphasize the power of random se-
lection for ZL as random selection does provide a
good selection criterion.

LT vs. HT. In what follows we analyze the ZL
algorithms aiming to characterize their strengths and
weaknesses.

Table 1 (bottom), the middle and right sections
of Table 2 (both tables) and Figure 1 (second and
third lines) present the performance of the ZL algo-
rithms on the lower quality and higher quality test
subsets (LT andHT ). The results patterns forWSJ

andBROWN are different than those ofGENIA.
For WSJ (and its sub-corpora) andBROWN,

3We repeated this protocol multiple times for each corpus,
training the parser with sentences of length 5 to 45 in steps of 5.
In all cases we observed performance degradation compared to
the fully-trained parser.
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Figure 1: WSJ results.Top Three Lines: Difference in F-score performance of the Seginer parser between training
with ZL and training with the entireWSJ corpus. Results are presented for the entire corpus (top line), the lower
quality test subset (LT , middle line) and the higher quality test subset (HT , bottom line) as a function of the size of
the high quality training subsetX = NH , measured in sentences. The curve with triangles is for the extended zoomed
learning algorithm (EZL), the solid curve is for the basic zoomed learning algorithm(BZL) and the dashed curve is
for zoomed learning with random selection (RZL). Bottom line: Comparison between the performance of the Seginer
parser with theEZL algorithm (curves with triangles) and when subset selection is performed using the oracle F-score
of the trees (solid curves). F-score differences from the performance of the fully trained parser are presented for the
WSJ test corpus as a function ofNH , the high quality training subset size. Oracle selection issuperior for the lower
quality subset but inferior for the high quality subset.

confidence-based ZL (BZL andEZL) provides a sub-
stantial improvement forLT . For WSJ, F-score im-
provement is up to 1.32% (WSJ10), 3.13% (WSJ20),
3.35% (WSJ40) and 3.23% (the entireWSJ). For
BROWN the improvement is up to 1.42%.

For HT , confidence-based ZL is less effective
when these corpora are considered. As indicated
in the third line of Figure 1, forWSJ and its sub-
corpora,EZL leads to a small improvement onHT ,
while BZL generally leads to a performance degra-
dation on this test subset. ForBROWN (the right sec-
tion of Table 2 (top)), confidence-based ZL gener-

ally leads to a performance degradation onHT .
For GENIA, EZL andBZL improve the parser per-

formance on bothLT andHT for mostNH values.
Understanding this difference is a subject for future
research. Our initial hypothesis is that due to the
relative small size of theGENIA corpus (4661 sen-
tences compared 24243 and 49206 sentences ofWSJ

and BROWN respectively), there is more room for
improvement in the parser performance on this cor-
pus, and consequently ZL improves on both sets.

Oracle Analysis. Confidence-based ZL is based
on the idea that sentences for which the fully-trained
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parser provides parses of similar quality manifest
similar syntactic patterns. Consequently, the parser
performance on a set of such sentences can be im-
proved if it is trained only with the sentences con-
tained in the set. An oracle experiment, where se-
lection is based on the F-score computed using the
gold standard tree instead of on thePUPA score, can
shed light on the validity of this idea.

Figure 1 (bottom line) compares the performance
of EZL with that of the oracle-based zoomed learn-
ing algorithm when the test corpus is the entire WSJ.
For the low quality test subset, oracle selection is
dramatically better than confidence-based selection.
For the high quality test subset the opposite pattern
holds, that is,EZL is superior. These differences lead
to the entire corpus pattern whereEZL is superior for
mostNH values.

Oracle-based and confidence-based zoomed
learning demonstrate the same trend: they improve
over the baseline forLT much more than forHT .
For HT , oracle-based ZL even harms results and
so doesBZL, which does not benefit from the
averaging effect ofEZL. The magnitude of the
effect of oracle-based zoomed learning is much
stronger. These results support our idea that training
the parser on a set selected by a well-designed
confidence test leads to improvement of the parser
performance for the selected sentences when the
fully-trained parser produces parses of mediocre
quality for them.

Integration of the experimental results for zoomed
learning with the three selection methods: random,
confidence-based and oracle-based leads to an im-
portant conclusion that should guide future research.
The more accurate the confidence score used by the
zoomed learning algorithm, the more substantial is
the performance improvement for the low quality
test subset, at the cost of more substantial degrada-
tion in the performance on the high quality subset
(but recall the differentGENIA pattern which should
be further explored).

EZL Variants. For confidence-based ZL we ex-
plored two methods for utilizing the ensemble mem-
bers for generating a final parse tree for each of the
test sentences. InBZL, theL-trained parser and the
H-trained parser generate parse trees forLT and
HT sentences respectively. InEZL, for each sen-
tence the final parse is selected between the parse

created by a parser trained with the sentences con-
tained in its corresponding training subset, and the
parse created by the fully trained parser.

There are other ways to use the ensemble mem-
bers. While for all corpora it is beneficial to use
the L-trained parser for the low quality test subset
(LT ), the results forWSJ andBROWN imply that it
might be better to use the fully-trained parser or the
EZL algorithm to parse the high quality test subset
(HT ). We have experimented with these methods
and got only a minor improvement over the results
reported here (improvement is more substantial for
BROWN than forWSJ but does not exceed 0.5% for
both). This can also be inferred from the relative
minor performance degradation ofBZL andEZL on
HT .

We also explored a ZL scenario in which the en-
tire test set is parsed either by theH-trained parser
or by theL-trained parser. These protocols result in
substantial degradation in parser performance (com-
pared to the fully-trained parser) since the perfor-
mance of theH-trained parser onLT and the per-
formance of theL-trained parser onHT are poor.

6 Conclusions

We introduced zoomed learning – a training algo-
rithm for unsupervised parsers. We applied three
variants of ZL to the best fully unsupervised pars-
ing algorithm (Seginer, 2007) and show an improve-
ment of up to 4.47% in three English domains:WSJ,
BROWN andGENIA.

Future research should focus on the development
of more accurate estimators of parser output qual-
ity, and experimentation with different corpora, lan-
guages and parsers.

Developing a quality assessment algorithm for de-
pendency trees will allow us to apply confidence-
based ZL to unsupervised dependency parsing. Par-
ticularly, it will enable us to explore the combina-
tion of the methods proposed in (Spitkovsky et al.,
2010) with ZL for the DMV model and to integrate
thePUPA score into their bootstrapping algorithm.

Another direction is to apply ZL to other NLP
tasks and ML areas, supervised and unsupervised.
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