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Abstract

We introduce a novel training algorithm
for unsupervised grammar induction, called
Zoomed Learning. Given a training sef” and

a test setS, the goal of our algorithm is to
identify subset paird;, S; of T and S such
that when the unsupervised parser is trained
on a training subsét; its results on its paired
test subses; are better than when it is trained
on the entire training séf. A successful ap-
plication of zoomed learning improves overall
performance on the full test s&t

We study our algorithm’s effect on the leading
algorithm for the task of fully unsupervised
parsing (Seginer, 2007) in three different En-
glish domainswsJ BROWN andGENIA, and
show that it improves the parser F-score by up
t0 4.47%.
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their dependency model with valence (DMV) for
unsupervised dependency parsing when it is trained
and tested on the same corpus (both when sentence
length restriction is imposed, such as fasJL0,

and when it is not, such as for the entiksj. To-
day’s best unsupervised dependency parsers, which
are rooted in this model, train on short sentences
only: both Headen et al., (2009) and Cohen and
Smith (2009) train orwsJ10 even when the test set
includes longer sentences.

Recently, Spitkovsky et al., (2010) demonstrated
that training the DMV model on sentences of up to
15 words length yields better results on the entire
section 23 ofwsJ (with no sentence length restric-
tion) than training with the entirevsJcorpus.

In contrast to these dependency models, the
Seginer constituency parser achieves its best perfor-
mance when trained on the entivesJ corpus ei-
ther if sentence length restriction is imposed on the
test corpus or not. The sentence length restriction

Grammar induction is the task of learning grammatitraining protocol of (Spitkovsky et al., 2010), harms

cal structure from plain text without human supervithis parser. When the parser is trained with the
sion. The task is of great importance both for thentire WSJ corpus its F-score performance on the
understanding of human language acquisition andsJL0, ws20 and the entirevsJ corpora are 76,
since its output can be used by NLP application$§4.8 and 56.7 respectively. When training is done
avoiding the costly and error prone creation of marwith wsJl0 (ws20) performance degrades to 60
ually annotated corpora. Many recent works havé2.2), 37.4 (61.9) and 29.7 (48) respectively.
addressed the task (e.g. (Klein and Manning, 2004; In this paper we introduce th#oomed Learn-
Seginer, 2007; Cohen and Smith, 2009; Headden ieig (ZL) technique for unsupervised parser training:
al., 2009)) and its importance has increased due tfven a training sef” and a test sef, it identifies
the recent availability of huge corpora. subset paird;, S; of T and .S such that when the

A basic challenge to this research direction isinsupervised parser is trained on a training subset
how to utilize training data in the best possibleT; its results on its paired test subsgtare better
way. Klein and Manning (2004) report results forthan when itis trained on the entire training $etA
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successful application of zoomed learning improvegee (Caruana and Niculescu-Mizil, 2006) for a sur-
performance on the full test sét vey) and specifically for supervised syntactic pars-

We describe ZL algorithms of increasing sophising (Yates et al., 2006; Reichart and Rappoport,
tication. In the simplest algorithm the subsets ar@007; Ravi et al., 2008; Kawahara and Uchimoto,
randomly selected while in the more sophisticate@008). All these algorithms are based on manually
versions subset selection is done using a fully uns@nnotated data and thus do not preserve the unsuper-
pervised measure of constituency parse tree qualityised nature of the task addressed in this paper.

We apply ZL to the Seginer parser, the best al- We experiment with the Seginer parser for two
gorithm for fully unsupervised constituency parsingreasons. First, this is the best algorithm for the task
The input is a plain text corpus without any annotaof fully unsupervised parsing which motivates us to
tion, not even POS taggiﬁg and the output is an improve its performance. Second, this is the only
unlabeled bracketing for each sentence. publicly available unsupervised parser that induces

We experiment in three different English do-constituency trees. TheuPA score we use in our
mains: wsJ (economic newspaperkeNIA (biolog-  confidence-based algorithms is applicable for con-
ical articles) andsROWN (heterogeneous domains),stituency trees only. When additional constituency
and show that ZL improves the parser F-score by &@rsers will be made available, we will test ZL with

much as 4.47%. them as well. Interestingly, the results reported for
other constituency models (the CCM model (Klein
2 Related Work and Manning, 2002) and the U-DOP model (Bod,

2006a; Bod, 2006b)) are reported when the parser is

Unsupervised parsing has attracted researchers {@jined on its test corpus even if the sentences is that
over a quarter of a century (see (Clark, 2001; Kleingorpus are of bounded length (e.gvsa0). This
2005) for reviews). In recent years efforts have beegjses the question if using more training data (e.g.
made to evaluate the algorithms on manually ann@he entirewsJ) wisely can enhance these models.
tated corpora such as the WSJ PennTreebank. ReRecently, Spitkovsky et al., (2010) proposed three
cent works on unlabeled bracketing or dependenciggproaches for improvement of unsupervised gram-
induction include (Klein and Manning, 2002; Klein mar induction by considering the complexity of the
and Manning, 2004; Dennis, 2005; Bod, 2006&aining data. The approaches have been applied
Bod, 2006b; Bod, 2007; Smith and Eisner, 2006o the DMV unsupervised dependency parser (Klein
Seginer, 2007; Cohen et al., 2008; Cohen and Smitgphd Manning, 2004) and improved its performance.
2009; Headden et al., 2009). Most of the workne of these approaches is to train the model with
above use POS tag sequences, created either magéntences whose length is up to 15 words. As noted
ally or by a supervised algorithm, as input. The onlyphove, such a training protocol fails to improve the
exception is Seginer’s parser, which induces braclgerformance of the Seginer parser.
eting from plain text. The other approaches in that paper, bootstrapping

Our confidence-based ZL algorithms use th@ia iterated learning of increasingly longer sentences
PUPA unsupervised parsing quality score (Reichaind a combination of the bootstrapping and the short
and Rappoport, 2009b). As far as we kn@wpAis  sentences approaches, are not directly applicable to
the only unsupervised quality assessment algorithfAe Seginer parser since its training method cannot
for syntactic parsers that has been proposed. Corie trivially bootstrapped with parses created in for-
bining PUPAWith Seginer’s parser thus preserves thener steps (Seginer, 2007).
fully unsupervised nature of the task. Related machine learning methods.ZL is re-

Quality assessment of a learning algorithm’s outiated to ensemble methods. Both ZL and such meth-
put has been addressed for supervised algorithragls produce multiple learners, each of them trained
on a different subset of the training data, and decide

T . . .
For clarity of exposition, we still refer to this corpus as ou : . :
training corpus. In the algorithms presented in this paper, theWhICh learner to use for a particular test instance.

test set is included in the training set which is a common-prad@dding (Breiman, 1996) and boosting (Freund and
tice in unsupervised parsing. Schapire, 1996), where the experts utilize the same

685



learning algorithm and differ in the sample of thefine differences between subsets.
training data they use for its training, were applied The ZL idea is therefore related to the notions of
to supervised parsing (Henderson and Brill, 2000n-domain and out-of-domain (domain adaptation).
Becker and Osborne, 2005). In Section 3 we discugs the former, the training and test data are assumed
the connection of ZL to boosting. to originate from the same domain. In the latter, the
Owing to the fact that ZL produces differenttest data comes from a different domain, and there-
learners, it is natural to use it in conjunction withfore has different statistics from the training data.
an ensemble method, which is what we do in thi$hdeed, the performance of NLP algorithms in do-
paper with ourezL model (Section 3). main adaptation scenarios is markedly lower than in
ZL is also related to active learning (AL) (Cohnin-domain ones (McClosky et al., 2006).
and Ladner, 1994). AL also uses training subset se- ZL takes this observation to the extreme, assum-
lection, with the goal of obtaining a faster learningnd that a similar situation might exigen in in-
curve for an algorithm. AL is done in superviseddomain scenarios. After all, a ‘domain’ is only a
settings, usually in order to minimize human annocoarse qualification of the nature of a data set. In
tation costs. AL algorithms providing faster learningNLP, a domain is usually specified as the genre of
than random subset selection for parsing have be&ie text involved (e.g., ‘newspapers’). However,
proposed (Reichart and Rappoport, 2009a; Hwahere are additional axes that might influence the
2004). However, we are not aware of AL applicaStatistics obtained from training data, e.g., the syn-
tions in which theoverall performance on the test tactic nature of sentences.

set has been improved. In addition, our application This section presents our ZL algorithms. We start
here is to an unsupervised problem. with the simplest possible ZL algorithm where the

Algorithms that utilize unsupervised clusteringSubsets are randomly selected. We then describe ZL

for class decomposition in order to improve classi@/gorithms based on quality-based parse selection.
fiers’ performance (e.g. (Vilalta and Rish, 2003)) ardVe first detail a basic version and then an extended
related to ZL. In such methods, examples that paersion consisting of another level of parse selec-
long to the same class are clustered, and the induc@n. Finally, we briefly discuss theupa quality
clusters are considered as separate classes. Thegasure that we use to evaluate the quality of a parse
methods, however, have been applied only to supdf€e€-

vised classification in contrast to our work that ad- N all versions of the algorithm the input consists
dresses unsupervised structured learning. Moreové¥, @ setl’ of NV training sentences, a setC 1" of
after class decomposition a classifier is trained witfeSt sentences, and an integer numiigr < V.

the entire training data while the subsets identified Zoomed Learning with Random Selection

by a ZL algorithm are parsed by a parser trained onl{RZL). The simplest ZL algorithm randomly assigns

with the sentences they contain. each of the training sentences to one.gets i = 2
in this paper). More explicitly, the set number is
3 Zoomed Learning Algorithms drawn from a uniform distribution of1,2,...n}.

Each set is then parsed by a parser that is trained
Zoomed Learning proposes that performance onanly with the sentences contained in that set.
particular test instance might improve if training is The intuition behind this algorithm is that differ-
done on a propesubset of the training set. The ent sets of sentences are likely to manifest differ-
ZL view is clearly applicable when the training dataent syntactic patterns. Consequently, the best way to
is comprised of subsets originating from differeniearn the syntactic patterns of any given set of sen-
sources having different natures. If the test data tences might be to train the parser on the sentences
also similarly composed, performance on any particzontained in the set.
ular test instance might improve if training is done While simple, in Section 5 it is shown to improve
on a training subset coming from the same sourcéhe performance of the Seginer parser.
However, even when the training and test data are The Basic Quality-Based Algorithm @zL). The
from the same source, a ZL algorithm may captur&lea of the basic ZL algorithm is that sentences for
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which the parser provides low quality parses maniar: it usesPUPA to estimate which sentences are
ifest different syntactic patterns than the sentencegven high quality parse trees, and down-weights ex-
for which the parser provides high quality parsesamples with high (lowpupPA score to 0 when train-
The main challenge is therefore to estimate the qualg the L-trained {H-trained) model. However, in

ity of the produced parses without supervision. boosting the entire test set is annotated by the same

The algorithm has three stages. In the first, wkearning model, while ZL parses each test subset
create the fully-trained model by training the parsewith a model trained on its corresponding training
using all of theN sentences of. We then parse subset.
theselN sentences using the fully-trained model. The Extended Quality-Based Algorithm EzL).

In the second, we compute a parse confidencehe basic algorithm produces an ensemble of two
score for each of thé&v sentences, based on the parsing experts: the one trained éhand the one
parses produced in the first stage. We divide thieained onL. It uses the ensemble to parse the test
training sentences to two subsets: a high quality sulset by applying thed-trained expert tad4’I" and the
set H consisting of the top scoredi; sentences, L-trained expert taL 7. Naturally, there are other
and a lower quality subsédt consisting of the other ways to utilize the ensemble to parse the test set. In
Np = N — Ng sentences. addition, even if parse trees generated by the experts

As is common practice for this problem (Kleinare better with high probability than those of the
and Manning, 2004; Seginer, 2007), the test set fsilly trained parser, they are not guaranteed to be so.
contained in the training set. This methodology i he fully trained parser is therefore also a valuable
a valid one because the training set is unannotateshember in the ensemble. Consequently, we intro-
Our test set is thus naturally divided into two subduce an extended zoomed learning algoritt@aLj.
sets, a high quality subsétT" consisting of the test  The extended version is implemented as a final
set sentences contained i and a lower quality fourth stage of the previously described basic algo-
subsetLT consisting of the test set sentences corrithm. In this stage, the two test subsets are parsed
tained inL. by the fully trained parsing model, in addition to be-

In the third stage, each of the test subsets is parset) parsed by the zooming parsing models. We now
by a model trained only on its corresponding trainhave two parses for each test sentesic€,(s), the
ing subset. This stage is motivated by our assumpparse created by a parser trained with the sentences
tion that the high and low quality subsets manifestontained in its corresponding training subset, and
dissimilar syntactic patterns, and consequently thEr(s), created by the fully trained parser.
statistics of the parser’s parameters suitable for one For each of the two parses of each test sentence,
subset differ from those suitable for another. a confidence score is computed bypPA. As will

We compute the confidence score in the secorgk reviewed belowPUPA uses aset of parsed sen-
stage using the unsupervisedpA algorithm (Re- tences to compute the statistics on which its scores
ichart and Rappoport, 2009b). POS tags for it arare based. Therefore, there are two sources for a dif-
induced using the fully unsupervised algorithm oference between the scores of the two parse trees of a
Clark (2003). The parser we experiment with is th@iven test sentence: the difference between the trees
incremental parser of Seginer (2007), whose inpihemselves, and the difference between the parses of
consists of raw sentences and does not include attye other sentences in the set.
kind of supervised POS tags (created either manu- The PuPA score forPy(s) is computed using the
ally or by a supervised algorithm). Consequentlyparses created for the sentences contained in the test
our algorithm is fully unsupervised. The only pa-subset ofs by a parser trained with the correspond-
rameter it has isVy but ZL improves parser perfor- ing training subset. Theupra score for Pr(s) is
mance for mostVy values. computed using the parses created for the entire test

BZL is related to boosting. In boosting after train-set by the fully trained parser.
ing one member of the ensemble, examples are re-The algorithm now outputs a final parse by select-
weighted such that examples that are classified cdng for each sentence the parse tree having the higher
rectly are down-weightedszL does something sim- PUPA score.
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The puPA Confidence Score.In the second and POS tags).
fourth stages of the confidence-based algorithms, anFor all corpora we report the parser perfor-
unsupervised confidence score is computed for eagflance on the entire corpuw/$J 49206 sentences,
of the induced parse trees. The confidence scoROWN: 24243 sentencesENIA: 4661 sentences).
algorithm we use is the POS-based Unsuperviseebr WSJ we also provide an analysis of the per-
Parse AssessmenkpPA) algorithm (Reichart and formance of the parser when applied to sentences
Rappoport, 2009b). We provide here a brief descripf bounded length. These sub-corpora are WSJ10
tion of this algorithm. (7422 sentences), WSJ20 (25522 sentences) and

The input toPUPA is a setl of parsed sentences, WSJ40 (47513 sentences) where WSJY denotes
and its output consists of a confidence scor®ji] the subset of WSJ containing sentences of length at
assigned to each sentencein most Y (excluding punctuation).

The puPA algorithm collects statistics of the syn-  Seginer’s parser achieves its best reported results
tactic structures (parse tree constituents) contain@chen trained on the full WSJ corpus. Consequently,
in the setl of parsed sentences. The constituent refer all corpora, we compare the performance of the
resentation is based on the POS tags of the wordsparser when trained with the ZL algorithms to its
the yield of the constituent and of the words in thgerformance when trained with the full corpus.
yields of neighboring constituents. We follow Re- The POS tags required as input by therA al-
ichart and Rappoport (2009b) and induce the POgorithm are induced by the fully unsupervised POS
tags using the fully unsupervised POS induction aknduction algorithm of Clark (2003) Reichart and
gorithm of Clark (2003). Rappoport (2009b) demonstrated an unsupervised

The algorithm then goes over each individual tre¢éechnique for the estimation of the number of in-
in the setl and scores it according to the collectedduced POS tags with which the correlation between
statistics TherupPA algorithm is guided by the idea PUPA's score and the parse F-score is maximized.
that syntactic structures that are frequently creatéYhen exploring an experimental setup identical to
by the parser are more likely to be correct than stru@ur wsJ setup, they set the number of induced tags
tures the parser produces less frequently. Therefotte, be 5. We therefore induced 5 POS tags for each
constituents that are more frequent in the ee- corpus, using all its sentences as input for Clark’s al-
ceive higher scores after proper regularization is agorithm. Our implementation of threupA algorithm
plied to prevent potential biases. The tree score isvaill be made available on line.
combination of the scores of its constituents. For each corpus we performeld experiments

Full details of thepuPA algorithm are given in with each of the three ZL algorithms, wher€
(Reichart and Rappoport, 2009b). The resultingquals to the number of sentences in the corpus di-
score was shown to be strongly correlated with theided by 1000 (rounded upwards). In each experi-
extrinsic quality of the parse tree, defined to be its Fnent the size of the high quali®y and lower quality
score similarity to the manually created (gold stan{. training subsets is different/ consists of théVy

dard) parse tree of the sentence. top ranked sentences accordingeterA (or Ny ran-
domly selected sentences for RZL), with; chang-
4 Experimental Setup ing from 1000 upwards in steps of 100D.consists

of the rest of the sentences in the training corpus

We experimented with three English corpora: tth J). The results reported fewzL are averaged
wsJ Penn Treebank (Marcus et al., 1993) consisiyyer 10 runs.

ing of economic newspaper texts, tBOWN €O \ye report the parser performance on the test cor-
pus (Francis and Kucera, 1979) consisting of texi5;s for each training protocol. Following the un-

of various English genres (e.g. fiction, humor, rogpepyised parsing literature multiple brackets and
mance, mystery and adventure) and ®ENIA COT-  pyraciets covering a single word are not counted, but

pus (Kim et al., 2003) consisting of abstracts of sCighe sentence level bracket is. We exclude punctua-
entific articles from the biological domain. All cor-

pora were stripped of all annotation (bracketing and 2www.cs.rhul.ac.uk/home/alexc/RHUL/Downloads.html

688



WSJ10, F(Full) = 76 | WSJ20, F(Full) = 64.89 WSJ40, F(Full)=57.54 WSJ, F(Full) = 56.7
Ni| 25% | 50% | 75% | 25% | 50% | 75% | 25% | 50% | 75% | 25% | 50% | 75%
EZL| 76.38 | 76.80 | 76.14 | 65.75 | 66.14 | 65.66 | 58.32 | 58.75 | 58.56 | 57.47 | 57.90 | 57.73
+0.38 | +0.80 | +0.14 | +0.93 | +1.30 | +0.82 | +0.78 | +1.21 | +1.02 | +0.77 | +1.20 | +1.13
BZL| 75.07 | 75.78 | 75.02 | 65.08 | 65.74 | 64.79 | 58.13 | 58.70 | 58.21 | 57.30 | 57.88 | 57.66
-0.93 | -0.22 | -0.98 | +0.26 | +0.92 | -0.03 | +0.59 | +1.16 | +0.67 | +0.60 | +1.18 | +1.06
RzL| 75.41 | 75.00 | 75.32 | 64.43 | 64.66 | 65.32 | 57.27 | 57.63 | 58.39 | 56.44 | 56.84 | 57.59
-0.59 | -1.00 | -0.68 | -0.39 | -0.16 | +0.50 | -0.27 | +0.09 | +0.85 | -0.26 | +0.14 | +0.89

WSJ10 WSJ20 WSJ40 WSJ
|LT] | 10% | 20% | 30% | 10% | 20% | 30% | 10% | 20% | 30% | 10% | 20% | 30%
EZL 132 | 095 (061 |298 |3.13 |1.76 | 260 | 280 | 2.62 | 2.44 | 2.40 | 250

BZL 037 | 080 | 053 | 238 |312 | 123 | 234 |320 |335 |228 |250 |3.23

RZL -2.10 | -1.88 | -1.20 | -0.91 | -0.50 | 0.72 | 0.30 | 0.35 | 1.50 | 0.34 | 0.50 | 1.60

Table 1: Performance of thezL, BzL andRzL algorithms in thewsJexperiments (results fROWN and GENIA

are shown in Table 2). Results are presented for four tegiocawsJil0, ws20, ws#0 and the entirevsa Top
table: Results for various values @fy (the number of sentences in the high quality training sybdevaluation

is performed for all sentences in the test corpora. For elygrithm, the top line is its F-score performance and
the bottom line is the difference from the F-score of theyftithined Seginer parser (denoted by F(Full)). Hre
algorithm is superioBottom table: Results for various lower quality test subsets. Presentethe differences from
the F-score of the fully-trained Seginer parser. The tebsais selected by different algorithms for a spedifig
value are not necessarily identical and for the sub-corffmaare not necessarily of identical size. Reported are the
improvements for thé&T"’s of smallest size which is over 10%, 20%, and 30% of the texiws (the top table reports
results for the entire test set, which is why we can reportdtes there). Th&T set size is denoted witli. T'|.

tion and null elements as in (Klein, 2005). To evaluvided byezL, while for BROWN andGENIA the best

ate the quality of a parse tree with respect to its golesults for soméVy values are achieved BzL and

standard, the unlabeled parsing F-score is used. for others byezL (and for GENIA with small Ny
values even byrzL).

5 Results Note, that for all three corpora zoomed learning

Entire Corpus Results. We start by discussing With random selectionRzL) improves the parser

the effect of ZL on the performance of the Segineperformance on the entire test corpus, although to a

parser when no length restriction is imposed on thlgsser extent than confid'ence-.based ZL. This is true
test corpus sentences€] BROWN andGENIA). for almost allVy values, including those that do not

Table 1 (top, right section, forsJ, Figure 1 (top aPpear in the tables. See Figure 1 (top line, right-
line, right graph, fomsJ, and Table 2 (the left sec- MOSt graph) fowsa
tion of each table, top table fsrowN and bot- We follow the unsupervised parsing literature and
tom table forcENIA) present the difference betweenpProvide performance analysis for WSJ sentences of
the F-score performance of the Seginer parser wh&unded lengthwsil0, ws20 andwsx#0). To
trained with the ZL algorithms and the parser’s perPrevent clutter, forBROWN and GENIA we report
formance when trained with the entire corpus. ~ Only entire corpus results.

For all test corpora and sizes of the high quality Table 1 (top, left three sections) and Figure 1
training subset/;;), zoomed learning improves the (top line, three leftmost graphs) present results for
parser performance. ZL improves the parser perfowsi0, ws20 andwsXO0.
mance by 1.13%sJ), 1.46% BROWN, the number  The result patterns for the sub-corpora are similar
does not appear in the table) and 4.418&1A). to those reported for the entivesJcorpus.EzL and

ForwsJ the most substantial improvement is pro8zL both improve over the fully-trained parser, and
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BROWN ENTIRE CORPUS(F = 57.19) LT HT

Ny 10% [30% [50% [ 70% | 10% | 30% | 50% | 70% | 10% | 30% | 50% | 70%
EZL 0.55 | 069 |0.64 | 066 | 065 | 082 |1.15 |1.31 |-1.44|-0.03 | 0.04 | 0.30
BZL 1.11 | 0.80 |0.02 |-0.10|1.42 |1.20 |0.76 | 0.51 | -4.80 | -1.30 | -0.79 | -0.37
RZL 0.257| 0.755| 0.49 | 0.24 | 0.23 | 0.75 | 0.60 | 0.53 | 0.44 | 0.76 | 0.42 | 0.12
GENIA ENTIRE CORPUS(F = 42.71) LT HT

Ny 10% [ 30% [50% [ 70% | 10% | 30% | 50% | 70% | 10% | 30% | 50% | 70%
EZL 001 (083 |1.10 |166 |-0.01|0.76 | 0.80 |3.37 | 0.34 |1.00 |1.40 | 155
BZL -0.46 | 1.40 | 2.74 | 4.47 | -054 | 040 | 0.96 | 4.09 | 042 | 4.29 | 460 | 5.49
RZL 061 [1.70 | 209 |199 |0.28 |208 |330 |386 |3.04 |322 |280 |1.85

Table 2: Results for therROwN (top table) andsENIA (bottom table) corpora. Results are presented for theeentir
corpus (left column section), the low quality test subset(tie column section.T") and the high quality test subset
(right column sectionHT") of each corpus, as a function of the high quality trainingséee (V). Since the tables
present entire corpus results, the training and test ssiaseidentical.

the improvement of the former is more substantial.they are 36.05 and 50.02 compared to 572.19

Baselines.A key principle of ZL is the selection [t IS @lso interesting that sentence length is gen-
of subsets that are better parsed by a parser traingt!ly not a good subset selection criterion for ZL.
only with the sentences they contain than with §/hen parsingvsil0 with awsJl0-trained parser,
parser trained with the entire training corpus. Tg Score results are 59.29 while the F-score of the

verify the importance of this principle we consid-fully-trained parser on this corpus is 76.00. The
ered two alternative training protocols. same phenomenon is observed with20 (F-score

_ , , _0f 61.90 with wsR0 training and of 64.82 with
In the first, the entire test corpus is parsed W'”Phe entirewsJtraining), and for thesROWN corpus
a parser that was trained with a subset of random}_&L75 01 vs. 69.43 fOBR’OWNlO and 61.90 vs 62.92

selected sentences from the training set. We run t St BROWN20). FOrGENIA, however, while parsing

protocol for all th_ree corpora (and.for thves SUb', GENIA10 with aGENIA10-trained parser harms the
corpora) with various training set sizes and Obtamegerformance (45.28 vs. 60.23), parsiogNIA20

substantial degradation in the parser performanc\%\/ith aGENIA20-trained parser enhances the perfor-
The performance monotonically increases with thﬁ1ance (53.23 vs. 50.00)

training set size and reached its maximum when the 1. < (osuits emphasize the power of random se-

enprg corpus 1s used. We conclude that using I,e?éction for ZL as random selection does provide a
training material harms the parser performance if Sood selection criterion

test subset is not carefully selected. LT vs. HT. In what follows we analyze the ZL

The second protocol is the ‘less is more protoalgorithms aiming to characterize their strengths and
col of Spitkovsky et al., (2010) in which we parsedweaknesses.
each test corpus using a parser that was trained withTable 1 (bottom), the middle and right sections
all training sentences of a bounded length. Unlikef Table 2 (both tables) and Figure 1 (second and
in their paper, in which this protocol improves thethird lines) present the performance of the ZL algo-
perofrmance of the@mv unsupervised dependencyrithms on the lower quality and higher quality test
parser (Klein and Manning, 2004), for the Seginesubsets {7" and HT). The results patterns farsJ
parser the protocol harms the results. When parandsrown are different than those fENIA.

ing the entirewsJ with a wsJl0-trained parser or  For wsJ (and its sub-corpora) an@ROWN,
with aws20-trained parser, the F-score results are— _ S
We repeated this protocol multiple times for each corpus,

59.99% and 72.22% compared to 76.00% of th{araining the parser with sentences of length 5 to 45 in stéps o

fully-trained parser. FOIGENIA the numbers are |, 4l cases we observed performance degradation compared t
15.61 and 35.87 compared to 42.71 andfaDWN  the fully-trained parser.
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Figure 1:wsJresults. Top Three Lines: Difference in F-score performance of the Seginer parsevdesi training
with ZL and training with the entirevsJ corpus. Results are presented for the entire corpus (tep, lihe lower
quality test subset/(T", middle line) and the higher quality test subsHtI{, bottom line) as a function of the size of
the high quality training subsé&f = Ny, measured in sentences. The curve with triangles is fonttemded zoomed
learning algorithm £zL), the solid curve is for the basic zoomed learning algorifsaL) and the dashed curve is
for zoomed learning with random selectiage(.). Bottom line: Comparison between the performance of the Seginer
parser with theezL algorithm (curves with triangles) and when subset seladtigerformed using the oracle F-score
of the trees (solid curves). F-score differences from thréopmance of the fully trained parser are presented for the
wsJtest corpus as a function &f g, the high quality training subset size. Oracle selectiosuigerior for the lower
quality subset but inferior for the high quality subset.

confidence-based ZIs¢L andezL) provides a sub- ally leads to a performance degradationiof’.
stantial improvement foL.7. ForwsJ F-score im- For GENIA, EZL andBzL improve the parser per-
provement is up to 1.32%\sJ10), 3.13% (s20), formance on boti T and HT for most Ny values.
3.35% (vs#0) and 3.23% (the entirevs). For Understanding this difference is a subject for future
BROWN the improvement is up to 1.42%. research. Our initial hypothesis is that due to the
For HT, confidence-based ZL is less effectiverelative small size of th&ENIA corpus (4661 sen-
when these corpora are considered. As indicatddnces compared 24243 and 49206 sentencesof
in the third line of Figure 1, fowsJand its sub- and BROWN respectively), there is more room for
corpora,EzL leads to a small improvement @i, improvement in the parser performance on this cor-
while BzL generally leads to a performance degrapus, and consequently ZL improves on both sets.
dation on this test subset. FBROWN (the right sec- Oracle Analysis. Confidence-based ZL is based
tion of Table 2 (top)), confidence-based ZL generen the idea that sentences for which the fully-trained
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parser provides parses of similar quality manifestreated by a parser trained with the sentences con-
similar syntactic patterns. Consequently, the parséined in its corresponding training subset, and the
performance on a set of such sentences can be igarse created by the fully trained parser.

proved if it is trained only with the sentences con- There are other ways to use the ensemble mem-
tained in the set. An oracle experiment, where Sgsers. while for all corpora it is beneficial to use
lection is based on the F-score computed using the [-trained parser for the low quality test subset
gold sf[andard tree |r_15_tead of_oq thePA score, can (1,7, the results fowsJ andBROWN imply that it
shed light on the validity of this idea. might be better to use the fully-trained parser or the
Figure 1 (bottom line) compares the performancez| algorithm to parse the high quality test subset
of EzL with that of the oracle-based zoomed Iearn( HT). We have experimented with these methods
ing algorithm whgn the test corpus is the entire _VVS_Qand got only a minor improvement over the results
For the low quality test subset, oracle selection IBeported here (improvement is more substantial for
dramatically better than confidence-based selectioprown than forwsJ but does not exceed 0.5% for
For the high quality test subset the opposite patteffoth). This can also be inferred from the relative

holds, thatisgzL is superior. These differences leadmyinor performance degradation BZL andEzL on
to the entire corpus pattern wheteL is superior for .
mostNy values. . .
, We also explored a ZL scenario in which the en-
Oracle-based and confidence-based zoom%d P

. | re test set is parsed either by thetrained parser
learning demonstrate the same trend: they improve P y P

. or by theL-trained parser. These protocols result in
over the baseline foE. 7" much more than foH T y the parse P
aubstantlal degradation in parser performance (com-
For HT, oracle-based ZL even harms results an ) :
. . pared to the fully-trained parser) since the perfor-
so doesBzL, which does not benefit from the )
. . mance of theH -trained parser o1’ and the per-
averaging effect ofezL. The magnitude of the

. ormance of thel-trained parser oft{ T" are poor.
effect of oracle-based zoomed learning is mucL P P

stronger. These results support our idea that training
the parser on a set selected by a well-designe&®l Conclusions
confidence test leads to improvement of the parser

performance for the selected sentences when thge introduced zoomed learning — a training algo-
fully-trained parser produces parses of mediocr§thm for unsupervised parsers. We applied three
quality for them. variants of ZL to the best fully unsupervised pars-

Integration of the experimental results for zoomeghg algorithm (Seginer, 2007) and show an improve-

learning with the three selection methods: randomment of up to 4.47% in three English domaingsJ
confidence-based and oracle-based leads to an igkown andGENIA.

portant conclusion that should guide future research.

. Future research should focus on the development
The more accurate the confidence score used by th{,a .
. . _° .0 more accurate estimators of parser output qual-
zoomed learning algorithm, the more substantial i

. . ﬁy, and experimentation with different corpora, lan-
the performance improvement for the low quality ages and parsers

: u
test subset, at the cost of more substantial degraa%— _ _ _
tion in the performance on the high quality subset Developing a quality assessment algorithm for de-

(but recall the differenGENIA pattern which should Pendency trees will allow us to apply confidence-
be further explored). based ZL to unsupervised dependency parsing. Par-

EzL Variants. For confidence-based ZL we ex_ticularly, it will enable us to explore the combina-
plored two methods for utilizing the ensemble memtion of the methods proposed in (Spitkovsky et al.,

bers for generating a final parse tree for each of tre?10) with ZL for the DMV model and to integrate
test sentences. IBzL, the L-trained parser and the the PUPA score into their bootstrapping algorithm.

H-trained parser generate parse trees figr and Another direction is to apply ZL to other NLP
HT sentences respectively. kErL, for each sen- tasks and ML areas, supervised and unsupervised.
tence the final parse is selected between the parse
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