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Abstract

We address the modeling, parameter estima-
tion and search challenges that arise from the
introduction of reordering models that capture
non-local reordering in alignment modeling.
In particular, we introduce several reordering
models that utilize (pairs of) function words
as contexts for alignment reordering. To ad-
dress the parameter estimation challenge, we
propose to estimate these reordering models
from a relatively small amount of manually-
aligned corpora. To address the search chal-
lenge, we devise an iterative local search al-
gorithm that stochastically explores reorder-
ing possibilities. By capturing non-local re-
ordering phenomena, our proposed alignment
model bears a closer resemblance to state-
of-the-art translation model. Empirical re-
sults show significant improvements in align-
ment quality as well as in translation perfor-
mance over baselines in a large-scale Chinese-
English translation task.

1 Introduction

In many Statistical Machine Translation (SMT) sys-
tems, alignment represents an important piece of in-
formation, from which translation rules are learnt.
However, while translation models have evolved
from word-based to syntax-based modeling, thede
factoalignment model remains word-based (Brown
et al., 1993; Vogel et al., 1996). This gap be-
tween alignment modeling and translation modeling
is clearly undesirable as it often generates tensions
that would prevent the extraction of many useful
translation rules (DeNero and Klein, 2007). Recent
work, e.g. by Blunsom et al. (2009) and Haghihi et

al. (2009) just to name a few, show that alignment
models that bear closer resemblance to state-of-the-
art translation model consistently yields not only a
better alignment quality but also an improved trans-
lation quality.

In this paper, we follow this recent effort to nar-
row the gap between alignment model and trans-
lation model to improve translation quality. More
concretely, we focus on the reordering component
since we observe that the treatment of reordering re-
mains significantly different when comparing align-
ment versus translation: the reordering component
in state-of-the-art translation models has focused
on long-distance reordering, but its counterpart in
alignment models has remained focused on local
reordering, typically modeling distortion based en-
tirely on positional information. This leaves most
alignment decisions to association-based scores.

Why is employing stronger reordering models
more challenging in alignment than in translation?
One answer can be attributed to the fact that align-
ment points are unobserved in parallel text, thus so
are their reorderings. As such, introducing stronger
reordering often further exacerbates the computa-
tional complexity to do inference over the model.
Some recent alignment models appeal to external
linguistic knowledge, mostly by using monolingual
syntactic parses (Cherry and Lin, 2006; Pauls et al.,
2010), which at the same time, provides an approx-
imation of the bilingual syntactic divergences that
drive the reordering. To our knowledge, however,
this approach has been used mainly to constrain re-
ordering possibilities, or to add to the generalization
ability of association-based scores, not to directly
model reordering in the context of alignment.
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In this paper, we introduce a new approach to im-
proving the modeling of reordering in alignment. In-
stead of relying on monolingual parses, we condi-
tion our reordering model on the behavior offunc-
tion words and the phrases that surround them.
Function words are the “syntactic glue” of sen-
tences, and in fact many syntacticians believe that
functional categories, as opposed to substantive cat-
egories like noun and verb, are primarily responsi-
ble for cross-language syntactic variation (Ouhalla,
1991). Our reordering model can be seen as offering
a reasonable approximation to more fully elaborated
bilingual syntactic modeling, and this approxima-
tion is also highly practical, as it demands no exter-
nal knowledge (other than a list of function words)
and avoids the practical issues associated with the
use of monolingual parses, e.g. whether the mono-
lingual parser is robust enough to produce reliable
output for every sentence in training data.

At a glance, our reordering model enumerates
the function words on both source and target sides,
modeling their reordering relative to their neighbor-
ing phrases, their neighboring function words, and
the sentence boundaries. Because the frequency of
function words is high, we find that by predicting the
reordering of function words accurately, the reorder-
ing of the remaining words improves in accuracy as
well. In total, we introduce six sub-models involving
function words, and these serve as features in a log
linear model. We train model weights discrimina-
tively using Minimum Error Rate Training (MERT)
(Och, 2003), optimizing F-measure.

The parameters of our sub-models are estimated
from manually-aligned corpora, leading the reorder-
ing model more directly toward reproducing human
alignments, rather than maximizing the likelihood
of unaligned training data. This use of manual data
for parameter estimation is a reasonable choice be-
cause these models depend on a small, fixed number
of lexical items that occur frequently in language,
hence only small training corpora are required. In
addition, the availability of manually-aligned cor-
pora has been growing steadily.

The remainder of the paper proceeds as follows.
In Section 2, we provide empirical motivation for
our approach. In Section 3, we discuss six sub-
models based on function word relationships and
how their parameters are estimated; these are com-
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Figure 1: An aligned Chinese-English sentence pair.

bined with additional features in Section 4 to pro-
duce a single discriminative alignment model. Sec-
tion 5 describes a simple decoding algorithm to find
the most probable alignment under the combined
model, Section 6 describes the training of our dis-
criminative model and Section 7 presents experi-
mental results for the model using this algorithm.
We wrap up in Sections 8 and 9 with a discussion
of related work and a summary of our conclusions.

2 Empirical Motivation

Fig. 1 shows an example of a Chinese-English sen-
tence pair together with correct alignment points.
Predicting the alignment for this particular Chinese-
English sentence pair is challenging, since the sig-
nificantly different syntactic structures of these two
languages lead to non-monotone reordering. For ex-
ample, an accurate alignment model should account
for the fact that prepositional phrases in Chinese ap-
pear in a different order than in English, as illus-
trated by the movement of the phrase “与北韩/with
North Korea” from the beginning of the Chinese
noun phrase to the end of the corresponding English.

The central question that concerns us here is how
to define and infer regularities that can be useful
to predict alignment reorderings. The approach we
take here is supported by empirical results from a
pilot study, conducted as an inquiry into the idea of
focusing on function words to model alignment re-
ordering, which we briefly describe.

We took a Chinese-English manually-aligned cor-
pus of approximately 21 thousand sentence pairs,
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Figure 2: The all-monotone phrase pairs, indicated as
rectangular areas inbold, that can be extracted from the
Fig. 1 example.

and divided each sentence pair intoall-monotone
phrase pairs. Visually, an all-monotone phrase pair
corresponds to a maximal block in the alignment
matrix for which internal alignment points appear
in monotone order from the top-left corner to the
bottom-right corner. Fig. 2 illustrates seven such
pairs that can be extracted from the example in
Fig. 1. In total, there are 154,517 such phrase pairs
in our manually-aligned corpus.

The alignment configuration internal to all-
monotone phrase pair blocks is, obviously, mono-
tonic, which is a configuration that is effectively
modeled by traditional alignments models. On the
other hand, the reordering between two adjacent
blocks is the focus of our efforts since existing mod-
els are less effective at modeling non-monotonic
alignment configurations. To measure the function
words’ potential to predict non-monotone reorder-
ings, we examined theborderwords where two ad-
jacent blocks meet. In particular, we are interested
in how many adjacent blocks whose border words
are function words.

The results of this pilot study were quite encour-
aging. If we consider only the Chinese side of the
phrase pairs, 88.35% adjacent blocks have function
words as their boundary words. If we consider only
the English side, function words appear at the bor-
ders of 93.91% adjacent blocks. If we consider
both the Chinese and English sides, the percentage
increases to 95.53%. Notice that in Fig. 2, func-

tion words appear at the borders ofall adjacent all-
monotone phrase pairs, if both Chinese and English
sides are considered. Clearly with such high cov-
erage, function words are central in predicting non-
monotone reordering in alignment.

3 Reordering with Function Words

The reordering models we describe follow our previ-
ous work using function word models for translation
(Setiawan et al., 2007; Setiawan et al., 2009). The
core hypothesis in this work is that function words
provide robust clues to the reordering patterns of the
phrases surrounding them. To make this insight use-
ful for alignment, we develop features that score the
alignment configuration of the neighboring phrases
of a function word (which functions as an anchor)
using two kinds of information: 1) the relative order-
ing of the phrases with respect to the function word
anchor; and 2) the span of the phrases. This sec-
tion provides a high level overview of our reordering
model, which attempts to leverage this information.

To facilitate subsequent discussions, we introduce
the notion of monolingual function word phrase
FWi, which consists of the tuple(Yi, Li, Ri), where
Yi is thei-th function word andLi,Ri are its left and
right neighboring phrases, respectively. Note that
this notion of “phrase” is defined only for reorder-
ing purposes in our model, and does not necessar-
ily correspond to a linguistic phrase. We define
such phrases on both sides to cover as many non-
monotone reorderings as possible, as suggested by
the pilot study. To denote the side, we append a sub-
script: FWi,S = (Yi,S , Li,S , Ri,S) refers to a func-
tion word phrase on the source side, andFWi,T =
(Yi,T , Li,T , Ri,T ) to one on the target side. In our
subsequent discussion, we will mainly useFWi,S ,
and we will omit subscriptsS or T if they are clear
from context.

The primary objective of our reordering model
is to predict the projection of monolingual func-
tion word phrases from one language to the
other, inferringbilingual function word phrase pairs
FWi,S→T = (Yi,S→T , Li,S→T , Ri,S→T ), which en-
code the two aforementioned pieces of informa-
tion.1 To infer these phrases, we take a probabilis-

1The subscriptS → T denotes the projection direction from
source to target. The subscript for the other direction isT → S.
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tic approach. For instance, to estimate the spans of
Li,S→T , Ri,S→T , our reordering model assumes that
any span to the left ofYi,S is a possibleLi,S and
any span to the right ofYi,S is a possibleRi,S , de-
ciding which is most probable via features, rather
than committing to particular spans (e.g. as defined
by a monolingual text chunker or parser). We only
enforce one criterion onLi,S→T andRi,S→T : they
have to be themaximalalignment blocks satisfying
the consistent heuristic (Och and Ney, 2004) that end
or start withYi,S→T on the sourceS side respec-
tively.2

To infer these phrases, we decomposeLi,S→T

into (o(Li,S→T ), d(FWi−1,S→T ), b(〈s〉)); sim-
ilarly, Ri,S→T into (o(Ri,S→T ),d(FWi+1,S→T ),
b(〈/s〉) )). Taking the decomposition ofLi,S→T as
a case in point, hereo(Li,S→T ) describes the re-
ordering of the left neighborLi,S→T with respect
to the function wordYi,S→T , while d(FWi−1,S→T )
andb(〈s〉)) probe the span ofLi,S→T , i.e. whether
it goes beyond the preceding function word phrase
pairs FWi−1,S→T and up to the beginning-of-
sentence marker〈s〉 respectively. The same defini-
tion applies to the decomposition ofRi,S→T , where
FWi+1,S→T is the succeeding function word phrase
pair and〈/s〉 is the end-of-sentence marker.

3.1 Six (Sub-)Models

To model o(Li,S→T ), o(Ri,S→T ), i.e. the re-
ordering of the neighboring phrases of a func-
tion word, we employ theorientation model in-
troduced by Setiawan et al. (2007). Formally,
this model takes the form of probability distribution
Pori(o(Li,S→T ), o(Ri,S→T )|Yi,S→T ), which condi-
tions the reordering on the lexical identity of the
function word alignment (but independent of the lex-
ical identity of its neighboring phrases). In particu-
lar, o maps the reordering into one of the following
four orientation values (borrowed from Nagata et al.
(2006)) with respect to the function word: Mono-
tone Adjacent (MA), Monotone Gap (MG), Reverse
Adjacent (RA) and Reverse Gap (RG). The Mono-
tone/Reverse distinction indicates whether the pro-
jected order follows the original order, while the
Adjacent/Gap distinction indicates whether the pro-

2This heuristic is commonly used in learning phrase pairs
from parallel text. The maximality ensures the uniqueness ofL

andR.

jections of the function word and the neighboring
phrase are adjacent or separated by an intervening
phrase.

To modeld(FWi−1,S→T ), d(FWi+1,S→T ), i.e.
whether Li,S→T and Ri,S→T extend beyond the
neighboring function word phrase pairs, we uti-
lize the pairwise dominancemodel of Setiawan
et al. (2009). Taking d(FWi−1,S→T ) as
a case in point, this model takes the form
Pdom(d(FWi−1,S→T )|Yi−1,S→T , Yi,S→T ), whered
takes one of the following four dominance val-
ues: leftFirst, rightFirst, dontCare, or neither.
We will detail the exact formulation of these val-
ues in the next subsection. However, to provide
intuition, the value of eitherleftFirst or neither
for d(FWi−1,S→T ) would suggest that the span of
Li,S→T doesn’t extend toYi−1,S→T ; the further dis-
tinction betweenleftFirst andneither concerns with
whether the span ofRi−1,S→T extends toFWi,S→T .

To modelb(〈s〉), b(〈/s〉), i.e. whether the span of
Li,S→T andRi,S→T extends up to sentence mark-
ers, we introduce theborderwise dominancemodel.
Formally, this model is similar to the pairwise domi-
nance model, except that we use the sentence bound-
aries as the anchors instead of the neighboring
phrase pairs. This model captures longer distance
dependencies compared to the previous two mod-
els; in the Chinese-English case, in particular, it is
useful to discourage word alignments from crossing
clause or sentence boundaries. The sentence bound-
ary issue is especially important in machine trans-
lation (MT) experimentation, since the Chinese side
of English-Chinese parallel text often includes long
sentences that are composed of several independent
clauses joined together; in such cases, words from
one clause should be discouraged from aligning to
words from other clauses. In Fig. 1, this model is
potentially useful to discourage words from cross-
ing the copula “是/is”.

We define each model for all (pairs of) function
word phrase pairs, forming features over a set of
word alignments (A) between source (S) and target
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(T ) sentence pair, as follows:

fori =

N
∏

i=1

Pori(o(Li), o(Ri)|Yi) (1)

fdom =
N
∏

i=2

Pdom(d(FWi−1)|Yi−1, Yi) (2)

fbdom =
N
∏

i=1

Pbdom(b (〈s〉)|〈s〉, Yi) ·

Pbdom(b (〈/s〉)|Yi, 〈/s〉) (3)

whereN is the number of function words (of the
source side, in theS → T case). As the bilingual
function word phrase pairs are uni-directional, we
employ these three models in both directions, i.e.
T → S as well asS → T . As a result, there are
six reordering models based on function words.

3.2 Prediction and Parameter Estimation

Given FWi−1,S→T (and all otherFW∀i′/i,S→T ),
our reordering model has to decomposeLi,S→T into
(o(Li,S→T ), d(FWi−1,S→T ), b(〈s〉)); andRi,S→T

into (o(Ri,S→T ),d(FWi+1,S→T ), b(〈/s〉) )) during
prediction and parameter estimation. In prediction
mode (described in Section 5), it has to make the de-
composition on the current state of alignment, while
during parameter estimation, it has to make the
same decomposition on the manually-aligned cor-
pora. Since the process is identical, we proceed with
the discussion in the context of parameter estima-
tion, where the decomposition is performed to col-
lect counts to estimate the parameters of our models.

Orientation model. Using Li,S→T as a case in
point and given (Yi,S→T =sl

l/tmm, Li,S→T =sl2
l1
/tm2

m1
,

Ri,S→T =sl4
l3
/tm4

m3
)3, the value ofo(Li,S→T ) in terms

of Monotone/Reverse is:

Monotone/Reverse=

{

M, m2 < m,

R, m < m1.
(4)

while its value in terms of Adjacent/Gap values is:

Adjacent/Gap=

{

A, |m−m1| ∨ |m−m2| = 1,

G, otherwise.
(5)

3We use subscripts to indicate the starting index, and super-
scripts the ending index.

By adjusting the indices, the computation of
o(Ri,S→T ) follows similarly to the procedure above.

Suppose we want to estimate the probability of
Li,S→T =MA for a particularYi. Note that here, we
are interested in the lexical identity ofYi, thus the
indexi is irrelevant. We first gather the counts of the
orientation value for allLi,S→T of Yi in the corpus:
c(o(Li,S→T ) ∈ {MA, RA, MG, RG}, Yi). Then
Pori(MA|Yi) is estimated as follows:

Pori(MA|Yi) =
c(MA, Yi)

c(Yi)
(6)

wherec(Yi) is the frequency ofYi in the corpus. The
estimation of other orientation values as well as the
T → S version of the model, follows the same pro-
cedure.

Pairwise and Borderwise dominance models.
Given Ri,S→T = sl2

l1
/tm2

m1
and Li+1,S→T =

sl4
l3
/tm4

m3
, i.e. the spans of the neighbors of a

pair of neighboring function word phrase pairs
(Yi = sl5

l5
/tm5

m5
, Yi+1 = sl6

l6
/tm6

m6
), the value of

d(FWi+1,S→T ) is:

=























leftFirst, l2 ≥ l6
∧

l3 > l5

rightFirst, l2 < l6
∧

l3 ≤ l5

dontCare, l2 ≥ l6
∧

l3 ≤ l5

neither, l2 < l6
∧

l3 > l5

(7)

Note that the neighbors of the sentence markers for
the borderwise models span the whole sentence, thus
value ofneither is impossible for these models.

Suppose we want to estimate the probability ofYi

andYi+1 having adontCare dominance value. Note
that here we are interested in the lexical identity of
Yi andYi+1, thus the models are insensitive to the in-
dices. We first gather the counts of theYi andYi+1

having thedontCare valuec(dontCare, Yi, Yi+1);
thenPdom(dontCare|Yi, Yi+1) is estimated as fol-
lows:

Pdom(dontCare|Yi, Yi+1) =
c(dontCare, Yi, Yi+1)

c(Yi, Yi+1)
(8)

wherec(Yi, Yi+1) is the count ofYi appears after
Yi+1 in the training corpus without any other func-
tion word comes in between.
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4 Alignment Model

To use the function word alignment features de-
scribed in the previous section to predict alignments,
we use a linear model of the following form:

Â = arg max
A∈A(S,T )

θ · f(A, S, T ) (9)

whereA(S, T ) is the set of all possible alignments
of a source sentenceS and target sentenceT , and
f(A, S, T ) is a vector of feature functions onA, S,
andT , andθ is a parameter vector.

In addition to the six reordering models, our
model employs several association-based scores that
look at alignments in isolation. These features in-
clude:

1. Normalized log-likelihood ratio (LLR) . This
feature represents an association score, derived from
statistical testing statistics. LLR (Dunning, 1993)
has been widely used especially to measure lexical
association. Since the values of LLR are unnormal-
ized, we normalize them on a per-sentence basis, so
that the normalized LLRs of, say, a particular source
word to the target words in a particular sentence sum
up to one.

2. Translation table from IBM model 4. This
feature represents another association score, derived
from a generative model, in particular the word-
based IBM model 4. The use of this feature is
widespread in recent alignment models, since it pro-
vides a relatively accurate initial prediction.

3. Translation table from manually-aligned
corpora. This feature represents a gold-standard as-
sociation score, based on human annotation. While
attractive, this feature suffers from data sparse-
ness issues since the lexical coverage of manually-
aligned corpora, especially over content words, is
very low. To overcome this issue, we design this
feature to have two levels of granularity; as such, a
fine-grained one is applied for function words and
the coarse-grained one for content words.

4. Grow-diag-final alignments bonus.This fea-
ture encourages our alignment model to reuse align-
ment points that are part of the alignments created
by the grow-diag-final heuristic, which we used as
the baseline of our machine translation experiments.

5. Fertility model from IBM model 4. This fea-
ture, which is another by-product of IBM model 4,

measures the probability of a certain word aligning
to zero, one, or two or more words.

6. Null-alignment probability. This bino-
mial feature models preference towards not aligning
words, i.e. aligning to the NULL token. The intu-
ition is to penalize NULL alignments depending on
word class, by assigning lower probability mass to
unaligned content words than to unaligned function
words. In our experiment, we assign feature value
10−3 for a function word aligning to NULL, and
10−5 for a content word aligning to NULL.

Note that with the exception of the alignment
bonus feature (4), all features are uni-directional,
and therefore we employ these features in both di-
rections just as was done for the reordering models.

5 Search

To find Â using the model in Eq. 9, it is neces-
sary to search2|S|×|T | different alignment config-
urations, and, because of the non-local dependen-
cies in some of our features, it is not possible to use
dynamic programming to perform this search effi-
ciently. We therefore employ an approximate search
for the best alignment. We use a local search pro-
cedure which starts from some alignment (in our
case, a symmetrized Model 4 alignment) and make
local changes to it. Rather than taking a pure hill-
climbing approach which greedily moves to locally
better configurations (Brown et al., 1993), we use
a stochastic search procedure which can move into
lower-scoring states with some probability, similar
to the Monte Carlo techniques used to draw sam-
ples from analytically intractable probability distri-
butions.

5.1 Algorithm

To find Â, our search algorithm starts with an initial
alignmentA(1) and iteratively draws a new set by
making a few small changes to the current set. For
each stepi = [1, n], with alignmentA(i), a set of
neighboring alignmentsN (A(i)) is induced by ap-
plying small transformations (discussed below) to
the current alignment. The next alignmentA(i+1)
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is sampled from the following distribution:

p(A(i+1)|S, T, A(i)) =
expθ · f(A(i+1), S, T )

Z(A(i), S, T )

whereZ(A(i), S, T ) =
∑

A′∈N (A(i))

expθ · f(A′, S, T )

In addition to the current ‘active’ alignment configu-
rationA(i), the algorithm keeps track of the highest
scoring alignment observed so far,Amax. After n
steps, the algorithm returnsAmax as its approxima-
tion of Â. In the experiments reported below, we
initialized A(1) with the Model 4 alignments sym-
metrized by using thegrow-diag-final-andheuristic
(Koehn et al., 2003).

5.2 Alignment Neighborhoods

We now turn to a discussion of how the alignment
neighborhoods used by our stochastic search algo-
rithm are generated. We define three local transfor-
mation operations that apply to single columns of
the alignment grid (which represent all of the align-
ments to thelth source word), rows, or existing align-
ment points(l, m). Our three neighborhood gener-
ating operators are ALIGN, ALIGNEXCLUSIVE, and
SWAP. The ALIGN operator applies to thelth col-
umn of A and can either add an alignment point
(l, m′) or move an existing one (including tonull,
thus deleting it). ALIGNEXCLUSIVE adds an align-
ment point(l, m) and deletes all other points from
row m. Finally, the SWAP operator swaps(l, m) and
(l′, m′), resulting in new alignment points(l, m′)
and (l′, m). We increase the decoder’s mobility
by traversing the target side and applying the same
steps above for each target word. Fig. 3 illustrates
the three operators. By iterating over all columnsl
and rowsm, the full alignment spaceA(S, T ) can
be explored.4

To further reduce the search space, an alignment
point (l, m) is only admitted into a neighborhood if
it is found in the high-recall alignment setR(S, T ),
which we define to be the model 4 union alignments
(bidirectional model 4 symmetrized via union) plus
the 5 best alignments according to the log-likelihood
ratio.

4Using only the ALIGN operator, it is possible to explore
the full alignment space; however, using all three operators in-
creases mobility.

(a)

(b)

(c)

l l' l l'

m

m'

m

m'

m

m'

Figure 3: Illustrations for (a) ALIGN, (b) ALIGNEXCLU-
SIVE, and (c) SWAP operators, as applied to align the dot-
ted, smaller circle (l,m) to (l,m′). The left hand side rep-
resentsA(i), while the right hand side represents a can-
didate forA(i+1). The solid circles represent the new
alignment points added toA(i+1).

6 Discriminative Training

To set the model parametersθ, we used the min-
imum error rate training (MERT) algorithm (Och,
2003) to maximize the F-measure of the 1-best
alignment of the model on a development set con-
sisting of sentence pairs with manually generated
alignments. The candidate set used by MERT to ap-
proximate the model is simply the set of alignments
{A(1), A(2), . . . , A(n)} encountered in the stochastic
search.

While MERT does not scale to large numbers of
features, the scarcity of manually aligned training
data also means that models with large numbers of
sparse features would be difficult to learn discrimi-
natively, so this limitation is somewhat inherent in
the problem space. Additionally, MERT has sev-
eral advantages that make it particularly useful for
our task. First, we can optimize F-measure of the
alignments directly, which has been shown to corre-
late with translation quality in a downstream system
(Fraser and Marcu, 2007b). Second, we are opti-
mizing the quality of the 1-best alignments under the
model. Since translation pipelines typically use only
a single word alignment, this criterion is appropri-
ate. Finally, and very importantly for us, MERT re-
quires only an approximation of the model’s hypoth-
esis space to carry out optimization. Since we are
using a stochastic search, this is crucial, since sub-
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sequent evaluations of the same sentence pair (even
with the same weights) may result in a different can-
didate set.

Although MERT is a non-probabilistic optimizer,
we explore the alignment space stochastically. This
is necessary to make sure that the weights we use
correspond to a probability distribution that is not
overly peaked (which would result in a greedy hill-
climbing search) or flat (which would explore the
model space without information from the model).
We found that normalizing the weights by the Eu-
clidean norm resulted in a distribution that was well-
balanced between the two extremes.

7 Experiments

We evaluated our proposed alignment model intrin-
sically on an alignment task and extrinsically on a
large-scale translation task, focusing on Chinese-
English as the language pair. Our training data
consists of manually aligned corpora available from
LDC (LDC2006E93 and LDC2008E57) and un-
aligned corpora, which include FBIS, ISI, HKNews
and Xinhua. In total, the manually aligned corpora
consist of more than 21 thousand sentence pairs,
while the unaligned corpora consist of more than
710 thousand sentence pairs. The manually-aligned
corpora are primarily used for training the reorder-
ing models and for discriminative training purposes.
For translation experiments, we used cdec (Dyer
et al., 2010), a fast implementation of hierarchi-
cal phrase-based translation models (Chiang, 2005),
which represents a state-of-the-art translation sys-
tem.

We constructed the list of function words in En-
glish manually and in Chinese from (Howard, 2002).
Punctuation marks were added to the list, result-
ing in 883 and 359 tokens in the Chinese and En-
glish lists, respectively. For the alignment experi-
ments, we took the first 500 sentence pairs from the
newswire genre of the manually-aligned corpora and
used the first 250 sentences as the development set,
with the remaining 250 as the test set. To ensure
blind experimentation, we excluded these sentence
pairs from the training of the features, including the
reordering models.

7.1 Alignment Quality

We used GIZA++, the implementation of thede-
facto standard IBM alignment model, as our base-
line alignment model. In particular, we used
GIZA++ to align the concatenation of the develop-
ment set, the test set, and the unaligned corpora, with
5, 5, 3 and 3 iterations of model 1, HMM, model
3, and model 4 respectively. Since the IBM model
is asymmetric, we followed the standard practice of
running GIZA++ twice, once in each direction, and
combining the resulting outputs heuristically. We
chose to use the grow-diag-final-and heuristic as it
worked well for hierarchical phrase-based transla-
tion in our early experiments. We recorded the align-
ment quality of the test set as our baseline perfor-
mance.

For our alignment model, we used the same set of
training data. To align the test set, we first tuned
the weights of the features in our discriminative
alignment model using minimum error rate training
(MERT) (Och, 2003) withFα=0.1 as the optimiza-
tion criterion. At each iteration, our aligner outputs
k-best alignments under current set of weights, from
which MERT proceeds to compute the next set of
weights. MERT terminates once the improvement
over the previous iteration is lower than a predefined
value. Once tuned, we ran our aligner on the test set
and measured the quality of the resulting alignment
as the performance of our model.

Model P R F0.5 F0.1

gdfa 70.97 63.83 67.21 64.48
association 73.70 76.85 75.24 76.52
+ori 74.09 78.29 76.13 77.85
+dom 75.06 78.98 76.97 78.57
+bdom 75.41 80.53 77.89 79.99

Table 1: Alignment quality results (F0.1) for our discrim-
inative reordering models with various features (lines 2-
5) versus the baseline IBM word-based Model 4 sym-
metrized using the grow-diag-final-and heuristic. The
balancedF0.5 measure is reported for reference. The best
scores arebolded.

Table 1 reports the results of our experiments,
which are conducted in an incremental fashion pri-
marily to highlight the role of reordering model-
ing. The first line (gdfa) reports the baseline perfor-
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mance. In the first experiment (association), we em-
ployed only the association-based features described
in Section 4. As shown, we obtain a significant im-
provement over baseline. This result is consistent
with recent literature (Fraser and Marcu, 2007a) that
shows that a discriminatively trained model outper-
forms baseline unsupervised models like GIZA++.
In the second set of experiments, we added the re-
ordering models into our discriminative model one
by one, starting with the orientation models, then
the pairwise dominance model and finally the bor-
derwise dominance model, reported in lines +ori,
+dom and +bdom respectively. As shown, each ad-
ditional reordering model provides a significant ad-
ditional improvement. The best result is obtained by
employing all reordering models. These results em-
pirically confirm our hypothesis that we can improve
alignment quality by employing reordering models
that capture non-local reordering phenomena.

7.2 Translation Quality

For translation experiments, we used the products
from our intrinsic experiments to learn translation
rules for the hierarchical phrase-based decoder, i.e.
the features weights of the +bdom experiment to
align the MT training data using our discriminative
model. For our translation model, we used the stan-
dard features based on the relative frequency counts,
including a 5-gram language model feature trained
on the English portion of the whole training data
plus portions of the Gigaword v2 corpus. Specif-
ically, we tuned the weights of these features via
MERT on the NIST MT06 set and we report the re-
sult on the NIST MT02, MT03, MT04 and MT05
sets.

MT02 MT03 MT04 MT05

gdfa 25.61 32.05 31.80 29.34
this work 26.56 33.79 32.61 30.47

Table 2: The translation performance (BLEU) of hierar-
chical phrase-based translation trained on training data
aligned by IBM model 4 symmetrized with the grow-
diag-final-and heuristic, versus being trained on align-
ments by our discriminative alignment model.Bolded
scores indicate that the improvement is statistically sig-
nificant.

Table 2 shows the result of our translation exper-

iments. In our alignment model, we employed the
whole set of reordering models, i.e. the one reported
in the +bdom line in Table 1. As shown, our dis-
criminative alignment model produces a consistent
and significant improvement over the baseline IBM
model 4 (p < 0.01), ranging between 0.81 and 1.71
BLEU points.

8 Related Work

The focus of our work is to strengthen the reordering
component of alignment modeling. Although thede
facto standard, the IBM models do not generalize
well in practice: the IBM approach employs a series
of reordering models based on the word’s position,
but reordering depends on syntactic context rather
than absolute position in the sentence. Over the
years, there have been many proposals to improve
these reordering models, most notably Vogel et al.
(1996), which adds a first-order dependency. Never-
theless, the use of these distortion-based models re-
mains widespread (Marcu and Wong, 2002; Moore,
2004).

Alignment modeling is challenging because it
often has to consider a prohibitively large align-
ment space. Efforts to constrain the space gen-
erally comes from the use of Inversion Transduc-
tion Grammar (ITG) (Wu, 1997). Recent propos-
als that use ITG constraints include (Haghighi et
al., 2009; Blunsom et al., 2009) just to name a few.
More recent models have begun to use linguistically-
motivated constraints, often in combination with
ITG, primarily exploiting monolingual syntactic in-
formation (Burkett et al., 2010; Pauls et al., 2010).

Our reordering model is closely related to the
model proposed by Zhang and Gildea (2005; 2006;
2007a), with respect to conditioning the reordering
predictions on lexical items. These related models
treat their lexical items as latent variables to be es-
timated from training data, while our model uses
a fixed set of lexical items that correspond to the
class of function words. With respect to the focus
on function words, our reordering model is closely
related to the UALIGN system (Hermjakob, 2009).
However, UALIGN uses deep syntactic analysis and
hand-crafted heuristics in its model.
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9 Conclusions
Languages exhibit regularities of word order that
are preserved when projected to another language.
We use the notion of function words to infer such
regularities, resulting in several reordering models
that are employed as features in a discriminative
alignment model. In particular, our models pre-
dict the reordering of function words by looking
at their dependencies with respect to their neigh-
boring phrases, their neighboring function words,
and the sentence boundaries. By capturing such
long-distance dependencies, our proposed align-
ment model contributes to the effort to unify align-
ment and translation. Our experiments demonstrate
that our alignment approach achieves both its intrin-
sic and extrinsic goals.
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