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Abstract

We address the modeling, parameter estima-
tion and search challenges that arise from the
introduction of reordering models that capture
non-local reordering in alignment modeling.
In particular, we introduce several reordering
models that utilize (pairs of) function words
as contexts for alignment reordering. To ad-
dress the parameter estimation challenge, we
propose to estimate these reordering models
from a relatively small amount of manually-
aligned corpora. To address the search chal-
lenge, we devise an iterative local search al-
gorithm that stochastically explores reorder-
ing possibilities. By capturing non-local re-
ordering phenomena, our proposed alignment
model bears a closer resemblance to state-
of-the-art translation model. Empirical re-
sults show significant improvements in align-
ment quality as well as in translation perfor-
mance over baselines in a large-scale Chinese-
English translation task.
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al. (2009) just to name a few, show that alignment
models that bear closer resemblance to state-of-the-
art translation model consistently yields not only a
better alignment quality but also an improved trans-
lation quality.

In this paper, we follow this recent effort to nar-
row the gap between alignment model and trans-
lation model to improve translation quality. More
concretely, we focus on the reordering component
since we observe that the treatment of reordering re-
mains significantly different when comparing align-
ment versus translation: the reordering component
in state-of-the-art translation models has focused
on long-distance reordering, but its counterpart in
alignment models has remained focused on local
reordering, typically modeling distortion based en-
tirely on positional information. This leaves most
alignment decisions to association-based scores.

Why is employing stronger reordering models
more challenging in alignment than in translation?
One answer can be attributed to the fact that align-
ment points are unobserved in parallel text, thus so
are their reorderings. As such, introducing stronger

In many Statistical Machine Translation (SMT) sys+eordering often further exacerbates the computa-
tems, alignment represents an important piece of itional complexity to do inference over the model.
formation, from which translation rules are learntSome recent alignment models appeal to external
However, while translation models have evolvedinguistic knowledge, mostly by using monolingual
from word-based to syntax-based modeling, dee syntactic parses (Cherry and Lin, 2006; Pauls et al.,
factoalignment model remains word-based (Browr2010), which at the same time, provides an approx-
et al.,, 1993; Vogel et al., 1996). This gap beimation of the bilingual syntactic divergences that
tween alignment modeling and translation modelingrive the reordering. To our knowledge, however,
is clearly undesirable as it often generates tensiotisis approach has been used mainly to constrain re-
that would prevent the extraction of many usefubrdering possibilities, or to add to the generalization
translation rules (DeNero and Klein, 2007). Recerdbility of association-based scores, not to directly
work, e.g. by Blunsom et al. (2009) and Haghihi emodel reordering in the context of alignment.
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In this paper, we introduce a new approach to im- | S T B
proving the modeling of reordering in alignment. In- 7{"‘] T ;J %‘f . ? 7 é?l %fﬂ
stead of relying on monolingual parses, we condi- Australia 1 )
tion our reordering model on the behaviorfahc- is 2
tion words and the phrases that surround them. O'L?i e
Function words are the “syntactic glue” of sen- the 5
tences, and in fact many syntacticians believe that few 6
functional categories, as opposed to substantive cat- countries 7 @
egories like noun and verb, are primarily responsi- h‘:\‘;"éz
ble for cross-language syntactic variation (Ouhalla, dipl. rels. 10 o
1991). Our reordering model can be seen as offering with 11 )

a reasonable approximation to more fully elaborated North Korea 12

bilingual syntactic modeling, and this approxima-
tion is also highly practical, as_ it demand; ho exter- Figure 1: An aligned Chinese-English sentence pair.
nal knowledge (other than a list of function words)
and avoids the practical issues associated with the
use of monolingual parses, e.g. whether the mon®&ined with additional features in Section 4 to pro-
lingual parser is robust enough to produce reliapliduce a single discriminative alignment model. Sec-
output for every sentence in training data. tion 5 describes a simple decoding algorithm to find
At a glance, our reordering model enumeratehe most probable alignment under the combined
the function words on both source and target side§10del, Section 6 describes the training of our dis-
modeling their reordering relative to their neighborCriminative model and Section 7 presents experi-
ing phrases, their neighboring function words, anfnental results for the model using this algorithm.
the sentence boundaries. Because the frequency\¢ Wrap up in Sections 8 and 9 with a discussion
function words is high, we find that by predicting theof related work and a summary of our conclusions.
_reorderlng of fupc_tlon Word§ accurate!y, the reorder2 Empirical Motivation
ing of the remaining words improves in accuracy as
well. In total, we introduce six sub-models involvingFig. 1 shows an example of a Chinese-English sen-
function words, and these serve as features in a lagnce pair together with correct alignment points.
linear model. We train model weights discrimina-Predicting the alignment for this particular Chinese-
tively using Minimum Error Rate Training (MERT) English sentence pair is challenging, since the sig-
(Och, 2003), optimizing F-measure. nificantly different syntactic structures of these two
The parameters of our sub-models are estimatéahguages lead to non-monotone reordering. For ex-
from manually-aligned corpora, leading the reorderample, an accurate alignment model should account
ing model more directly toward reproducing humarior the fact that prepositional phrases in Chinese ap-
alignments, rather than maximizing the likelihoodpear in a different order than in English, as illus-
of unaligned training data. This use of manual dataated by the movement of the phrass 4t #f/with
for parameter estimation is a reasonable choice bilorth Korea” from the beginning of the Chinese
cause these models depend on a small, fixed numbeun phrase to the end of the corresponding English.
of lexical items that occur frequently in language, The central question that concerns us here is how
hence only small training corpora are required. Imo define and infer regularities that can be useful
addition, the availability of manually-aligned cor-to predict alignment reorderings. The approach we
pora has been growing steadily. take here is supported by empirical results from a
The remainder of the paper proceeds as followgilot study, conducted as an inquiry into the idea of
In Section 2, we provide empirical motivation forfocusing on function words to model alignment re-
our approach. In Section 3, we discuss six sulmrdering, which we briefly describe.
models based on function word relationships and We took a Chinese-English manually-aligned cor-
how their parameters are estimated; these are copuis of approximately 21 thousand sentence pairs,
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" . Ik ﬁﬂzﬁﬁ /b 2 B tion words appear at the bordersaif adjacent all-
f{”f: ﬁf . )?L ) %ﬁ e monotone phrase pairs, if both Chinese and English
Australia 1] ) sides are considered. Clearly with such high cov-
is 2 erage, function words are central in predicting non-
Or;j monotone reordering in alignment.
the 5 . . .
fow & ~ 3 Reordering with Function Words
countries 7 () . . .
that 8 The reordering models we describe follow our previ-
have o . ous work using function word models for translation
dipl. rels. 10 (Setiawan et al., 2007; Setiawan et al., 2009). The
with 11 . . . .
North Korea 12 core hypothesis in this work is that function words

provide robust clues to the reordering patterns of the

_ o phrases surrounding them. To make this insight use-

Figure 2: The all-monotone phrase pairs, indicated a3 ¢or ajignment, we develop features that score the

rectangular areas ibold, that can be extracted from the _ . . . . .

Fig. 1 example. allgnment_ conflguratlor) of the n_elghborlng phrases
of a function word (which functions as an anchor)
using two kinds of information: 1) the relative order-

and divided each sentence pair ird-monotone Ing of the phrases with respect to the function word

phrase pairs Visually, an all-monotone phrase pairanchor; and 2) the span of the phrases. This sec-
corresponds to a maximal block in the alignmention provides a high level overview of our reordering
matrix for which internal alignment points appear{’nOdeL which attempts to leverage this information.
in monotone order from the top-left corner to the To facilitate subsequent discussions, we introduce
bottom-right corner. Fig. 2 illustrates seven sucithe notion of monolingual function word phrase
pairs that can be extracted from the example iff'W;, which consists of the tuplg’;, L;, R;), where

Fig. 1. In total, there are 154,517 such phrase paif§ is thei-th function word and_;, R; are its left and

in our manually-aligned corpus. right neighboring phrases, respectively. Note that

The alignment configuration internal to all-this notion of “phrase” is defined only for reorder-
monotone phrase pair blocks is, obviously, mondNd PUrposes in our model, and does not necessar-
tonic, which is a configuration that is effectively!ly correspond to a linguistic phrase. ~ We define
modeled by traditional alignments models. On th€Uch phrases on both sides to cover as many non-
other hand, the reordering between two adjacefifonotone reorderings as possible, as suggested by
blocks is the focus of our efforts since existing modthe pilot study. To denote the side, we append a sub-
els are less effective at modeling non-monotoni€CrPt: FWis = (Yis, Li,s, Ris) refers to a func-
alignment configurations. To measure the functioHo" word phrase on the source side, ant; r =
words’ potential to predict non-monotone reorder(Yi.7 Li,7; Ri,r) to one on the target side. In our
ings, we examined theorderwords where two ad- StUPsequent discussion, we will mainly useV;,s,
jacent blocks meet. In particular, we are intereste@nd we will omit subscripts’ or 7" if they are clear

in how many adjacent blocks whose border wordd©m context. o _
are function words. The primary objective of our reordering model

The results of this pilot study were quite encour!S to preglct rt]he prOJ?Ct'On of mlonollngual funch-
aging. If we consider only the Chinese side of thdon word: phrases irom one language to _t €
phrase pairs, 88.35% adjacent blocks have functiocHher’ inferringpilingual function word phra_se pairs
words as their boundary words. If we consider onl V;/ivs—r;T n (Y’Fi—’T’ Lijs—, R;ivs._‘T)’ Wh;C.h fen-
the English side, function words appear at the bof° el t € two aforementioned pieces of in orma-
ders of 93.91% adjacent blocks. If we considef°™ To infer these phrases, we take a probabilis-
both the Chinese and English sides, the percentagethe subscrips — 7" denotes the projection direction from
increases to 95.53%. Notice that in Fig. 2, funcsource to target. The subscript for the other directich is> S.
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tic approach. For instance, to estimate the spans jefctions of the function word and the neighboring
L;s_.r, R; s—, our reordering model assumes thaphrase are adjacent or separated by an intervening
any span to the left o 5 is a possibleL; s and phrase.
any span to the right of; s is a possibleR; 5, de-
ciding which is most probable via features, rather
than committing to particular spans (e.g. as defined To modeld(FW;_1 s—.1), d(FWit1,s—71), 1.€.
by a monolingual text chunker or parser). We onlwhether L; s_.7 and R; s_,r extend beyond the
enforce one criterion oli; 5.7 and R; s_,r: they neighboring function word phrase pairs, we uti-
have to be thenaximalalignment blocks satisfying lize the pairwise dominancemodel of Setiawan
the consistent heuristic (Och and Ney, 2004) thateret al. (2009). Taking d(FW;_1,s—r) as
or start withY; .7 on the sourcesS side respec- a case in point, this model takes the form
tively.? Paom (d(FW;—1,s—7)|Yi-1,5—1,Yi s—1), whered
To infer these phrases, we decompdsg;_.r takes one of the following four dominance val-
into (o(L; s—1), d(FW;_1.s—7), b((s))); sim- ues: leftFirst, rightFirst, dontCare, or neither.
larly, R; s—.r into (o(R;s—7),d(FW;t1,s—1), We will detail the exact formulation of these val-
b({/s)) )). Taking the decomposition df; s_. as ues in the next subsection. However, to provide
a case in point, here(L; s_,r) describes the re- intuition, the value of eitheteftFirst or neither
ordering of the left neighboL; s, with respect for d(F'W;_; s—.) would suggest that the span of
to the function wordY; s_.7, while d(FW;_1 s—1) L;s—r doesn’'t extend t&;_; s_.r; the further dis-
andb((s))) probe the span of; 5.7, i.e. whether tinction betweereftFirst andneither concerns with
it goes beyond the preceding function word phras&hether the span ®;_; 5. extends ta'W; g_,r.
pairs FW;_; s—r and up to the beginning-of-
sentence markefs) respectively. The same defini-
tion applies to the decomposition & 5.7, where To modelb((s)), b({/s)), i.e. whether the span of
FWi1,s—7 is the succeeding function word phrasel; s_.7 and R; s extends up to sentence mark-
pair and(/s) is the end-of-sentence marker. ers, we introduce theorderwise dominanceodel.
) Formally, this model is similar to the pairwise domi-
3.1 Six (Sub-)Models nance model, except that we use the sentence bound-
To model o(L; s—1), o(Ris—7), 1.e. the re- aries as the anchors instead of the neighboring
ordering of the neighboring phrases of a funcphrase pairs. This model captures longer distance
tion word, we employ theorientation model in- dependencies compared to the previous two mod-
troduced by Setiawan et al. (2007). Formallygels; in the Chinese-English case, in particular, it is
this model takes the form of probability distributionuseful to discourage word alignments from crossing
P, i(o(Li,s—1),0(R;i s—1)|Yi.s—7), which condi- clause or sentence boundaries. The sentence bound-
tions the reordering on the lexical identity of theary issue is especially important in machine trans-
function word alignment (but independent of the lex{ation (MT) experimentation, since the Chinese side
ical identity of its neighboring phrases). In particu-of English-Chinese parallel text often includes long
lar, o maps the reordering into one of the followingsentences that are composed of several independent
four orientation values (borrowed from Nagata et alclauses joined together; in such cases, words from
(2006)) with respect to the function word: Mono-one clause should be discouraged from aligning to
tone Adjacent (MA), Monotone Gap (MG), Reversewords from other clauses. In Fig. 1, this model is
Adjacent (RA) and Reverse Gap (RG). The Monopotentially useful to discourage words from cross-
tone/Reverse distinction indicates whether the prang the copula &/is”.
jected order follows the original order, while the
Adjacent/Gap distinction indicates whether the pro-
~This heuristic is common . . . We define each model for all (pairs of) function
y used in learning phrase pairs

from parallel text. The maximality ensures the uniqueness of Word phrase pairs, forming features over a set of
andR. word alignments 4) between sourceS)) and target
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(T) sentence pair, as follows: By adjusting the indices, the computation of
o(R; s—r) follows similarly to the procedure above.
Foni _H Poilo R)|Y:) @ Suppose we want t_o estimate the probability of
L; s—.7=M A for a particulary;. Note that here, we
are interested in the lexical identity &f, thus the
Faom :H Piom(d(FW;_1)|Y;—1,Y;) (2) indexiisirrelevant. We first gather the counts of the

i—o orientation value for allL; s_. of Y; in the corpus:
clo(Lis—r) € {MA,RA,MG,RG},Y;). Then
Jodom :H Priom (b ((s))|(s),Y;) - P,.i(MA]Y;) is estimated as follows:
Poaon (b (/s)IYi, (/5) (3 Py i(MAY;) = C<M( f;’)Yi) 6)
ClY;

where N is the number of function words (of the

source side, in thé — T case). As the bilingual wherec(Y;) is the frequency of; in the corpus. The
function word phrase pairs are uni-directional, westimation of other orientation values as well as the
employ these three models in both directions, i.er — S version of the model, follows the same pro-
T — S as well asS — T. As a result, there are cedure.

six reordering models based on function words.
Pairwise and Borderwise dominance models.

3.2 Prediction and Parameter Estimation Given R, s_.7 = 2/tm2 and Lij1 g7 =
Given FW;_1 s (and all otherFWy; /; _.1), g/tm3, i.e. the spans of the neighbors of a
our reordering model has to decompdsg .7 into  pair of neighboring function word phrase pairs
(o(Lis—r), d(FWi—1,5-7), b({s))); and R; s (V; = g/tms, 1 = s¢/tme), the value of

into (o(Rs s—1),d(FWit1,5—1), b((/s)) ) during  d(FW; 1 g_7) is:
prediction and parameter estimation. In prediction

mode (described in Section 5), it has to make the de- leftFirst, Iy >l \l3 > I5
composition on the current state of alignment, while rightFirst, ls < g \ls < ls
during parameter estimation, it has to make the = ’ - @)
same decomposition on the manually-aligned cor- dontCare, I >1ls\ls <15

pora. Since the process is identical, we proceed with neither, lo <lg N\lz >Is5

the discussion in the context of parameter estima- _
tion, where the decomposition is performed to colNote that the neighbors of the sentence markers for

lect counts to estimate the parameters of our model§'€ borderwise models span the whole sentence, thus

value ofneither is impossible for these models.
Suppose we want to estimate the probabilitypf

point and given Y; s_.7=s]/tim, Lis—.1= Szl/tml’ andY;,; having adontCare dominance value. Note
Ris_.1= sl 1/tm4)3, the value ob(L; s—.r) interms  that here we are interested in the lexical identity of

of Monotone/Reverse is: Y; andY;, 1, thus the models are insensitive to the in-

dices. We first gather the counts of thgandY;

(4) having thedontCare value c(dontCare, Y3, Y;11);

;o m<my. then P,,,,,(dontCare|Y;, Y;;1) is estimated as fol-

lows:

Orientation model. Using LZ-,S_@ as a case in

M, mo<m
Monotone/Reverse- { ’ ’

while its value in terms of Adjacent/Gap values is:

c(dontCare,Y;, Yit1)
. A, - V|m — =1, Pym(dontCarelY;,Y; 1) =
Adjacent/Gap= fm = ma| V fm = my o [¥i, Yin) o(Yi, Yit1)
G, otherwise. (8)
(5)  wherec(Y;, Yi,1) is the count ofY; appears after

3We use subscripts to indicate the starting index, and supe}_(iJrl in the trainiqg corpus without any other func-
scripts the ending index. tion word comes in between.
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4 Alignment Model measures the probability of a certain word aligning

_ _ to zero, one, or two or more words.
To use the function word alignment features de-

scribed in the previous section to predict alignments, 6-  Null-alignment probability.  This bino-

we use a linear model of the following form: mial feature models preference towards not aligning
words, i.e. aligning to the NULL token. The intu-

A=arg max 0-f(A4,8T) (9) ition is to penalize NULL alignments depending on

ACA(ST) word class, by assigning lower probability mass to

unaligned content words than to unaligned function
words. In our experiment, we assign feature value
10~3 for a function word aligning to NULL, and
10~° for a content word aligning to NULL.

where A(S,T) is the set of all possible alignments
of a source sentencg and target sentencg, and
f(A,S,T) is a vector of feature functions a#, S,
andT, and@ is a parameter vector.

In addition to the six reordering models, our Note that with the exception of the alignment
model employs several association-based scores th@nus feature (4), all features are uni-directional,
look at alignments in isolation. These features inand therefore we employ these features in both di-
clude: rections just as was done for the reordering models.

1. Normalized log-likelihood ratio (LLR) . This
feature represents an association score, derived from
statistical testing statistics. LLR (Dunning, 1993 Search
has been widely used especially to measure lexical
association. Since the values of LLR are unnormairg find A using the model in Eq. 9, it is neces-
ized, we normalize them on a per-sentence basis, §8ry to searct2!S*I7! different alignment config-

that the normalized LLRs of, say, a particular sourcgrations, and, because of the non-local dependen-
word to the target words in a particular sentence suges in some of our features, it is not possible to use
up to one. dynamic programming to perform this search effi-
2. Translation table from IBM model 4. This  cjently. We therefore employ an approximate search
feature represents another association score, derivigdl the best alignment. We use a local search pro-
from a generative model, in particular the wordvedure which starts from some alignment (in our
based IBM model 4. The use of this feature igase, a symmetrized Model 4 alignment) and make
widespread in recent alignment models, since it prqocal changes to it. Rather than taking a pure hill-
vides a rEIatiVEIy accurate initial prediCtion. C||mb|ng approach which greed”y moves to |Oca||y
3. Translation table from manually-aligned petter configurations (Brown et al., 1993), we use
corpora. This feature represents a gold-standard ag- stochastic search procedure which can move into
sociation score, based on human annotation. Whilgwer-scoring states with some probability, similar
attractive, this feature suffers from data sparsep the Monte Carlo techniques used to draw sam-

ness issues since the lexical coverage of manuallgtes from analytically intractable probability distri-
aligned corpora, especially over content words, igytions.

very low. To overcome this issue, we design this

feature to have two levels of granularity; as such, a

fine-grained one is applied for function words and.1 Algorithm
the coarse-grained one for content words.

4. Grow-diag-final alignments bonus.This fea- To find A, our search algorithm starts with an initial
ture encourages our alignment model to reuse aligatignmentA(!) and iteratively draws a new set by
ment points that are part of the alignments createslaking a few small changes to the current set. For
by the grow-diag-final heuristic, which we used agach step = [1,7], with alignmentA(®, a set of
the baseline of our machine translation experimentaeighboring alignmentd/(A®) is induced by ap-

5. Fertility model from IBM model 4. This fea- plying small transformations (discussed below) to
ture, which is another by-product of IBM model 4,the current alignment. The next alignmesti+!)
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is sampled from the following distribution: I r Lor
m| | (a)
, , 0 - £(AUHD S T) T -
AT g T Ay = ERZ 2 2 m @ i
pATIS. T 40) = ST o
whereZ(AD, S, T)= Y  exp6-f(4,5,T) = o)
A'eEN(AM)

In addition to the current ‘active’ alignment configu-
ration A, the algorithm keeps track of the highest e © |
scoring alignment observed so fat;"®*. After n A= \) - —
steps, the algorithm return$™?* as its approxima- m

tion of A. In the experiments reported below, we

S 0 )
'n't'a_l'zed AW W'th the Moqel 4_ alignments _SYm' Figure 3: lllustrations for (a) AIGN, (b) ALIGNEXCLU-
metrized by using thgrow-diag-final-andheuristic  )yg, and (c) Svap operators, as applied to align the dot-

(Koehn et al., 2003). ted, smaller circlel(m) to (I, m’). The left hand side rep-
) ] resentsA(¥), while the right hand side represents a can-
5.2 Alignment Neighborhoods didate for AG*+1. The solid circles represent the new

We now turn to a discussion of how the alignmenglignment points added td*1).

neighborhoods used by our stochastic search algo-
rithm are generated. We define three local transfog  pjscriminative Training
mation operations that apply to single columns of
the alignment grid (which represent all of the align-To set the model parametefs we used the min-
ments to thé" source word), rows, or existing align- imum error rate training (MERT) algorithm (Och,
ment points({,m). Our three neighborhood gener-2003) to maximize the F-measure of the 1-best
ating operators are IAGN, ALIGNEXcLUSIVE, and alignment of the model on a development set con-
SwaP. The ALIGN operator applies to th#" col-  sisting of sentence pairs with manually generated
umn of A and can either add an alignment poinglignments. The candidate set used by MERT to ap-
(I,m') or move an existing one (including tall, proximate the model is simply the set of alignments
thus deleting it). AIGNExcLUSIVE adds an align- {AM A A} encountered in the stochastic
ment point(l,m) and deletes all other points fromsearch.
row m. Finally, the SvAp operator swap§, m) and While MERT does not scale to large numbers of
(I',m’), resulting in new alignment pointd,m’) features, the scarcity of manually aligned training
and (I’,m). We increase the decoder’s mobilitydata also means that models with large numbers of
by traversing the target side and applying the sansparse features would be difficult to learn discrimi-
steps above for each target word. Fig. 3 illustratesatively, so this limitation is somewhat inherent in
the three operators. By iterating over all colunins the problem space. Additionally, MERT has sev-
and rowsm, the full alignment spacel(S,T) can eral advantages that make it particularly useful for
be explored. our task. First, we can optimize F-measure of the
To further reduce the search space, an alignmealignments directly, which has been shown to corre-
point (1,m) is only admitted into a neighborhood if late with translation quality in a downstream system
it is found in the high-recall alignment s&(S,T), (Fraser and Marcu, 2007b). Second, we are opti-
which we define to be the model 4 union alignmentgizing the quality of the 1-best alignments under the
(bidirectional model 4 symmetrized via union) plusmodel. Since translation pipelines typically use only
the 5 best alignments according to the log-likelihoo@ single word alignment, this criterion is appropri-
ratio. ate. Finally, and very importantly for us, MERT re-
" “Using only the AIGN operator, it is possible to explore 9UIr€S only an approximation of the model’s hypoth-

the full alignment space; however, using all three operators irﬁs?s space to carry out optimizgtion. _Sinc? we are
creases mobility. using a stochastic search, this is crucial, since sub-
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sequent evaluations of the same sentence pair (eved Alignment Quality
with the same weights) may result in a different ca

_ "We used GlZA++, the implementation of ttuke-
didate set.

facto standard IBM alignment model, as our base-
Although MERT is a non-probabilistic optimizer, line alignment model. In particular, we used

we explore the alignment space stochastically. This|zA++ to align the concatenation of the develop-
is necessary to make sure that the weights we uggent set, the test set, and the unaligned corpora, with
correspond to a probability distribution that is not5, 5, 3 and 3 iterations of model 1, HMM, model
overly peaked (which would result in a greedy hill-3, and model 4 respectively. Since the IBM model
climbing search) or flat (which would explore theis asymmetric, we followed the standard practice of
model space without information from the model)running GIZA++ twice, once in each direction, and
We found that normalizing the weights by the Eucombining the resulting outputs heuristically. We
clidean norm resulted in a distribution that was wellchose to use the grow-diag-final-and heuristic as it
balanced between the two extremes. worked well for hierarchical phrase-based transla-

tion in our early experiments. We recorded the align-

ment quality of the test set as our baseline perfor-
7 Experiments mance.

For our alignment model, we used the same set of
We evaluated our proposed alignment model intrirfraining data. To align the test set, we first tuned
sically on an alignment task and extrinsically on dhe weights of the features in our discriminative
large-scale translation task, focusing on Chines@lignment model using minimum error rate training
English as the language pair. Our training dat@MERT) (Och, 2003) with/,—¢.1 as the optimiza-
consists of manually aligned corpora available frontion criterion. At each iteration, our aligner outputs
LDC (LDC2006E93 and LDC2008E57) and un-k-bestalignments under current set of weights, from
aligned corpora, which include FBIS, 1SI, HKNewswhich MERT proceeds to compute the next set of
and Xinhua. In total, the manually aligned corporaveights. MERT terminates once the improvement
consist of more than 21 thousand sentence pai@ver the previous iteration is lower than a predefined
while the unaligned corpora consist of more thaivalue. Once tuned, we ran our aligner on the test set
710 thousand sentence pairs. The manually-align@id measured the quality of the resulting alignment
corpora are primarily used for training the reorderas the performance of our model.
ing models and for discriminative training purposes.

For translation experiments, we used cdec (Dyer | Model \ P| R| Fus| Foi|
et al., 2010), a fast implementation of hierarchi- | gdfa 70.97| 63.83| 67.21| 64.48
cal phrase-based translation models (Chiang, 2005), association| 73.70| 76.85| 75.24| 76.52
which represents a state-of-the-art translation sys-| +ori 74.09| 78.29| 76.13| 77.85
tem. +dom 75.06| 78.98| 76.97 | 78.57

We constructed the list of function words in En- | +Pdom 75.41] 80.53| 77.89] 79.99

glish manually and in Chinese from (Howard, 2002). . _ o
Punctuation marks were added to the list, resulf-2ble 1: Alignment quality results,,) for our discrim-
ing in 883 and 359 tokens in the Chinese and E native reordering models with various features (lines 2-

lish list tivelv. For the ali i .9) versus the baseline IBM word-based Model 4 sym-
glish 1iSts, respectively. For the alignment experiy,qyi;qq using the grow-diag-final-and heuristic. The

ments, we took the first 500 sentence pairs from theyjancedr, . measure is reported for reference. The best
newswire genre of the manually-aligned corpora angcores ardolded.

used the first 250 sentences as the development set,

with the remaining 250 as the test set. To ensure Table 1 reports the results of our experiments,
blind experimentation, we excluded these sentenaehich are conducted in an incremental fashion pri-
pairs from the training of the features, including theanarily to highlight the role of reordering model-
reordering models. ing. The first line (gdfa) reports the baseline perfor-
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mance. In the first experiment (association), we emiments. In our alignment model, we employed the
ployed only the association-based features describadhole set of reordering models, i.e. the one reported
in Section 4. As shown, we obtain a significant imin the +bdom line in Table 1. As shown, our dis-
provement over baseline. This result is consistemtriminative alignment model produces a consistent
with recent literature (Fraser and Marcu, 2007a) thatnd significant improvement over the baseline IBM
shows that a discriminatively trained model outpermodel 4 § < 0.01), ranging between 0.81 and 1.71
forms baseline unsupervised models like GIZA++BLEU points.

In the second set of experiments, we added the re-

ordering models into our discriminative model one

by one, starting with the orientation models, the8 Related Work

the pairwise dominance model and finally the bor-

derwise dominance model, reported in linés +0rirpe tocus of our work is to strengthen the reordering
+dom and +bdom respectively. As shown, each ads,mponent of alignment modeling. Although tthe
ditional reordering model provides a significant ad, g standard, the 1BM models do not generalize
dltlonali|mprovement.' The best result is obtained by, in practice: the IBM approach employs a series
employing all reordering models. These results eMs¢ reqrgering models based on the word's position,
pirically confirm our hypothesis that we can improve, + rerdering depends on syntactic context rather
alignment quality by employing reordering model§ap apsolute position in the sentence. Over the
that capture non-local reordering phenomena. years, there have been many proposals to improve
these reordering models, most notably Vogel et al.
) ] (1996), which adds a first-order dependency. Never-
For translation experiments, we used the producife|ess; the use of these distortion-based models re-

from our intrinsic experiments to learn translation,, ;ing widespread (Marcu and Wong, 2002; Moore
rules for the hierarchical phrase-based decoder, i.8g,). ' ’ '

the features weights of the +bdom experiment to o _ ,
align the MT training data using our discriminative Allgnment modeling is challenging because it
model. For our translation model, we used the staf?ftén has to consider a prohibitively large align-
dard features based on the relative frequency counf@€nt space. Efforts to constrain the space gen-

including a 5-gram language model feature traineﬁ_ra”y comes from the use of Inversion Transduc-

on the English portion of the whole training datalion Grammar (ITG) (Wu, 1997). Recent propos-

plus portions of the Gigaword v2 corpus. Specif-als that use ITG constraints in(_:lude (Haghighi et
ically, we tuned the weights of these features vid!-» 2009; Blunsom et al., 2009) just to name a few.
MERT on the NIST MTO06 set and we report the reMore recent models have begun to use linguistically-

sult on the NIST MT02. MTO3. MT04 and MTO05 motivated ConStraintS, often in combination with
sets. ITG, primarily exploiting monolingual syntactic in-

formation (Burkett et al., 2010; Pauls et al., 2010).

’ ‘ MT02 ‘ MTO3 ‘ MT04 ‘ MTO5 ‘ Our reordering model is closely related to the
gdfa 25.61| 32.05| 31.80| 29.34 model proposed by Zhang and Gildea (2005; 2006;
this work | 26.56| 33.79| 32.61| 30.47 2007a), with respect to conditioning the reordering

predictions on lexical items. These related models
Table 2: The translation performance (BLEU) of hierartreat their lexical items as latent variables to be es-
chical phrase-based translation trqined on training dafﬁ“nated from training data, while our model uses
aligned by IBM model 4 symmetrized with the 9"V 4 fixed set of lexical items that correspond to the

diag-final-and heuristic, versus being trained on align—I f f . ds. With he f
ments by our discriminative alignment modeRolded class of function words. With respect to the focus

scores indicate that the improvement is statistically sig?n function words, our reordering model is closely
nificant. related to the UALIGN system (Hermjakob, 2009).
However, UALIGN uses deep syntactic analysis and
Table 2 shows the result of our translation expetand-crafted heuristics in its model.

7.2 Translation Quality
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9 Conclusions John DeNero and Dan Klein. 2007. Tailoring word

Languages exhibit regularities of word order that alignments to syntactic machine translation. AGL,
are preserved when projected to another language P29es 17-24, Prague, Czech Republic, June. Associa-
. . i tion for Computational Linguistics.

We use the notion of function words to infer suchT . .
lariti lting i | deri del ed Dunning. 1993. Accurate methods for the statistics

regularities, resulting in severa reor e.rlng. "_10 ?S of surprise and coincidenceComputational Linguis-

thgt are employed as fea‘Fures in a discriminative tics 19(1):61-74, March.

alignment model. In particular, our models preChris Dyer, Adam Lopez, Juri Ganitkevitch, Johnathan

dict the reordering of function words by looking Weese, Ferhan Ture, Phil Blunsom, Hendra Setiawan,

at their dependencies with respect to their neigh- Vladimir Eidelman, and Philip Resnik. 2010. cdec: A

boring phrases, their neighboring function words, decoder, alignment, and learning framework for finite-

and the sentence boundaries. By capturing suchState and context-free translation modelsAGL, Up-
psala, Sweden.

long-distance dependenCIes, our proposed _a“g[&'lexander Fraser and Daniel Marcu. 2007a. Getting
ment model contributes to the effort to unify align- e structure right for word alignment: LEAF. In
ment and translation. Our experiments demonstrate EMNLP-CoNLL pages 51-60, Prague, Czech Repub-

that our alignment approach achieves both its intrin- lic, June. Association for Computational Linguistics.

sic and extrinsic goals. Alexander Fraser and Daniel Marcu. 2007b. Measuring
word alignment quality for statistical machine transla-
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