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Abstract

Recent syntactic extensions of statisti-
cal translation models work with a syn-
chronous context-free or tree-substitution
grammar extracted from an automatically
parsed parallel corpus. The decoders ac-
companying these extensions typically ex-
ceed quadratic time complexity.

This paper extends the Direct Transla-
tion Model 2 (DTM2) with syntax while
maintaining linear-time decoding. We
employ a linear-time parsing algorithm
based on an eager, incremental interpre-
tation of Combinatory Categorial Gram-
mar (CCG). As every input word is pro-
cessed, the local parsing decisions resolve
ambiguity eagerly, by selecting a single
supertag–operator pair for extending the
dependency parse incrementally. Along-
side translation features extracted from
the derived parse tree, we explore syn-
tactic features extracted from the incre-
mental derivation process. Our empiri-
cal experiments show that our model sig-
nificantly outperforms the state-of-the art
DTM2 system.

1 Introduction

Syntactic structure is gradually showing itself to
constitute a promising enrichment of state-of-the-
art Statistical Machine Translation (SMT) models.
However, it would appear that the decoding algo-
rithms are bearing the brunt of this improvement in
terms of time and space complexity. Most recent
extensions work with a synchronous context-free
or tree-substitution grammar extracted from an au-
tomatically parsed parallel corpus. While attrac-
tive in many ways, the decoders that are needed
for these types of grammars usually have time
and space complexities that are far beyond linear.

Leaving pruning aside, there is a genuine ques-
tion as to whether syntactic structure necessarily
implies more complex decoding algorithms. This
paper shows that this need not necessarily be the
case.

In this paper we extend the Direct Translation
Model (DTM2) (Ittycheriah and Roukos, 2007)
with target language syntax while maintaining
linear-time decoding. With this extension we
make three novel contributions to SMT. Our first
contribution is to define a linear-time syntactic
parser that works as incrementally as standard
SMT decoders (Tillmann and Ney, 2003; Koehn,
2004a). At every word position in the target lan-
guage string, this parser spansat most a single
parse-stateto augment the translation states in
the decoder. The parse state summarizes previ-
ous parsing decisions and imposes constraints on
the set of valid future extensions such that a well-
formed sequence of parse states unambiguously
defines a dependency structure. This approach
is based on anincremental interpretationof the
mechanisms of Combinatory Categorial Grammar
(CCG) (Steedman, 2000).

Our second contribution lies in extending the
DMT2 model with a novel set of syntactically-
oriented feature functions. Crucially, these feature
functions concern the derived (partial) dependency
structure as well as local aspects ofthe derivation
process, including such information as the CCG
lexical categories (supertag), the CCG operators
and the intermediate parse states. This accom-
plishment is interesting both from a linguistic and
technical point of view.

Our third contribution is the extension of the
standard phrase-based decoder with the syntactic
structure and definition of newgrammar-specific
pruning techniquesthat control the size of the
search space. Interestingly, because it is eager,
the incremental parser used in this work is hard
pushed to perform at a parsing level close to state-
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of-the-art cubic-time parsers. Nevertheless, the
parsing information it provides allows for signif-
icant improvement in translation quality.

We test the new model, called the Dependency-
based Direct Translation Model (DDTM), on stan-
dard Arabic–English translation tasks used in the
community, including LDC and GALE data. We
show that our DDTM system provides significant
improvements in BLEU (Papineni et al., 2002) and
TER (Snover et al., 2006) scores over the already
extremely competitive DTM2 system. We also
provide results of manual, qualitative analysis of
the system output to provide insight into the quan-
titative results.

This paper is organized as follows. Section 2
reviews the related work. Section 3 discusses the
DTM2 baseline model. Section 4 presents the gen-
eral workings of the incremental CCG parser lay-
ing the foundations for integrating it into DTM2.
Section 5 details our own DDTM, the dependency-
based extension of the DTM2 model. Section 6
reports on extensive experiments and their results.
Section 7 provides translation output to shed fur-
ther detailed insight into the characteristics of the
systems. Finally, Section 8 concludes, and dis-
cusses future work.

2 Related Work

In (Marcu et al., 2006), it is demonstrated that
‘syntactified’ target language phrases can im-
prove translation quality for Chinese–English. A
stochastic, top-down transduction process is em-
ployed that assigns a joint probability to a source
sentence and each of its alternative syntactified
translations; this is done by specifying a rewrit-
ing process of the target parse-tree into a source
sentence.

Likewise, the model in (Zollmann and Venu-
gopal, 2006) extends (Chiang, 2005) by augment-
ing the hierarchical phrases with syntactic cate-
gories derived from parsing the target side of a
parallel corpus. They use an existing parser to
parse the target side of the parallel corpus in or-
der to extract a syntactically motivated, bilingual
synchronous grammar as in (Chiang, 2005).

The above-mentioned approaches for incor-
porating syntax into Phrase-based SMT (Marcu
et al., 2006; Zollmann and Venugopal, 2006)
share common drawbacks. Firstly, they are
based on syntactic phrase-structure parse trees
incorporated into a Synchronous CFG or Tree-

Substitution Grammar, which makes for a diffi-
cult match with non-constituent phrases that are
common within Phrase-based SMT. These ap-
proaches usually resort to ad hoc solutions to
enrich the non-constituent phrases with syntactic
structures. Secondly, they deploy chart-based de-
coders with a high computational cost compared
with the phrase-based beam search decoders, e.g.,
(Tillmann and Ney, 2003; Koehn, 2004a). Thirdly,
due to the large parse space, some of the pro-
posed approaches are forced to employ small lan-
guage models compared to what is usually used
in phrase-based systems. To circumvent these
computational limitations, various pruning tech-
niques are usually needed, e.g., (Huang and Chi-
ang, 2007).

Other recent approaches, e.g., (Birch et al.,
2007; Hassan et al., 2007; Hassan et al., 2008a)
incorporate a linear-time supertagger into SMT to
take the role of a syntactic language model along-
side the standard language model. While these ap-
proaches share with our work the use of lexical-
ized grammars, they never seek to build a full de-
pendency tree or employ syntactic features in or-
der to directly influence the reordering probabili-
ties in the decoder. In the current work, we ex-
pand our previous work in (Hassan et al., 2007;
Hassan et al., 2008a) to introduce the capabilities
of building a full dependency structure and em-
ploying syntactic features to influence the decod-
ing process.

Recently, (Shen et al., 2008) introduced an ap-
proach for incorporating a dependency-based lan-
guage model into SMT. They proposed to extract
String-to-Dependency trees from the parallel cor-
pus. As the dependency trees are not constituents
by nature, they handle non-constituent phrases as
well. While this work is in the same general
direction as our work, namely aiming at incor-
porating dependency parsing into SMT, there re-
main three major differences. Firstly, (Shen et al.,
2008) resorted to heuristics to extract the String-
to-Dependency trees, whereas our approach em-
ploys the well formalized CCG grammatical the-
ory. Secondly, their decoder works bottom-up
and uses a chart parser with a limited language
model capability (3-grams), while we build on the
efficient, linear-time decoder commonly used in
phrase-based SMT. Thirdly, (Shen et al., 2008)
deploys the dependency language model to aug-
ment the lexical language model probability be-
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tween two head words but never seek a full de-
pendency graph. In contrast, our approach inte-
grates an incremental parsing capability, that pro-
duces the partial dependency structures incremen-
tally while decoding, and thus provides for better
guidance for the search of the decoder for more
grammatical output. To the best of our knowledge,
our approach is the first to incorporate incremental
dependency parsing capabilities into SMT while
maintaining the linear-time and -space decoder.

3 Baseline: Direct Translation Model 2

The Direct Translation Model (DTM) (Papineni
et al., 1997) employs thea posterioriconditional
distribution P (T |S) of a target sentenceT given
a source sentenceS, instead of the common in-
version intoP (S|T ) based on the source chan-
nel approach (Brown et al., 1990). DTM2, in-
troduced in (Ittycheriah and Roukos, 2007), ex-
presses the phrase-based translation task in a uni-
fied log-linear probabilistic framework consisting
of three components: (i) a prior conditional dis-
tribution P0(.|S), (ii) a number of feature func-
tionsφi() that capture the translation and language
model effects, and (iii) the weights of the features
λi that are estimated under MaxEnt (Berger et al.,
1996), as in (1):

P (T |S) =
P0(T, J |S)

Z
exp

∑
i

λiφi(T, J, S) (1)

HereJ is the skip reordering factor for the phrase
pair captured byφi() and represents the jump from
the previous source word, andZ is the per source
sentence normalization term. The prior probabil-
ity P0 is the prior distribution for the phrase prob-
ability which is estimated using the phrase nor-
malized counts commonly used in conventional
Phrase–based SMT systems, e.g., (Koehn et al.,
2003).

DTM2 differs from other Phrase–based SMT
models in that it extracts from a word-aligned par-
allel corpus only anon-redundantset ofminimal
phrasesin the sense that no two phrases overlap
with each other.

Baseline DTM2 Features: The baseline em-
ploys the following five types of features (beside
the language model):

• Lexical Micro Featuresexamining source
and target words of the phrases,

• Lexical Context Featuresencoding the
source and target phrase context (i.e. previ-
ous and next source and previous target),

• Source Morphological Featuresencoding
morphological and segmentation characteris-
tics of source words.

• Part-of-Speech Featuresencoding source and
target POS tags as well as the POS tags of the
surrounding contexts of phrases.

The DTM2 approach based on MaxEnt provides
a flexible framework for incorporating other avail-
able feature types as we demonstrate below.

DTM2 Decoder: The decoder for the baseline is
a beam search decoder similar to decoders used in
standard phrase-based log-linear systems such as
(Tillmann and Ney, 2003) and (Koehn, 2004a).
The main difference between the DTM2 decoder
and the standard Phrase–based SMT decoders is
that DTM2 deploys Maximum Entropy probabilis-
tic models to obtain the translation costs and var-
ious feature costs by deploying the features de-
scribed above in a discriminative MaxEnt fashion.

In the rest of this paper we adopt the DTM2 for-
malization of translation as a discriminative task,
and we describe the CCG-based incremental de-
pendency parser that we use for extending the
DTM2 decoder, and then list a new set of syntac-
tic dependency feature functions that extend the
DTM2 feature set. We also discuss pruning and
other details of the approach.

4 The Incremental Dependency Parser

As it processes an input sentence left-to-right
word-by-word, the incremental dependency model
builds—for each prefix of the input sentence—a
partial parse that is a subgraph of the partial parse
that it builds for a longer prefix. The dependency
graph is constructed incrementally, in that the sub-
graph constructed at a preceding step is never al-
tered or revised in any later steps. The following
schematic view in (2) exhibits the general work-
ings of this parser:

S0
o1

w1,st1
//S1

o2

w2,st2
//S2 Si

oi

wi,sti
//Si+1 Sn (2)

The syntactic process is represented by a sequence
of transitions between adjacent syntactic statesSi.
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A transition from stateSi−1 to Si scans the cur-
rent word wi and stochastically selects a com-
plex lexical descriptor/categorysti and an oper-
atoroi given the local context in the transition se-
quence. The syntactic stateSi summarizes all the
syntactic information about fragments that have
already been processed and registers the syntac-
tic arguments which are to be expected next. Only
an impoverished deterministic procedure (called a
‘State-Realizer’) is needed in order to compose a
stateSi with the previous statesS0 . . . Si−1 in or-
der to obtain afully connected intermediate depen-
dency structureat every position in the input.

To implement the incremental parsing scheme
described above we use the parser described in
(Hassan et al., 2008b; Hassan et al., 2009), which
is based on Combinatory Categorial Grammar
(CCG) (Steedman, 2000). We only briefly de-
scribe this parser as its full description is beyond
the scope of this paper. The notions of asupertag
as a lexical category and the process ofsupertag-
ging are both crucial here (Bangalore and Joshi,
1999). Fortunately, CCG specifies the desired kind
of lexical categories (supertags)sti for every word
and a small set of combinatory operatorsoi that
combine the supertagsti with a previous parse
stateSi−1 into the next parse stateSi. In terms
of CCG representations, the parse state is a CCG
composite category which specifies either a func-
tor and the arguments it expects to the right of the
current word, or is itself an argument for a functor
that will follow it to the right. At the first word in
the sentence, the parse state consists solely of the
supertag of that word.

Attacks rocked Riyadh

S0 NP (S\NP)/NP NP
> NOP

S1: NP
> TRFC

S2: S/NP
> FA

S3: S

Figure 1: A sentence and possible supertag-,
operator- and state-sequences. NOP: No Oper-
ation; TRFC: Type Raise-Forward Composition;
FA: Forward Application. The CCG operators
used show thatAttacks andRiyadh are both
dependents ofrocked.

Figure 1 exhibits an example of the workings of
this parser. Practically speaking, after POS tag-
ging the input sentence, the parser employs two
components:

• A Supertag-Operator Tagger which proposes
a supertag–operator pair for the current word,

• A deterministic State-Realizer, which real-
izes the current state by applying the current
operator to the previous state and the current
supertag.

The Supertag-Operator Tagger is a probablistic
component while the State-Realizer is a determin-
istic component. The generative model underlying
this component concerns the probabilityP (W,S)
of a word sequenceW = wn

1 and a parse-state
sequenceS = Sn

1 , with associated supertag se-
quenceST = stn1 and operator sequenceO = on

1 ,
which represents a possible derivation. Note that
given the choice of supertagssti and operatoroi,
the stateSi is calculated deterministically by the
State-Realizer.

A generative version of this model is described
in (3):

P (W,S) =
n∏

i=1

Word Predictor︷ ︸︸ ︷
P (wi|Wi−1Si−1)

.

Supertagger︷ ︸︸ ︷
P (sti|Wi) .

Operator Tagger︷ ︸︸ ︷
P (oi|Wi, Si−1, STi) (3)

In (3):

• P (W,S) represents the product of the pro-
duction probabilities at each parse-state and
is similar to the structured language model
representation introduced in (Chelba, 2000).

• P (wi|Wi−1Si−1) is the probability of wi

given the previous sequence of wordsWi−1

and the previous sequence of statesSi−1,

• P (sti|Wi): is the supertagsti probability
given the word sequenceWi up to the cur-
rent position. Basically, this represents a se-
quence tagger (a ‘supertagger’).

• P (oi|Wi, Si−1, STi) represents the probabil-
ity of the operatoroi given the previous
words, supertags and state sequences up to
the current position. This represents a CCG
operator tagger.

The different local conditional components (for
every i) in (3) are estimated as discriminative
MaxEnt submodels trained on a corpus ofincre-
mental CCG derivations. This corpus was ex-
tracted from the CCGbank (Hockenmaier, 2003)
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by transforming every normal form derivation into
strictly left-to-right CCG derivations, with the
CCG operators only slightly redesigned to allow
incrementality while still satisfying the dependen-
cies in the CCGbank (cf. (Hassan et al., 2008b;
Hassan et al., 2009)).

As mentioned before, the State-Realizer is a
deterministic function. Starting at the first word
with (obviously) a null previous state, the realizer
performs the following deterministic steps for
each word in turn: (i) set the current supertag
and operator to those of the current word; (ii) at
the current state, apply the current operator to the
previous state and current supertag; (iii) add edges
to the dependency graphs between words that are
linked as CCG arguments; and (iv) if not at the
end of the sentence, set the previous state to the
current one, then set the current word to the next
one, and iterate from (i).

It is worth noting that the proposed dependency
parser is deterministic in the sense that it maintains
only one parse state per word. This characteris-
tic is crucial for its incorporation into a large-scale
SMT system to avoid explosion of the translation
space during decoding.

5 Dependency-based DTM (DDTM)

In this section we extend the DTM2 model with
incremental target dependency-based syntax. We
call the resulting model the Dependency-based Di-
rect Translation Model (DDTM). This extension
takes place by (i) extracting syntactically enriched
minimal phrase pairs, (ii) including a new set of
syntactic feature functions among the exponen-
tial model features, and (iii) adapting the decoder
for dealing with syntax, including various pruning
strategies and enhancements. Next we describe
each extension in turn.

5.1 Phrase Table: Incremental Syntax

The target-side sentences in the word-aligned par-
allel corpus used for training are parsed using
the incremental dependency parser described in
section 4. This results in a word-aligned par-
allel corpus where the words of the target sen-
tences are tagged with supertags and operators.
From this corpus we extract the set of minimal
phrase pairs using the method described in (Itty-
cheriah and Roukos, 2007), extracting along with
every target phrase the associated sequences of su-

pertags and operators. As shown in (4), a source
phrases1, . . . , sn translates into a target phrase
w1, . . . , wm where every wordwi is labeled with
a supertagsti, and a possible parsing operatoroi

appearing with it in the parsed parallel corpus:

s1...sn
// [w1, st1, o1]...[wm, stm, om] (4)

Hence, our phrase table associates with every
target phrase anincremental parsing subgraph.
These subgraphs along with their probabilities
represent our phrase table augmented with incre-
mental dependency parsing structure.

This representation turns the complicated prob-
lem of MT with incremental parsing into a sequen-
tial classification problem in which the classifier
deploys various features from the source sentence
and the candidate target translations to specify a
sequence of decisions that finally results in an out-
put target string along with its associated depen-
dency graph. The classification decisions are per-
formed in sequence step-by-step while traversing
the input string to provide decisions on possible
words, supertags, operators and states. A beam
search decoder simultaneously decides which se-
quence is the most probable.

5.2 DDTM Features

The exponential model and the MaxEnt frame-
work used in DTM2 and DDTM enabled us to ex-
plore the utility of incremental syntactic parsing
within a rich feature space. In our DDTM sys-
tem, we implemented a set of features alongside
the baseline DTM2 features that were discussed in
Section 3. The features described here encode all
the probabilistic components in (3) within a log
linear interpretation along with some more empir-
ically intuitive features.

• Supertag-Word features: these features ex-
amine the target phrase words with their as-
sociated supertags and is related to the Su-
pertagger component in (3).

• Supertag sequence features: these features
encoden-gram supertags (equivalent to then-
gram supertags Language Model). This fea-
ture is related to the supertagger component
as well.

• Supertag-Operator features: these features
encode supertags and associated operators
which is related to the Operator Tagger com-
ponent in (3).
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• Supertag-State features: these features regis-
ter state and supertag co-occurrences.

• State sequence features: these features en-
code n-gram state features and are equiva-
lent to ann-gram Language Model over parse
state sequences which is related to the multi-
plication in (3).

• Word-State sequence features: these fea-
tures encode words and states co-occurrences
which is related to the Word Predictor com-
ponent in (3).

The exponential model and the MaxEnt frame-
work used in DTM2 and DDTM enable us to ex-
plore the utility of incremental syntactic parsing
with the use of minimal phrases within a rich fea-
ture space.

5.3 DDTM Decoder

In order to support incremental dependency pars-
ing, we extend the DTM2 decoder in three ways:
firstly, by constructing the syntactic states during
decoding; secondly, by extending the hypothesis
structures to incorporate the syntactic states and
the partial dependency derivations; and thirdly, by
modifying the pruning strategy to handle the large
search space.

At decoding time, each hypothesis state is as-
sociated with a parse-state which is constructed
while decoding using the incremental parsing ap-
proach introduced in ((Hassan et al., 2008b; Has-
san et al., 2009)). The previous state, the se-
quences of supertags and CCG incremental opera-
tors are deployed in a deterministic manner to re-
alize the parse-states as well as the intermediate
dependency graphs between words.

Figure 2 shows the DDTM decoder while de-
coding a sentence with the English translation “At-
tacks rocked Riyadh”. Each hypothesis is asso-
ciated with a parse-stateSi and a partial depen-
dency graph (shown for some states only). More-
over, each transition is associated with an opera-
tor o that combines the previous state and the cur-
rent supertagst to construct the next stateSi. The
decoder starts from a null stateS1 and then pro-
ceeds with a possible expansion with the word “at-
tacks”, supertagNP and operatorNOP to pro-
duce the next hypothesis with stateS2 and cate-
goryNP . Further expansion for that path with the
verb “rocked”, supertag ‘(S\NP )/NP and oper-
ator TRFC will produce the stateS5 with cat-

egory S/NP . The partial dependency graph for
stateS5 is shown above the state where a depen-
dency relation between the two words is estab-
lished. Furthermore, another expansion with the
word “Riyadh”, supertagNP and operatorFA
produces stateS7 with categoryS and a completed
dependency graph as shown above the state. An-
other path which spans the statesS1, S3 , S6 and
S8 ends with a state categoryS/NP and a partial
dependency graph as shown under stateS8 where
the dependency graph is still missing its object
(e.g. “Riyadh attacks rocked the Saudi Govt.”).

The addition of parse-states may result in a very
large search space due to the fact that the same
phrase/word may have many possible supertags
and many possible operators. Moreover, the same
word sequences may have many parse-state se-
quences and, therefore, many hypotheses that rep-
resent the same word sequence. The search space
is definitely larger than the baseline search space.
We adopt the following three pruning heuristics to
limit the search space.

5.3.1 Grammatical Pruning

Any hypothesis which does not constitute a valid
parse-state is discarded, i.e. if the previous parse-
state and the current supertag sequence cannot
construct a valid state using the associated oper-
ator sequence, then the expansion is discarded.
Therefore, this pruning strategy maintains only
fully connected graphs and discards any partially
connected graphs that might result during the de-
coding process.

As shown in Figure 2, the expansion from state
S1 to stateS4 (with the dotted line) is pruned and
not expanded further because the proposed expan-
sion is the verb “attacks”, supertag(S\NP )/NP
and operatorTRFC. Since the previous state is
NULL, it cannot be combined with the verb using
the TRFC operator. This would produce an un-
defined state and thus the hypothesis is discarded.

5.3.2 Supertags and Operators Threshold

We limit the supertag and operator variants per tar-
get phrase to a predefined number of alternatives.
We tuned this on the MT03 DevSet for the best
accuracy while maintaining a manageable search
space. The supertags limit was set to four alterna-
tives while the operators limit was set to three.

As shown in Figure 2, each word can have many
alternatives with different supertags. In this exam-
ple the word “attacks” has two forms, namely a
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e:
a : --------
P:1
S1:NULL

e: attacks
a: *----
P:=.162
ST=NP
S2=NP

e: attacks
a: *-------
P:=.092
ST=(S\NP)/NP
S4= UNDEF

O:TRFC

e: Riyadh
a: -*------
P:=.142
ST=NP/NP
S3=NP/NP

e: rocked
a: --*--
P:=.083
ST=(S\NP)/NP
S5=S/NP

O:NOP

O:NOP

O:TRFC

e: rocked
a: --*------
P:=.01
ST=(S\NP)/NP
S8=S/NP

attacks

attacks rocked

e: Riyadh
a: --*--
P:=.04
ST=NP
S7=S

O:FC

attacks rocked Riyadh

e: attacks
a: *-------
P:=.07
ST=NP
S6=NP

O:TRFC

Riyadh attacks rocked

O:FA

Figure 2: DDTM Decoder: each hypothesis has a parse state anda partial dependency structure.

noun and a verb, with different supertags and op-
erators. The proposed thresholds limit the possible
alternatives to a reasonable number.

5.3.3 Merging Hypotheses

Standard Phrase–based SMT decoders merge
translation hypotheses if they cover the same
source words and share the samen-gram lan-
guage model history. Similarly, DDTM decoder
merges translation hypotheses if they cover the
same source words, share the samen-gram lan-
guage model history and share the same parse-
state history. This helps in reducing the search
space by merging paths that will not constitute a
part of the best path.

6 Experiments

We conducted experiments on an Arabic-to-
English translation task using LDC parallel data
and GALE parallel data. We used the UN paral-
lel corpus and LDC news corpus together with the
GALE parallel corpus, totaling 7.8M parallel sen-
tences. The 5-gram Language Model was trained
on the English Gigaword Corpus and the English
part of the parallel corpus. Our baseline system is
similar to the system described in (Ittycheriah and
Roukos, 2007). We report results on NIST MT05
and NIST MT06 evaluations test sets using BLEU
and TER as automatic evaluation metrics.

To train the DDTM model, we use the incre-
mental parser introduced in (Hassan et al., 2008b;
Hassan et al., 2009) to parse the target side of the

parallel training data. Each sentence is associated
with supertag, operator and parse-state sequences.
We then train models with different feature sets.

Results: We compared the baseline DTM2 (It-
tycheriah and Roukos, 2007) with our DDTM sys-
tem with the features listed above. We examine
the effect of all features on system performance.
In this set of experiments we used LDC parallel
data only which is composed of 3.7M sentences
and the results are reported on MT05 test set. Each
of the examined systems deploys DTM2 features
in addition to a number of newly added syntactic
features. The systems examined are:

• DTM2: Direct Translation model 2 baseline.

• D-SW: DTM2 + Supertag-Word features.

• D-SLM: DTM2 + Supertag-Word and su-
pertagn-gram features.

• D-SO: DTM2+ Supertag-Operator features.

• D-SS : DTM2 + supertags and states features
with parse-state construction.

• D-WS : DTM2 + words and states features
with parse-state construction.

• D-STLM: DTM2 + state n-gram features
with parse-state construction.

• DDTM: fully fledged system with all fea-
tures that proved useful above which are:
Supertag-Word features, supertagn-gram
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features, supertags and states features and
staten-gram features .

System BLEU Score on MT05

DTM2-Baseline 52.24

D-SW 52.28
D-SLM 52.29
D-SO 52.01
D-SS 52.39
D-WS 52.03

D-STLM 52.53
DDTM 52.61

Table 1: DDTM Results with various features.

As shown in Table 1, the DTM baseline system
demonstrates a very high BLEU score, unsurpris-
ingly given its top-ranked performance in two re-
cent major MT evaluation campaigns. Among the
features we tried, supertags andn-gram supertags
systems (D-SW and D-SLM systems) give slight
yet statistically insignificant improvements. On
the other hand, the statesn-gram sequence features
(D-SS and DDTM systems) give small yet statis-
tically significant improvements (as calculated via
bootstrap resampling (Koehn, 2004b)). The D-WS
system shows a small degradation in performance,
probably due to the fact that the states-words inter-
actions are quite sparse and could not be estimated
with good evidence. Similarly, the D-SO system
shows a small degradation in performance. When
we investigated the features types, we found out
that all features that deploy the operators had bad
effect on the model. We think this is due to the fact
that the operator set is a small set with high evi-
dence in many training instances such that it has
low discriminative power on it is own. However,
it implicitly helps in producing the state sequence
which proved useful.

System DTM2-Baseline DDTM
MT05 (BLEU) 55.28 55.66
MT05 (TER) 38.79 38.48

MT06 (BLEU) 43.56 43.91
MT06 (TER) 49.08 48.65

Table 2: DDTM Results on MT05 and MT06.

We examined a combination of the best fea-
tures in our DDTM system on a larger training
data comprising 7.8M sentences from both NIST
and GALE parallel corpora. Table 2 shows the

results on both MT05 and MT06 test sets. As
shown, DDTM significantly outperforms the state-
of-the-art baseline system. It is worth noting that
DDTM outperforms this baseline even when very
large amounts of training data are used. Despite
the fact that the actual scores are not so different,
we found that the baseline translation output and
the DDTM translation outout are significantly dif-
ferent. We measured this by calculating the TER
between the baseline translation and the DDTM
translation for the MT05 test set, and found this
to be 25.9%. This large difference has not been
realized by the BLEU or TER scores in compari-
son to the baseline. We believe that this is due to
the fact that most changes that match the syntac-
tic constraints do not bring about the best match
where the automatic evaluation metrics are con-
cerned. Accordingly, in the next section we de-
scribe the outcome of a detailed manual analysis
of the output translations.

7 Manual Analysis of Results

Although the BLEU score does not mark a large
improvement by the dependency-based system
over the baseline system, human inspection of the
data gives us important insights into the pros and
cons of the dependency-based model. We ana-
lyzed a randomly selected set of 100 sentences
from the MT05 test set. In this sample, the base-
line and the DDTM system perform similarly in
68% of the sentences. The outputs of both system
are similar though not identical. In these cases,
the systems may choose equivalent paraphrases.
However, the translations using syntactic struc-
tures are rather similar. It is worth noting that the
DDTM system tends to produce more concise sys-
ntactic structures which may lead to less BLUE
score due to penalizing the translation length al-
though the translation might be equivelent to the
baseline if not better.

In 28% of the sentences, the DDTM system pro-
duces remarkably better translations. The exam-
ples here illustrate the behaviour of the baseline
and the DDTM systems which can be observed
consistently throughout the test set. We only high-
light some of the examples for illustration pur-
poses. DDTM manages to insert verbs which are
deleted by any standard phrase-based SMT sys-
tem. DDTM prefers to deploy verbs since they
have complex and more detailed syntactic struc-
tures which give better and more likely state se-
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quences. Furthermore, the DDTM system avoids
longer noun phrases and instead uses some prepo-
sitions in-between. Again, this is probably due to
the fact that like verbs, prepositions have a com-
plex syntactic description that give rise to more
likely state sequences.

On the other hand, the baseline produced better
translation in 8% of the analysis sample. We ob-
served that the baseline is doing better mainly in
two cases. The first when the produced translation
is very poor and producing poor sysntatctic struc-
ture due to out of vocabularies or hard to trans-
late sentences. The second case is with sentences
with long noun phrases, in such cases the DDTM
system prefres to introduce verbs or prepositions
in the middle of long noun phrase and thus the
baseline would produce better translations. This
is maybe due to the fact that noun phrases have
relatively simple structure in CCG such that it did
not help in constructing long noun phrases.

Source: �é£Qå��Ë � ZAJ.£� Yg� A �ë�Qk. � �HA�ñj 	®Ë ½Ë 	X YªK. © 	� 	kð
Reference: He then underwent medical examinations by a po-
lice doctor .

Baseline:He was subjected after that tests conducted by doc-
tors of the police .

DDTM : Then he underwent tests conducted by doctors of the
police .

Source: 	á�
�KPA J
��. 	àAÓñj. ë �ñJ
Ë � ZA�Ó 	�AK
Q Ë� 	Që Y �̄ð	á�
�J 	j� 	j 	®Ó
Reference: Riyadh was rocked tonight by two car bomb at-
tacks..

Baseline: Riyadh rocked today night attacks by two booby -
trapped cars.

DDTM : Attacks rocked Riyadh today evening in two car
bombs.

Figure 3: DDTM provides better syntactic struc-
ture with more concise translations.

Figure 3 shows two examples where DDTM
provides better and more concise syntactic struc-
ture. As we can see, there is not much agree-
ment between the reference and the proposed
translation. However, longer translations enhance
the possibility of picking more commonn-gram
matches via the BLEU score and so increases the
chance of better scores. This well-known bias
does not favour the more concise output derived
by our DDTM system, of course.

8 Conclusion and Future Work

In this paper, we presented a novel model of de-
pendency phrase-based SMT which integrates in-

cremental dependency parsing into the transla-
tion model while retaining the linear decoding as-
sumed in conventional Phrase–based SMT sys-
tems. To the best of our knowledge, this model
constitutes the first effective attempt at integrating
a linear-time dependency parser that builds a con-
nected tree incrementally into SMT systems with
linear-time decoding. Crucially, it turns out that
incremental dependency parsing based on lexical-
ized grammars such as CCG and LTAG can pro-
vide valuable incremental parsing information to
the decoder even if their output is imperfect. We
believe this robustness in the face of imperfect
parser output to be a property of the probabilistic
formulation and statistical estimation used in the
Direct Translation Model. A noteworthy aspect of
our proposed approach is that it integrates features
from the derivation process as well as the derived
tree. We think that this is possible due to the im-
portance of the notion of a derivation in linguistic
frameworks such as CCG and LTAG.

Future work will attempt further extensions of
our DDTM system to allow for the exploitation
of long-range aspects of the dependency struc-
ture. We will work on expanding the features
set of DDTM system to leverage features from
the constructed dependency structure itself. Fi-
nally, we will work on enabling the deployment
of source side dependency structures to influence
the construction of the target dependency structure
based on a bilingually enabled dependency pars-
ing mechanism using the discriminative modeling
capabilities.
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