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Abstract

This paper investigates the effect of di-
rection in phrase-based statistial machine
translation decoding. We compare a typ-
ical phrase-based machine translation de-
coder using a left-to-right decoding strat-
egy to a right-to-left decoder. We also
investigate the effectiveness of a bidirec-
tional decoding strategy that integrates
both mono-directional approaches, with
the aim of reducing the effects due to lan-
guage specificity. Our experimental eval-
uation was extensive, based on 272 differ-
ent language pairs, and gave the surprising
result that for most of the language pairs,
it was better decode from right-to-left than
from left-to-right. As expected the rela-
tive performance of left-to-right and right-
to-left strategies proved to be highly lan-
guage dependent. The bidirectional ap-
proach outperformed the both the left-to-
right strategy and the right-to-left strategy,
showing consistent improvements that ap-
peared to be unrelated to the specific lan-
guages used for translation. Bidirectional
decoding gave rise to an improvement in
performance over a left-to-right decoding
strategy in terms of the BLEU score in
99% of our experiments.

1 Introduction

Human language production by its very nature is
an ordered process. That is to say, words are writ-
ten/uttered in a sequence. The current genera-
tion of phrase-based statistical machine translation
(SMT) systems also generate their target word se-
quences according to an order. Since the gener-
ation process is symmetrical, there are two pos-
sible strategies that could be used to generate the
target: from beginning to end; or from end to be-

ginning. Generating the target in the ‘wrong’ di-
rection (the opposite direction to the way in which
humans do) is counter intuitive, and possibly as a
result of this, SMT systems typically generate the
target word sequence in the same order as human
language production. However it is not necessar-
ily the case that this is most effective strategy for
all language pairs. In this paper we investigate the
effect of direction in phrase-based SMT decoding.

For the purposes of this paper, we will refer
to target word sequence generation that follows
the same order as human language production as
forward generation, and generation in the oppo-
site direction to human language production as re-
verse generation. These are often referred ”left-to-
right” and ”right-to-left” respectively in the litera-
ture, but we avoid this notation as many languages
are naturally written from right-to-left.

In earlier work (Watanabe and Sumita, 2002),
it was hypothesized that the optimal direction for
decoding was dependent on the characteristics of
the target language. Their results show that for
Japanese to English translation a reverse decod-
ing strategy was the most effective, whereas for
English to Japanese translation, a forward decod-
ing strategy proved superior. In addition they im-
plemented a bidirectional decoder, but their re-
sults were mixed. For English to Japanese transla-
tion, decoding bidirectionally gives higher perfor-
mance, but for Japanese to English translation they
were unable to improve performance by decod-
ing bidirectionally. Their experiments were per-
formed using a decoder based on IBM Model 4
using the translation techniques developed at IBM
(Brown et al., 1993).

This work is closely related to the techniques
proposed in (Watanabe and Sumita, 2002), but in
our case we decode within the framework of a
phrase-based SMT system, rather than the IBM
model. Our intention was to explore the effect of
direction in decoding within the context of a more
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contemporary machine translation paradigm, and
to experiment with a broader range of languages.
The underlying motivation for our studies however
remains the same. Languages have considerably
different structure, and certain grammatical con-
structs tend to occupy particular positions within
sentences of the same language, but different po-
sitions across languages. These differences may
make it easier to tackle the automatic translation
of a sentence in a given language from a partic-
ular direction. Our approach differs in that the
decoding process of a phrased-based decoder is
quite different from that used by (Watanabe and
Sumita, 2002) since decoding is done using larger
units making the re-ordering process much sim-
pler. In (Watanabe and Sumita, 2002) only one
language pair is considered, for our experiments
we extended this to include translation among 17
different languages including the Japanese and En-
glish pair used in (Watanabe and Sumita, 2002).
We felt that it was important to consider as many
languages as possible in this study, as intuition
and evidence from the original study suggests that
the effect of direction in decoding is likely to be
strongly language dependent.

The next section briefly describes the mecha-
nisms underlying phrase-based decoding. Then
we explain the principles behind the forward, re-
verse and bidirectional decoding strategies used in
our experiments. Section 3 presents the experi-
ments we performed. Section 4 gives the results
and some analysis. Finally in Section 5, we con-
clude and offer possible directions for future re-
search.

2 Phrase-based Translation

For our experiments we use the phrase-based ma-
chine translation techniques described in (Koehn,
2004) and (Koehn et al., 2007), integrating our
models within a log-linear framework (Och and
Ney, 2002).

One of the advantages of a log-linear model is
that it is possible to integrate a diverse set of fea-
tures into the model. For the decoders used in the
experiments in this paper, we included the follow-
ing feature functions:

• An n-gram language model over the target
word sequence

- Ensures the target word sequence is a
likely sequence of words in the target
language

• A phrase translation model

- Effects the segmentation of the source
word sequence, and is also responsible
for the transformation of source phrases
into target phrases.

• A target word sequence length model

- Controls the length of the target word
sequence. This is usually a constant
term added for each word in the trans-
lation hypothesis.

• A lexicalized distortion model

- Influences the reordering of the trans-
lated source phrases in the target word
sequence using lexical context on the
boundaries of the phrases being re-
ordered.

2.1 Decoding
In a phrase-based SMT decoder, the word se-
quence of the target language is typically gener-
ated in order in a forward manner. The words
at the start of the translation are generated first,
then the subsequent words, in order until the fi-
nal word of the target word sequence is gener-
ated. As the process is phrase-based, the trans-
lation is generated in a phrase-by-phrase manner,
rather word-by-word. The basic idea is to seg-
ment the source word sequence into subsequences
(phrases), then translate each phrase individually,
and finally compose the target word sequence by
reordering the translations of the source phrases.
This composition must occur in a particular order,
such that target words are generated sequentially
from the start (or end in the case of reverse de-
coding) of the sentence. The reason that the target
needs to be generated sequentially is to allow an
n-gram language model to be applied to the partial
target word sequence at each step of the decoding
process.

This process is illustrated in Figure 1. In the
decoding for both forward and reverse decoders
the source sentence is segmented into 2 phrases:
”where is” and ”the station” (although in this ex-
ample the segmentation is the same for both de-
coding strategies, it is not necessarily the case
since the search processes are different). In the
forward decoding process, first the English phrase
“the station” is translated into the Japanese phrase
“eki wa”. Initially the target sequence consists
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Left to right Right to left

where is the station

<s>

<s> eki wa

<s> eki wa doko </s>

</s>

doko </s>

<s> eki wa doko </s>

P(eki | <s> )

P(wa | eki, <s>)

P(doko | wa, eki, <s>)

P(</s> | doko, wa, eki, <s>)

PLM =

G
en

eratio
n

P(doko | </s> )

P(wa | doko, </s>)

P(eki | wa, doko, </s>)

P(<s> | eki, wa, doko, </s>)

PLM =

where is the station

Figure 1: The phrase-based decoding process for an English to Japanese translation, in both forward
and reverse directions. The n-gram language model probability calculation for the completed translation
hypotheses are also shown on the bottom of the figure. See Section 2.1 for a description of the decoding
process.

of only the start of sentence marker “〈s〉”. This
marker only serves as context to indicate the start
of the sequence for the benefit of the language
model. The first target phrase is separated into its
component words and each word is added in order
to the target word sequence. Each addition causes
an application of the language model, hence in
Figure 1 the first term of PLM is P (eki|〈s〉), the
second is P (wa|〈s〉) and so on. For reverse de-
coding, the target sentence is generated starting
from the end of sentence marker 〈/s〉 with the lan-
guage model context being to the right of the cur-
rent word. For the case of bidirectional decoding,
the model probability for the hypothesis is a linear
interpolation of the scores for both forward and re-
verse hypotheses.

2.2 Direction in Decoding

Direction in decoding influences both the models
used by the decoder and the search process itself.
The direction of decoding determines the order
in which target words are generated, the source
phrases being translated in any order, therefore it
is likely to be features of the target language rather
than those of the the source language that deter-
mine the effect that the decoding direction has on
decoder performance.

2.2.1 The Language Model
The fundamental difference between the language
models of a forward decoder and that of a reverse
decoder is the direction in which the model looks
for its context. The forward model looks back
to the start of the sentence, whereas the reverse
model looks forward to the end of the sentence.

2.2.2 The Search
Assuming a full search, a unigram language model
and no limitations on reordering, the forward and
reverse decoding processes are equivalent. When
these constraints are lifted, as is the case in the
experiments in this paper, the two search processes
diverge and can give rise to hypotheses that are
different in character.

The partial hypotheses from early in the search
process for forward decoding represent hypothe-
ses for the first few words of the target word se-
quence, whereas the early partial hypotheses of
a reverse decoder hold the last few words. This
has two consequences for the search. The first is
that (assuming a beam search as used in our ex-
periments), certain candidate word sequences in
the early stages of the search might be outside the
beam and be pruned. The consequence of this
is that sentences that start with (or end with in
the case of reverse decoding) the pruned word se-
quence will not be considered during the remain-
der of the search. The second is that word se-
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quences in the partial hypotheses are used in the
context of the models used in the subsequent de-
coding. Thus, correctly decoding the start (or end
for reverse decoding) of the sentence will benefit
the subsequent decoding process.

3 Experiments

3.1 Experimental Data

The experiments were conducted on all possi-
ble pairings among 17 languages. A key to the
acronyms used for languages together with in-
formation about their respective characteristics is
given in Table 1.

We used all of the first ATR Basic Travel Ex-
pression Corpus (BTEC1) (Kikui et al., 2003) for
these experiments. This corpus contains the kind
of expressions that one might expect to find in a
phrase-book for travelers. The corpus is similar in
character to the IWSLT06 Evaluation Campaign
on Spoken Language Translation (Paul, 2006) J-E
open track. The sentences are relatively short (see
Table 1) with a simple structure and a fairly narrow
range of vocabulary due to the limited domain.

The experiments were conducted on data that
contained no case information, and also no punc-
tuation (this was an arbitrary decision that we be-
lieve had no impact on the results).

We used a 1000 sentence development corpus
for all experiments, and the corpus used for eval-
uation consisted of 5000 sentences with a single
reference for each sentence.

3.2 Training

Each instance of the decoder is a standard phrase-
based machine translation decoder that operates
according to the same principles as the publicly
available PHARAOH (Koehn, 2004) and MOSES
(Koehn et al., 2007) SMT decoders. In these
experiments 5-gram language models built with
Witten-Bell smoothing were used along with a lex-
icalized distortion model. The system was trained
in a standard manner, using a minimum error-rate
training (MERT) procedure (Och, 2003) with re-
spect to the BLEU score (Papineni et al., 2001)
on held-out development data to optimize the log-
linear model weights. For simplicity, the MERT
procedure was performed on independently on the
forward and reverse decoders for the bidirectional
system, rather them attempting to tune the param-
eters for the full system.

3.3 Translation Engines

3.3.1 Forward
The forward decoding translation systems used in
these experiments represent the baseline of our ex-
periments. They consist of phrase-based, multi-
stack, beam search decoders commonly used in
the field.

3.3.2 Reverse
The reverse decoding translation systems used in
these experiments were exactly the same as the
forward decoding systems. The difference being
the that word sequences in the training, develop-
ment, and source side of the test corpora were re-
versed prior to training the systems. The final out-
put of the reverse decoders was reordered in a post
processing step before evaluation.

3.3.3 Bidirectional
The decoder used for the bidirectional decoding
experiments was modified in order to be able to
decode both forward and reverse in separate in-
stances of the decoder. Models for decoding in
forward and reverse directions are loaded, and two
decoding instances created. Scores for hypotheses
that share the same target word sequence from the
two decoders were combined at the end of the de-
coding process linearly using equal interpolation
weights. Hypotheses that were generated by only
one of the component decoders were not pruned.
The scores from these hypotheses only had a con-
tribution from the decoder that was able to gener-
ate them, the contribution from the other decoder
being zero.

3.4 Decoding Constraints

The experiments reported in this paper were con-
ducted with loose constraints on the decoding as
overconstraining the decoding process could lead
to differences between unidirectional and bidirec-
tional strategies. More specificially, the decod-
ing was done with a beam width of 100, no beam
thresholding and no constraints on the reordering
process. Figure 2 shows the effect of varying the
beam width (stack size) in the search for forward
decoder of the English to Japanese translation ex-
periment. At the beam width of 100 used in our
experiments, the gains from doubling the beam
with are small (0.07 BLEU percentage points).

It is also important to note that a future cost
identical to that used in the MOSES decoder
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Abbreviation Language #Words Avg. sent length Vocabulary Order
ar Arabic 806853 5.16 47093 SVO
da Danish 806853 5.16 47093 SVO
de German 907354 5.80 23443 SVO
en English 970252 6.21 12900 SVO
es Spanish 881709 5.64 18128 SVO
fr French 983402 6.29 17311 SVO
id Indonesian (Malay) 865572 5.54 15527 SVO
it Italian 865572 5.54 15527 SVO
ja Japanese 1149065 7.35 15405 SOV
ko Korean 1091874 6.98 17015 SOV
ms Malaysian (Malay) 873959 5.59 16182 SVO
nl Dutch 927861 5.94 19775 SVO
pt Portuguese 881428 5.64 18217 SVO
ru Russian 781848 5.00 32199 SVO
th Thai 1211690 7.75 6921 SVO
vi Vietnamese 1223341 7.83 8055 SVO
zh Chinese 873375 5.59 14854 SVO

Table 1: Key to the languages, corpus statistics and word order. SVO denotes a language that predomi-
nantly has subject-verb-object order, and SOV denotes a language that predominantly has subject-object-
verb order

Stack size BLEU Score

1 0.3954

2 0.4032

4 0.4075

8 0.4115

16 0.4149

32 0.4161

64 0.4181
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1024 0.4197
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Figure 2: The performance of a forward decoder
(En-Ja) with increasing stack size.

(Koehn et al., 2007) was also included in the
scores for partial hypothesis during the decoding.

3.5 Computational Overhead

In the current implementation, bidirectional de-
coding takes twice as long as a mono-directional
system. However, in a multi-threaded environ-
ment, each instance of the decoder is able to run
on its own thread in parallel, and so this slowdown
can be mitigated in some circumstances. Future
generations of the bidirectional decoder will more
tightly couple the two decoders, and we believe

this will lead to faster and more effective search.

3.6 Evaluation
The results presented in this paper are given in
terms of the BLEU score (Papineni et al., 2001).
This metric measures the geometric mean of n-
gram precision of n-grams drawn from the output
translation and a set of reference translations for
that translation.

There are large number of proposed methods
for carrying out machine translation evaluation.
Methods differ in their focus of characteristics of
the translation (for example fluency or adequacy),
and moreover anomolous results can occur if a
single metric is relied on. Therefore, we also
carried out evaluations using the NIST (Dodding-
ton, 2002), METEOR (Banerjee and Lavie, 2005),
WER (Hunt, 1989), PER (Tillmann et al., 1997)
and TER (Snover et al., 2005) machine translation
evaluation techniques.

4 Results

The results of the experiments in terms of the
BLEU score are given in Tables ??, 5, 3 and
3. These results show the performance of the re-
verse and bidirectional decoding strategies relative
to the usual forward decoding strategy. The cells
in the tables that represent experiments in which
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ar da de en es fr id it ja ko ms nl pt ru th vi zh
ar - 47.8 48.8 51.7 48.8 47.3 46.5 49.2 29.8 27.8 46.9 49.0 49.0 47.8 39.7 43.0 27.8
da 58.3 - 58.7 63.0 58.6 55.7 53.5 58.5 37.5 35.1 54.4 59.6 59.0 55.4 48.1 51.7 35.2
de 53.8 55.5 - 59.4 55.9 51.9 50.3 55.3 34.2 32.0 50.8 57.0 55.9 51.2 45.7 48.9 32.7
en 63.6 65.8 64.8 - 67.0 61.0 58.4 65.8 41.1 38.7 59.1 67.6 66.7 58.7 52.8 57.7 38.6
es 57.6 58.2 58.0 65.6 - 56.6 54.2 61.1 38.3 36.4 54.3 59.6 62.6 55.1 47.6 51.3 36.0
fr 57.8 58.3 58.0 62.3 58.9 - 52.7 57.4 39.1 37.7 53.8 58.3 57.9 54.8 47.7 50.4 37.6
id 54.7 52.8 52.8 56.6 53.7 51.0 - 53.1 37.2 35.6 86.4 53.8 53.0 51.3 46.4 48.4 34.9
it 54.1 53.4 54.4 59.4 56.4 51.8 49.2 - 34.4 32.8 49.9 55.1 56.2 50.5 44.0 47.0 33.6
ja 38.2 39.2 38.6 41.9 39.9 40.2 40.7 39.5 - 69.4 40.4 39.5 39.7 37.8 37.3 37.2 52.1
ko 34.4 35.3 34.6 38.2 36.3 36.2 36.8 35.6 66.4 - 36.6 35.6 36.3 34.5 34.2 34.1 46.4
ms 54.5 52.7 52.6 56.2 53.4 50.6 82.5 53.2 36.8 34.9 - 53.6 53.4 51.3 46.7 49.2 34.8
nl 55.1 57.3 58.8 63.2 58.5 54.5 52.4 57.1 36.7 34.1 53.4 - 58.3 53.5 48.7 50.7 35.2
pt 56.8 57.7 57.6 63.8 62.0 55.5 52.7 59.7 37.8 36.4 53.4 58.7 - 54.2 47.1 50.6 35.8
ru 51.4 49.1 50.2 53.3 52.0 48.7 48.6 51.6 31.9 29.5 49.1 50.9 50.5 - 41.8 43.7 30.0
th 53.8 55.0 54.8 58.2 55.8 53.3 55.0 54.8 41.4 39.2 55.4 55.9 55.5 53.0 - 56.0 40.4
vi 53.6 53.6 54.2 57.4 54.2 51.4 52.3 53.3 37.6 35.8 53.3 54.6 54.4 51.7 50.3 - 36.2
zh 32.0 33.0 32.6 34.6 33.2 33.7 34.2 33.2 47.8 43.5 33.9 33.4 32.6 32.2 31.1 29.7 -

Table 2: Baseline BLEU scores for all systems. The figures represent the scores in BLEU percentage
points of the baseline left-to-right decoding systems. Source languages are indicated by the column
headers, the row headers denoting the target languages.

the forward strategy outperformed the contrasting
strategy are shaded in gray. The numbers in the
cells represent the difference in BLEU percentage
points for the systems being compared in that cell.

It is clear from Table 3 that for most of the lan-
guage pairs (67% of them for BLEU, and a simi-
lar percentage for all the other metrics except ME-
TEOR), better evaluation scores were achieved by
using a reverse decoding strategy than a forward
strategy. This is a surprising result because lan-
guage is produced naturally in a forward manner
(by definition), and therefore one might expect this
to also be the optimal direction for word sequence
generation in decoding.

4.1 Word Order Typography

Following (Watanabe and Sumita, 2002), to ex-
plain the effects we observe in our results we look
to the word order typography of the target lan-
guage (Comrie and Vogel, 2000). The word or-
der of a language is defined in terms of the order
in which you would expect to encounter the finite
verb (V) and its arguments, subject (S) and ob-
ject (O). In most languages S precedes O and V.
Whether or not O precedes or follows V defines
the two most prevalent word order types SOV and
SVO (Comrie and Vogel, 2000).

Two of the target languages in this study

(Japanese and Korean) have the SOV word type,
the remainder having the SVO word order type.
In Table 3 looking at the rows for ja and ko we
can see that for both of these languages reverse
decoding outperformed forward decoding in only
4 out of 12 experiments. Furthermore these two
languages were the two languages that benefited
the most (in terms of the number of experimental
cases) from forward decoding. The two languages
also agree on the best decoding direction for 12 of
the 16 language pairs. This apparent correlation
may reflect similarities between the two languages
(word order type, or other common features of the
languages).

Given this evidence, it seems plausible that
word order does account in part for the differences
in performance when decoding in differing direc-
tions, but this can only be part of the explanation
since there are 4 source languages for which re-
verse decoding yielded higher performance.

It should be noted that our results differ from
those of (Watanabe and Sumita, 2002) for En-
glish to Japanese translation, who observed gains
when decoding in the reverse direction for this lan-
guage pair. It is hard to compare our results di-
rectly with theirs however, due to the differences
in the decoders used in the experiments (ours be-
ing phrase-based, and theirs based on the IBM ap-
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ar da de en es fr id it ja ko ms nl pt ru th vi zh
ar - 0.87 0.34 1.30 0.93 1.63 0.66 0.58 0.12 0.36 0.85 0.33 0.88 0.22 1.33 1.04 0.88
da 0.25 - 0.41 0.71 0.56 0.70 1.10 0.31 0.46 0.07 0.96 0.13 0.62 0.17 1.28 0.71 0.29
de 0.41 0.04 - 0.38 0.52 0.15 0.80 0.01 0.47 0.72 0.60 0.25 0.21 0.05 0.47 0.68 0.20
en 0.04 0.05 0.21 - 0.05 0.13 0.58 0.02 0.73 0.35 0.39 0.07 0.52 0.05 0.67 0.63 0.29
es 0.14 0.19 0.05 0.35 - 0.68 0.01 0.08 0.25 0.31 0.25 0.25 0.17 0.07 0.43 0.44 0.78
fr 0.37 0.57 0.38 0.66 0.21 - 0.36 0.28 0.15 0.45 0.22 0.46 0.64 0.10 0.25 0.58 0.31
id 0.16 0.02 0.31 1.45 0.58 0.50 - 0.34 0.03 0.27 0.00 0.42 0.57 0.36 0.53 1.04 0.59
it 0.28 0.72 0.36 0.27 0.08 0.30 0.11 - 0.07 0.12 0.37 0.23 0.05 0.37 0.04 0.63 0.37
ja 0.36 0.22 0.03 0.03 0.22 0.13 0.64 0.36 - 0.21 0.57 0.46 0.08 0.33 0.08 0.83 0.70
ko 0.35 0.01 0.31 0.03 0.12 0.07 0.13 0.21 0.42 - 0.29 0.07 0.42 0.40 0.44 0.62 0.05
ms 0.06 0.49 0.53 1.38 0.99 0.71 0.47 0.34 0.11 0.32 - 0.62 0.27 0.10 0.83 0.99 0.11
nl 0.26 0.03 0.26 0.30 0.20 0.19 0.47 0.23 0.13 0.06 0.06 - 0.08 0.09 0.06 1.00 0.15
pt 0.03 0.34 0.06 0.51 0.07 0.17 0.06 0.18 0.13 0.65 0.08 0.10 - 0.06 0.09 0.85 0.35
ru 0.25 0.58 0.67 0.74 0.01 0.48 0.50 0.27 0.41 0.38 0.13 0.38 0.46 - 0.88 0.56 0.49
th 0.19 0.28 0.21 0.41 0.05 0.23 0.30 0.00 0.34 0.04 0.25 0.07 0.21 0.08 - 0.46 0.25
vi 0.21 0.34 0.24 0.65 0.72 0.34 0.06 0.59 0.24 0.22 0.19 0.12 0.11 0.18 0.63 - 0.15
zh 0.43 0.26 0.42 0.05 0.15 0.31 0.16 0.28 0.00 0.31 0.40 0.14 0.67 0.18 0.39 0.21 -

Table 3: Gains in BLEU score from reverse decoding over a forward decoding strategy The numbers
in the cells are the differences in BLEU percentage points between the systems. Shaded cells indicate
the cases where forward decoding give a higher score. Source languages are indicated by the column
headers, the row headers denoting the target languages.

Metric Bi>For Bi>Rev Rev>For
BLEU 98.90 84.93 67.65
NIST 98.53 78.31 75.00
METEOR 99.63 95.96 50.74
WER 99.26 92.85 66.18
PER 98.53 84.97 70.59
TER 99.63 91.18 68.75

Table 4: Summary of the results using several au-
tomatic metrics for evaluation. Numbers in the ta-
ble correspond to the percentage of experiments
in which the condition at the head of the column
was true (for example figure in the first row and
first column means that for 98.9 percent of the lan-
guage pairs the BLEU score for the bidirectional
decoder was better than that of the forward de-
coder)

proach (Brown et al., 1993)).
The results were the similar in character when

other MT evaluation methods were used. These
results are summarized in Table 3.

4.2 Bidirectional Decoding

Table 5 shows the performance of the bidirectional
decoder relative to a forward decoder. As can be

seen from the table, in 269 out of the 272 experi-
ments the bidirectional decoder outperformed the
unidirectional decoder. The gains ranged from a
maximum of 1.81 BLEU (translating from Thai
to Arabic) points, to a minimum of -0.04 BLEU
points (translating from Indonesian to Japanese)
with the average gain over all experiments being
0.56 BLEU points. It is clear from our experi-
ments that there is much to be gained from decod-
ing bidirectionally. Our results were almost unani-
mously positive, and in all three negative cases the
drop in performance was small.

5 Conclusion
In this paper we have investigated the effects on
phrase-based machine translation performance of
three different decoding strategies: forward, re-
verse and bidirectional. The experiments were
conducted on a large set of source and target lan-
guages consisting of 272 experiments representing
all possible pairings from a set of 17 languages.
These languages were very diverse in character
and included a broad selection of European and
Asian languages. The experimental results re-
vealed that for SVO word order languages it is
usually better to decode in a reverse manner, and in
contrast, for SOV word order languages it is usu-
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ar da de en es fr id it ja ko ms nl pt ru th vi zh
ar - 0.66 0.51 1.03 0.65 0.75 0.59 0.47 0.46 0.85 0.59 0.69 0.39 0.30 1.81 1.30 0.85
da 0.27 - 0.61 0.63 0.38 0.60 0.59 0.29 1.04 0.79 0.69 0.45 0.89 0.27 1.28 0.87 0.47
de 0.52 0.51 - 0.54 0.44 0.42 0.70 0.40 0.74 0.45 0.83 0.37 0.28 0.34 0.77 0.90 0.84
en 0.53 0.01 0.32 - 0.23 0.25 0.56 0.19 1.11 0.59 0.28 0.27 0.45 0.60 0.89 0.61 0.58
es 0.28 0.48 0.45 0.56 - 0.43 0.12 0.26 0.57 0.64 0.56 0.06 0.04 0.24 1.16 1.23 0.68
fr 0.70 0.33 0.54 0.66 0.46 - 0.49 0.57 0.24 0.13 0.11 0.43 0.33 0.55 0.91 1.09 0.57
id 0.24 0.32 0.36 0.93 0.70 0.65 - 0.35 0.75 0.77 0.11 0.46 0.69 0.57 0.99 0.85 0.47
it 0.13 0.55 0.32 0.43 0.47 0.51 0.64 - 0.65 0.42 0.77 0.51 0.51 0.69 0.85 0.98 0.58
ja 0.38 0.62 0.60 0.61 0.38 0.73 0.04 0.43 - 0.35 0.05 0.70 0.30 0.38 0.53 0.17 0.02
ko 0.49 0.62 0.90 0.40 0.34 0.57 0.47 0.47 0.02 - 0.23 0.52 0.20 0.83 0.70 0.44 0.83
ms 0.37 0.57 0.63 0.92 0.81 0.75 0.36 0.54 0.70 1.31 - 0.76 0.35 0.51 1.14 0.70 0.35
nl 0.35 0.14 0.54 0.33 0.30 0.46 0.68 0.69 0.77 0.63 0.44 - 0.42 0.67 0.71 1.13 0.55
pt 0.46 0.21 0.37 0.21 0.17 0.49 0.47 0.24 0.88 0.45 0.54 0.39 - 0.41 0.94 1.15 0.90
ru 0.69 0.63 0.69 0.77 0.26 0.50 0.79 0.52 0.69 0.90 0.66 0.69 0.40 - 1.19 1.23 0.47
th 0.90 0.49 0.53 0.77 0.64 0.38 0.21 0.60 0.37 0.96 0.38 0.63 0.68 0.72 - 0.33 0.45
vi 0.64 0.61 0.42 1.09 0.84 0.63 0.34 0.70 0.59 0.39 0.16 0.56 0.36 0.50 0.77 - 0.53
zh 0.23 0.48 0.96 0.33 0.49 0.32 0.27 0.43 0.43 0.69 0.31 0.97 0.85 0.23 0.40 0.50 -

Table 5: Gains in BLEU score from decoding bidirectionally over a forward decoding strategy. The
numbers in the cells are the differences in BLEU percentage points between the systems. Shaded cells
indicate the cases where forward decoding gave a higher score. Source languages are indicated by the
column headers, the row headers denoting the target languages.

ally better to decode in a forward direction. Our
main contribution has been to show that a bidirec-
tional decoding strategy is superior to both mono-
directional decoding strategies. It might be argued
that the gains arise simply from system combina-
tion. However, our systems are combined in a sim-
ple linear fashion, and gains will only arise when
the second system contributes novel and useful in-
formation to into the combination. Furthermore,
our systems are trained on two copies of the same
data, no additional data is required. The gains
from decoding bidirectionally were obtained very
consistently, with only loose constraints on the de-
coding. This can be seen clearly in Table 5 where
the results are almost unanimously positive. More-
over, these gains appear to be independent of the
linguistic characteristics of the source and target
languages.

In the future we would like to explore the pos-
sibilities created by more tightly coupling the for-
ward and reverse components of the bidirectional
decoder. Scores from partial hypotheses of both
processes could be combined and used at each
step of the decoding, making the search more in-
formed. Furthermore, forward partial hypotheses
and reverse hypotheses would ‘meet’ during de-
coding (when one decoding direction has covered

words in the source that the other has yet to cover),
and provide paths for each other to a final state in
the search.
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