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Abstract

We apply machine learning to the Lin-
ear Ordering Problem in order to learn
sentence-specific reordering models for
machine translation. We demonstrate that
even when these models are used as a mere
preprocessing step for German-English
translation, they significantly outperform
Moses’ integrated lexicalized reordering
model.

Our models are trained on automatically
aligned bitext. Their form is simple but
novel. They assess, based on features of
the input sentence, how strongly each pair
of input word tokens wi, wj would like
to reverse their relative order. Combining
all these pairwise preferences to find the
best global reordering is NP-hard. How-
ever, we present a non-trivial O(n3) al-
gorithm, based on chart parsing, that at
least finds the best reordering within a cer-
tain exponentially large neighborhood. We
show how to iterate this reordering process
within a local search algorithm, which we
use in training.

1 Introduction

Machine translation is an important but difficult
problem. One of the properties that makes it dif-
ficult is the fact that different languages express
the same concepts in different orders. A ma-
chine translation system must therefore rearrange
the source language concepts to produce a fluent
translation in the target language.

1This work is excerpted and adapted from the first au-
thor’s Ph.D. thesis (Tromble, 2009). Some of the ideas here
appeared in (Eisner and Tromble, 2006) without empirical
validation. The material is based in part upon work sup-
ported by the National Science Foundation under Grant No.
0347822.

Phrase-based translation systems rely heavily
on the target language model to ensure a fluent
output order. However, a target n-gram language
model alone is known to be inadequate. Thus,
translation systems should also look at how the
source sentence prefers to reorder. Yet past sys-
tems have traditionally used rather weak models of
the reordering process. They may look only at the
distance between neighboring phrases, or depend
only on phrase unigrams. The decoders also rely
on search error, in the form of limited reordering
windows, for both efficiency and translation qual-
ity.

Demonstrating the inadequacy of such ap-
proaches, Al-Onaizan and Papineni (2006)
showed that even given the words in the reference
translation, and their alignment to the source
words, a decoder of this sort charged with merely
rearranging them into the correct target-language
order could achieve a BLEU score (Papineni et
al., 2002) of at best 69%—and that only when
restricted to keep most words very close to their
source positions.

This paper introduces a more sophisticated
model of reordering based on the Linear Order-
ing Problem (LOP), itself an NP-hard permutation
problem. We apply machine learning, in the form
of a modified perceptron algorithm, to learn pa-
rameters of a linear model that constructs a matrix
of weights from each source language sentence.
We train the parameters on orderings derived from
automatic word alignments of parallel sentences.

The LOP model of reordering is a complete
ordering model, capable of assigning a different
score to every possible permutation of the source-
language sentence. Unlike the target language
model, it uses information about the relative posi-
tions of the words in the source language, as well
as the source words themselves and their parts of
speech and contexts. It is therefore a language-pair
specific model.
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We apply the learned LOP model as a prepro-
cessing step before both training and evaluation of
a phrase-based translation system, namely Moses.
Our methods for finding a good reordering un-
der the NP-hard LOP are themselves of interest,
adapting algorithms from natural language parsing
and developing novel dynamic programs.

Our results demonstrate a significant improve-
ment over translation using unreordered German.
Using Moses with only distance-based reordering
and a distortion limit of 6, our preprocessing im-
proves BLEU from 25.27 to 26.40. Furthermore,
that improvement is significantly greater than the
improvement Moses achieves with its lexicalized
reordering model, 25.55.

Collins et al. (2005) improved German-English
translation using a statistical parser and several
hand-written rules for preprocessing the German
sentences. This paper presents a similar improve-
ment using fully automatic methods.

2 A Linear Ordering Model

This section introduces a model of word reorder-
ing for machine translation based on the Linear
Ordering Problem.

2.1 Formalization
The input sentence is w = w1w2 . . . wn. To dis-
tinguish duplicate tokens of the same word, we as-
sume that each token is superscripted by its input
position, e.g., w = die1 Katze2 hat3 die4 Frau5

gekauft6 (gloss: “the cat has the woman bought”).
For a fixedw, a permutation π = π1π2 . . . πn is

any reordering of the tokens in w. The set Πn of
all such permutations has size n!. We would like to
define a scoring model that assigns a high score to
the permutationπ = die4 Frau5 hat3 gekauft6 die1

Katze2 (gloss: “the woman has bought the cat”),
since that corresponds well to the desired English
order.

To construct a function that scores permutations
of w, we first construct a pairwise preference ma-
trix Bw ∈ Rn×n, whose entries are

Bw[`, r] def= θ · φ(w, `, r), (1)

Here θ is a vector of weights. φ is a vector of
feature functions, each considering the entire word
sequencew, as well as any functions thereof, such
as part of speech tags.

We will hereafter abbreviate Bw as B. Its inte-
ger indices ` and r are identified with the input to-
kensw` andwr, and it can be helpful to write them

that way; e.g., we will sometimes write B[2, 5] as
B[Katze2,Frau5].

The idea behind our reordering model is
that B[Katze2,Frau5] > B[Katze5,Frau2] ex-
presses a preference to keep Katze2 before Frau5,
whereas the opposite inequality would express a
preference—other things equal—for permutations
in which their order is reversed. Thus, we define1

score(π) def=
∑

i,j: 1≤i<j≤n

B[πi, πj ] (2)

p(π) def=
1
Z

exp(γ · score(π)) (3)

π̂
def= argmax

π∈Πn

score(π) (4)

Note that i and j denote positions in π, whereas
πi, πj , `, and r denote particular input tokens such
as Katze2 and Frau5.

2.2 Discussion

To the extent that the costs B generally discour-
age reordering, they will particularly discourage
long-distance movement, as it swaps more pairs
of words.

We point out that our model is somewhat pecu-
liar, since it does not directly consider whether the
permutation π keeps die4 and Frau5 adjacent or
even close together, but only whether their order
is reversed.

Of course, the model could be extended to con-
sider adjacency, or more generally, the three-way
cost of interposing k between i and j. See (Eis-
ner and Tromble, 2006; Tromble, 2009) for such
extensions and associated algorithms.

However, in the present paper we focus on the
model in the simple form (2) that only considers
pairwise reordering costs for all pairs in the sen-
tence. Our goal is to show that these unfamiliar
pairwise reordering costs are useful, when mod-
eled with a rich feature set via equation (1). Even
in isolation (as a preprocessing step), without con-
sidering any other kinds of reordering costs or lan-
guage model, they can achieve useful reorderings

1For any ` < r, we may assume without loss of gener-
ality that B[r, `] = 0, since if not, subtracting B[r, `] from
bothB[`, r] andB[r, `] (exactly one of which appears in each
score(π)) will merely reduce the scores of all permutations
by this amount, leaving equations (3) and (4) unchanged.
Thus, in practice, we take B to be an upper triangular ma-
trix. We use equation (1) only to defineB[`, r] for ` < r, and
train θ accordingly. However, we will ignore this point in our
exposition.
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of German that complement existing techniques
and thus improve state-of-the-art systems. Our
positive results in even this situation suggest that
in future, pairwise reordering costs should proba-
bly be integrated into MT systems.

The probabilistic interpretation (3) of the
score (2) may be useful when thus integrating our
model with language models or other reordering
models during translation, or simply when train-
ing our model to maximize likelihood or minimize
expected error. However, in the present paper we
will stick to purely discriminative training and de-
coding methods that simply try to maximize (2).

2.3 The Linear Ordering Problem

In the combinatorial optimization literature, the
maximization problem (4) (with inputB) is known
as the Linear Ordering Problem. It has numer-
ous practical applications in fields including eco-
nomics, sociology, graph theory, graph drawing,
archaeology, and task scheduling (Grötschel et
al., 1984). Computational studies on real data
have often used “input-output” matrices represent-
ing resource flows among economic sectors (Schi-
avinotto and Stützle, 2004).

Unfortunately, the problem is NP-hard. Further-
more, it is known to be APX-complete, meaning
that there is no polynomial time approximation
scheme unless P=NP (Mishra and Sikdar, 2004).
However, there are various heuristic procedures
for approximating it (Tromble, 2009). We now
give an attractive, novel procedure, which uses a
CKY-parsing-like algorithm to search various sub-
sets of Πn in polynomial time.

3 Local Search

“Local search” refers to any hill-climbing proce-
dure that iteratively improves a solution by mak-
ing an optimal “local” change at each iteration.2

In this case, we start with the identity permutation,
find a “nearby” permutation with a better score (2),
and repeat until we have reached a local maximum
of the scoring objective.

This section describes a local search procedure
that uses a very generous definition of “local.” At
each iteration, it finds the optimal permutation in
a certain exponentially large neighborhood N(π)
of the current permutation π.

2One can introduce randomness to obtain MCMC sam-
pling or simulated annealing algorithms. Our algorithms ex-
tend naturally to allow this (cf. Tromble (2009)).

S → S0,n

Si,k → Si,j Sj,k

Si−1,i → πi

Figure 1: A grammar for a large neighborhood of
permutations, given one permutation π of length
n. The Si,k rules are instantiated for each 0 ≤
i < j < k ≤ n, and the Si−1,i rules for each
0 < i ≤ n.

We say that two permutations are neighbors iff
they can be aligned by an Inversion Transduction
Grammar (ITG) (Wu, 1997), which is a familiar
reordering device in machine translation. Equiva-
lently, π′ ∈ N(π) iff π can be transformed into
π′ by swapping various adjacent substrings of π,
as long as these swaps are properly nested. Zens
and Ney (2003) used a normal form to show that
the size of the ITG neighborhood N(π) is a large
Schröder number, which grows exponentially in
n. Asymptotically, the ratio between the size of
the neighborhood for n + 1 and the size for n ap-
proaches 3 + 2

√
2 ≈ 5.8.

We show that equation (2) can be optimized
within N(π) in O(n3) time, using dynamic pro-
gramming. The algorithm is based on CKY pars-
ing. However, a novelty is that the grammar
weights must themselves be computed by O(n3)
dynamic programming.

Our grammar is shown in Figure 1. Parsing
the “input sentence” π with this grammar simply
constructs all binary trees that yield the string π.
There is essentially only one nonterminal, S, but
we split it into O(n2) position-specific nontermi-
nals such as Si,j , which can only yield the span
πi+1πi+2 . . . πj . An example parse is shown in
Figure 2.

The important point is that we will place a
score on each binary grammar rule. The score
of the rule Si,k → Si,j Sj,k is max(0,∆i,j,k),
where ∆i,j,k is the benefit to swapping the sub-
strings πi+1πi+2 . . . πj and πj+1πj+2 . . . πk. The
rule is considered to be a “swap rule” if its
score is positive, showing that a swap will be
beneficial (independent of the rest of the tree).
If the parse in Figure 2 is the parse with
the highest total score, and its swap rules are
S0,5 → S0,1 S1,5 and S3,5 → S3,4 S4,5, then
our best permutation in the neighborhood of π
must be the (linguistically desirable) permutation
die4Frau5hat3gekauft6die1Katze2, obtained from
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Figure 2: One parse of the current permutation π.
In this example, π has somehow gotten the input
words into alphabetical order (owing to previous
hill-climbing steps). We are now trying to further
improve this order.

π by two swaps.
How do we find this solution? Clearly

the benefit (positive or negative) to swapping
πi+1πi+2 . . . πj with πj+1πj+2 . . . πk is

∆i,j,k =
j∑

`=i+1

k∑
r=j+1

B[πr, π`]−B[π`, πr] (5)

We can evaluate all O(n3) possible swaps in to-
tal time O(n3), using the dynamic programming
recurrence

∆i,j,k = ∆i,j,k−1 + ∆i+1,j,k −∆i+1,j,k−1 (6)

+B[πk, πi+1]−B[πi+1, πk]

with the base case ∆i,j,k = 0 if i = j or j = k.
This gives us the weights for the grammar rules,
and then we can use weighted CKY parsing to
find the highest-scoring (Viterbi) parse in O(n3)
time. Extracting our new and improved permuta-
tion π′ ∈ N(π) from this parse is a simple O(n)-
time algorithm.

Figure 3 gives pseudocode for our local search
algorithm, showing how to compute the quan-
tities (6) during parsing rather than beforehand.
β[i, k] holds the weight of the best permuta-
tion (in the neighborhood) of the subsequence
πi+1πi+1 . . . πk.3

3The use of β is intended to suggest an analogy to inside
probability—or more precisely, the Viterbi approximation to
inside probability (since we are maximizing rather than sum-
ming over parses).

The next two sections describe how to use our
local search algorithm to discriminatively learn the
weights of the parameters from Section 2, equa-
tion (1).

4 Features

Our objective function (2) works only to the extent
that we can derive a good pairwise preference ma-
trix Bw. We do this by using a rich feature set in
equation (1).

We adapt the features of McDonald et al.
(2005), introduced there for dependency parsing,
to the task of machine translation reordering. Be-
cause both models construct features for pairs of
words given the entire sentence, there is a close
correspondence between the two tasks, although
the output is quite different.

Each feature φ(w, `, r) in equation (1) is a bi-
nary feature that fires when (w, `, r) has some
conjunction of properties. The properties that are
considered include the words w` and wr, the parts
of speech of {w`−1, . . . , wr+1}, and the distance
r − `. Table 1 shows the feature templates.

We also tried features based on a dependency
parse of the German, with the idea of using LOP
features to reorder the dependents of each word,
and thus model syntactic movement. This did
produce better monolingual reorderings (as in Ta-
ble 2), but it did not help final translation into En-
glish (Table 3), so we do not report the details here.

5 Learning to Reorder

Ideally, we would have a large corpus of desir-
able reorderings of source sentences—in our case,
German sentences permuted into target English
word order—from which to train the parameters of
our model. Unfortunately, the alignments between
German and English sentences are only infre-
quently one-to-one. Furthermore, human-aligned
parallel sentences are hard to come by, and never
in the quantity we would like.

Instead, we make do with automatically-
generated word alignments, and we heuristi-
cally derive an English-like word order for
the German sentence based on the alignment.
We used GIZA++ (Och and Ney, 2003) to
align approximately 751,000 sentences from the
German-English portion of the Europarl corpus
(Koehn, 2005), in both the German-to-English and
English-to-German directions. We combined the
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1: procedure LOCALSEARCHSTEP(B,π, n)
2: for i← 0 to n− 1 do
3: β[i, i+ 1]← 0
4: for k ← i+ 1 to n do
5: ∆[i, i, k]← ∆[i, k, k]← 0
6: end for
7: end for
8: for w ← 2 to n do
9: for i← 0 to n− w do

10: k ← i+ w
11: β[i, k]← −∞
12: for j ← i+ 1 to k − 1 do
13: ∆[i, j, k]← ∆[i, j, k − 1] + ∆[i+ 1, j, k]−∆[i+ 1, j, k − 1] +B[πk, πi+1]−B[πi+1, πk]
14: β[i, k]← max(β[i, k], β[i, j] + β[j, k] + max(0, ∆[i, j, k]))
15: end for
16: end for
17: end for
18: return β[0, n]
19: end procedure

Figure 3: Pseudocode for computing the score of the best permutation in the neighborhood of π under
the Linear Ordering Problem specified by the matrix B. Computing the best neighbor is a simple matter
of keeping back pointers to the choices of max and ordering them as implied.

alignments using the “grow-diag-final-and” proce-
dure provided with Moses (Koehn et al., 2007).

For each of these German sentences, we derived
the English-like reordering of it, which we call
German′, by the following procedure. Each Ger-
man token was assigned an integer key, namely
the position of the leftmost of the English tokens
to which it was aligned, or 0 if it was not aligned
to any English tokens. We then did a stable sort of
the German tokens based on these keys, meaning
that if two German tokens had the same key, their
order was preserved.

This is similar to the oracle ordering used by
Al-Onaizan and Papineni (2006), but differs in the
handling of unaligned words. They kept unaligned
words with the closest preceding aligned word.4

Having found the German′ corresponding to
each German sentence, we randomly divided
the sentences into 2,000 each for development
and evaluation, and the remaining approximately
747,000 for training.

We used the averaged perceptron algorithm
(Freund and Schapire, 1998; Collins, 2002) to
train the parameters of the model. We ran the al-
gorithm multiple times over the training sentences,

4We tried two other methods for deriving English word
order from word alignments. The first alternative was to
align only in one direction, from English to German, with
null alignments disallowed, so that every German word was
aligned to a single English word. The second alternative
used BerkeleyAligner (Liang et al., 2006; DeNero and Klein,
2007), which shares information between the two alignment
directions to improve alignment quality. Neither alternative
produced improvements in our ultimate translation quality.

measuring the quality of the learned parameters by
reordering the held-out development set after each
iteration. We stopped when the BLEU score on
the development set failed to improve for two con-
secutive iterations, which occurred after fourteen
passes over the data.

Each perceptron update should compare the true
German′ to the German′ that would be predicted
by the model (2). As the latter is NP-hard to find,
we instead substitute the local maximum found by
local search as described in Section 3, starting at
the identity permutation, which corresponds to the
original German word order.

During training, we iterate the local search as
described earlier. However, for decoding, we only
do a single step of local search, thus restricting re-
orderings to the ITG neighborhood of the origi-
nal German. This restriction turns out to improve
performance slightly, even though it reduces the
quality of our approximation to the LOP prob-
lem (4). In other words, it turns out that reorder-
ings found outside the ITG neighborhood tend to
be poor German′ even if our LOP-based objective
function thinks that they are good German′.

This is not to say that the gold standard German′

is always in the ITG neighborhood of the original
German—often it is not. Thus, it might be bet-
ter in future work to still allow the local search to
take more than one step, but to penalize the second
step. In effect, score(π) would then include a fea-
ture indicating whether π is in the neighborhood
of the original German.
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t`−1 w` t` t`+1 tb tr−1 wr tr tr+1

× × × ×
× × ×
× × ×
× × ×
× × ×

× ×
× ×

× ×
× ×

×
×

×
×

× × ×
× × × ×
× × ×
× × × ×
× × ×

× × × ×
× × ×
× × × ×

× × ×
Table 1: Feature templates forB[`, r] (w` is the `th
word, t` its part of speech tag, and b matches any
index such that ` < b < r). Each of the above
is also conjoined with the distance between the
words, r − `, to form an additional feature tem-
plate. Distances are binned into 1, 2, 3, 4, 5, > 5,
and > 10.

The model is initialized at the start of train-
ing using log-odds of the parameters. Let Φm =
{(w, `, r) | φm(w, `, r) = 1} be the set of word
pairs in the training data for which feature m fires.
Let

→
Φm be the subset of Φm for which the words

stay in order, and
←
Φm the subset for which the

words reverse order. Then in this model,

θm = log
(∣∣∣→Φm

∣∣∣+
1
2

)
−log

(∣∣∣←Φm

∣∣∣+
1
2

)
. (7)

This model is equivalent to smoothed naı̈ve Bayes
if converted to probabilities. The learned model
significantly outperforms it on the monolingual re-
ordering task.

Table 2 compares the model after perceptron
training to the model at the start of training,
measuring BLEU score of the predicted German′

against the observed German′. In addition to these
BLEU scores, we can measure precision and re-
call of pairs of reordered words against the ob-

Ordering p2 p3 p4 BLEU
German 57.4 38.3 27.7 49.65
Log-odds 57.4 38.4 27.8 49.75
Perceptron 58.6 40.3 29.8 51.51

Table 2: Monolingual BLEU score on develop-
ment data, measured against the “true” German′

ordering that was derived from automatic align-
ments to known English translations. The table
evaluates three candidate orderings: the original
German, German reordered using the log-odds
initialized model, and German reordered using
the perceptron-learned model. In addition to the
BLEU score, the table shows bigram, trigram, and
4-gram precisions. The unigram precisions are al-
ways 100%, because the correct words are given.

served German′. On the held out test set, the pre-
dicted German′ achieves a recall of only 21%, but
a precision of 64%. Thus, the learned model is
too conservative, but makes moderately good de-
cisions when it does reorder.

6 Reordering as Preprocessing

This section describes experiments using the
model introduced in Section 2 and learned in Sec-
tion 5 to preprocess German sentences for trans-
lation into English. These experiments are similar
to those of Collins et al. (2005).

We used the model learned in Section 5 to gen-
erate a German′ ordering of the training, develop-
ment, and test sets. The training sentences are the
same that the model was trained on, and the devel-
opment set is the same that was used as the stop-
ping criterion for the perceptron. The test set was
unused in training.

We used the resulting German′ as the input to
the Moses training pipeline. That is, Moses re-
computed alignments of the German′ training data
to the English sentences using GIZA++, then con-
structed a phrase table. Moses used the develop-
ment data for minimum error-rate training (Och,
2003) of its small number of parameters. Finally,
Moses translated the test sentences, and we mea-
sured performance against the English reference
sentences. This is the standard Moses pipeline, ex-
cept German has been replaced by German′.

Table 3 shows the results of translation, both
starting with unreordered German, and starting
with German′, reordered using the learned Linear
Ordering Problems. Note that Moses may itself re-
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System Input Moses Reord. p1 p2 p3 p4 BLEU METEOR TER
baseline German Distance 59.6 31.4 18.8 11.6 25.27 54.03 60.60
(a) German Lexical 60.0 32.0 19.3 12.1 25.55 54.18 59.76
(b) German′ Distance 60.4 32.7 20.2 12.8 26.40 54.91 58.63
(a)+(b) German′ Lexical 59.9 32.4 20.0 12.8 26.44 54.61 59.23

Table 3: Machine translation performance of several systems, measured against a single English refer-
ence translation. The results vary both the preprocessing—either none, or reordered using the learned
Linear Ordering Problems—and the reordering model used in Moses. Performance is measured using
BLEU, METEOR (Lavie et al., 2004), and TER (Snover et al., 2006). (For TER, smaller values are
better.)

order whatever input that it receives, during trans-
lation into English. Thus, the results in the table
also vary the reordering model used in Moses, set
to either a single-parameter distance-based model,
or to the lexicalized bidirectional msd model. The
latter model has six parameters for each phrase
in the phrase table, corresponding to monotone,
swapped, or discontinuous ordering relative to the
previous phrase in either the source or target lan-
guage.

How should we understand the results? The
baseline system is Moses phrase-based translation
with no preprocessing and only a simple distance-
based reordering model. There are two ways to
improve this: (a) ask Moses to use the lexicalized
bidirectional msd reordering model that is pro-
vided with Moses and is integrated with the rest of
translation, or (b) keep the simple distance-based
model within Moses, but preprocess its training
and test data with our linear reordering model.
Note that the preprocessing in (b) will obviously
change the phrasal substrings that are learned by
Moses, for better or for worse.

First, remarkably, (b) is significantly better than
(a) on BLEU, with p < 0.0001 according to a
paired permutation test.

Second, combining (a) with (b) produced no im-
provement over (b) in BLEU score (the difference
between 26.40 and 26.44 is not significant, even
at p < 0.2, according to the same paired per-
mutation test). Lexicalized reordering in Moses
even degraded translation performance according
to METEOR and TER. The TER change is sig-
nificant according to the paired permutation test at
p < 0.001. (We did not perform a significance test
for METEOR.)

Our word-based model surpasses the lexical-
ized reordering in Moses largely because of long-
distance movement. The 518 sentences (26%) in
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Figure 4: Cumulative change in BLEU score of
(b) relative to the baseline and (a), aggregated by
the number of reordered word pairs in each sen-
tence. For those sentences where our model re-
orders fewer than five word pairs, the BLEU score
of translation degrades.

the test set for which our model moves a word
more than six words away from its starting posi-
tion account for more than 67% of the improve-
ment in BLEU from (a) to (b).

Figure 4 shows another view of the BLEU im-
provement. It shows that, compared to the base-
line, our preprocessing has basically no effect for
sentences where it does only a little reordering,
changing the relative order of fewer than five pairs
of words. Compared to Moses with lexicalized re-
ordering, these same sentences actually hurt per-
formance. This more than accounts for the differ-
ence between the BLEU scores of (b) and (a)+(b).

Going beyond preprocessing, our model could
also be integrated into a phrase-based decoder. We
briefly sketch that possibility here.
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Phrase-based decoders keep a source coverage
vector with every partial translation hypothesis.
That coverage vector allows us to incorporate the
scores from a LOP matrix B directly. Whenever
the decoder extends the hypothesis with a new
source phrase, covering wi+1wi+2 . . . wj , it adds

j−1∑
`=i+1

j∑
r=`+1

B[`, r] +
j∑

`=i+1

∑
r∈U

B[`, r].

The first term represents the phrase-internal score,
and the second the score of putting the words in the
phrase before all the remaining uncovered words
U .

7 Comparison to Prior Work

Preprocessing the source language to improve
translation is a common technique. Xia and Mc-
Cord (2004) improved English-French translation
using syntactic rewrite rules derived from Slot
Grammar parses. Collins et al. (2005) reported
an improvement from 25.2% to 26.8% BLEU
on German-English translation using six hand-
written rules to reorder the German sentences
based on automatically-generated phrase-structure
trees. Our work differs from these approaches in
providing an explicit model that scores all pos-
sible reorderings. In this paper, our model was
trained and used only for 1-best preprocessing, but
it could potentially be integrated into decoding as
well, where it would work together with the trans-
lation model and target language model to find a
congenial translation.

Costa-jussà and Fonollosa (2006) improved
Spanish-English and Chinese-English translation
using a two-step process, first reordering the
source language, then translating it, both using dif-
ferent versions of a phrase-based translation sys-
tem. Many others have proposed more explicit
reordering models (Tillmann, 2004; Kumar and
Byrne, 2005; Koehn et al., 2005; Al-Onaizan and
Papineni, 2006). The primary advantage of our
model is that it directly accounts for interactions
between distant words, leading to better treatment
of long-distance movement.

Xiong et al. (2006) proposed a constituent
reordering model for a bracketing transduction
grammar (BTG) (Wu, 1995), which predicts the
probability that a pair of subconstituents will re-
order when combined to form a new constituent.
The features of their model look only at the first

source and target word of each constituent, mak-
ing it something like a sparse version of our model.
However, because of the target word features, their
reordering model cannot be separated from their
translation model.

8 Conclusions and Future Work

We have presented an entirely new model of re-
ordering for statistical machine translation, based
on the Linear Ordering Problem, and shown that
it can substantially improve translation from Ger-
man to English.

The model is demonstrably useful in this pre-
processing setting—which means that it can be
very simply added as a preprocessing step to any
MT system. German-to-English is a particularly
attractive use case, because the word orders are
sufficiently different as to require a good reorder-
ing model that requires long-distance reordering.
Our preprocessing here gave us a BLEU gain
of 0.9 point over the best Moses-based result.
English-to-German would obviously be another
potential win, as would translating between En-
glish and Japanese, for example.

As mentioned in Section 6, our model could
also be integrated into a phrase-based, or a syntax-
based decoder. That possibility remains future
work, but it is likely to lead to further improve-
ments, because it allows the translation system to
consider multiple possible reorderings under the
model, as well as to tune the weight of the model
relative to the other parts of the system during
MERT.

Tromble (2009) covers this integration in more
detail, and proposes several other ways of integrat-
ing our reordering model into machine translation.
It also experiments with numerous other param-
eter estimation procedures, including some that
use the probabilistic interpretation of our model
from (3). It presents numerous additional neigh-
borhoods for search in the Linear Ordering Prob-
lem.

We mentioned several possible extensions to the
model, such as going beyond the scoring model
of equation (2), or considering syntax-based fea-
tures. Another extension would try to reorder not
words but phrases, following (Xiong et al., 2006),
or segment choice models (Kuhn et al., 2006),
which assume a single segmentation of the words
into phrases. We would have to define the pair-
wise preference matrix B over phrases rather than
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words (Eisner and Tromble, 2006). This would
have the disadvantage of complicating the feature
space, but might be a better fit for integration with
a phrase-based decoder.

Finally, we gave a novel algorithm for ap-
proximately solving the Linear Ordering Prob-
lem, interestingly combining dynamic program-
ming with local search. Another novel contri-
bution is that we showed how to parameterize a
function that constructs a specific Linear Order-
ing Problem instance from an input sentence w,
and showed how to learn those parameters from
a corpus of parallel sentences, using the percep-
tron algorithm. Likelihood-based training using
equation (3) would also be possible, with modifi-
cations to our algorithm, notably the use of normal
forms to avoid counting some permutations multi-
ple times (Tromble, 2009).

It would be interesting to compare the speed
and accuracy of our dynamic-programming local-
search method with an exact algorithm for solving
the LOP, such as integer linear programming with
branch and bound (cf. Charon and Hudry (2006)).
Exact solutions can generally be found in practice
for n ≤ 100.
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2005. Clause restructuring for statistical machine
translation. In ACL, pages 531–540, Ann Arbor,
Michigan, June.

Michael Collins. 2002. Discriminative training meth-
ods for hidden Markov models: Theory and ex-
periments with perceptron algorithms. In EMNLP,
pages 1–8, Philadelphia, July.
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