
Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, pages 968–977,
Singapore, 6-7 August 2009. c©2009 ACL and AFNLP

Supervised Models for Coreference Resolution

Altaf Rahman and Vincent Ng
Human Language Technology Research Institute

University of Texas at Dallas
Richardson, TX 75083-0688

{altaf,vince}@hlt.utdallas.edu

Abstract

Traditional learning-based coreference re-
solvers operate by training amention-
pair classifier for determining whether two
mentions are coreferent or not. Two in-
dependent lines of recent research have
attempted to improve these mention-pair
classifiers, one by learning amention-
ranking model to rank preceding men-
tions for a given anaphor, and the other
by training an entity-mention classifier
to determine whether a preceding clus-
ter is coreferent with a given mention.
We propose a cluster-ranking approach to
coreference resolution that combines the
strengths of mention rankers and entity-
mention models. We additionally show
how our cluster-ranking framework natu-
rally allows discourse-new entity detection
to be learned jointly with coreference res-
olution. Experimental results on the ACE
data sets demonstrate its superior perfor-
mance to competing approaches.

1 Introduction

Noun phrase (NP) coreference resolution is the
task of identifying which NPs (ormentions) re-
fer to the same real-world entity or concept. Tra-
ditional learning-based coreference resolvers op-
erate by training a model for classifying whether
two mentions are co-referring or not (e.g., Soon
et al. (2001), Ng and Cardie (2002b), Kehler et al.
(2004), Ponzetto and Strube (2006)). Despite their
initial successes, thesemention-pair models have
at least two major weaknesses. First, since each
candidate antecedent for a mention to be resolved
(henceforth anactive mention) is considered inde-
pendently of the others, these models only deter-
mine how good a candidate antecedent is relative
to the active mention, but not how good a candi-
date antecedent is relative to other candidates. In

other words, they fail to answer the critical ques-
tion of which candidate antecedent is most prob-
able. Second, they have limitations in their ex-
pressiveness: the information extracted from the
two mentions alone may not be sufficient for mak-
ing an informed coreference decision, especially if
the candidate antecedent is a pronoun (which is se-
mantically empty) or a mention that lacks descrip-
tive information such as gender (e.g.,Clinton).

To address the first weakness, researchers have
attempted to train amention-ranking model for
determining which candidate antecedent is most
probable given an active mention (e.g., Denis and
Baldridge (2008)). Ranking is arguably a more
natural reformulation of coreference resolution
than classification, as a ranker allows all candidate
antecedents to be consideredsimultaneously and
therefore directly captures the competition among
them. Another desirable consequence is that there
exists a natural resolution strategy for a ranking
approach: a mention is resolved to the candidate
antecedent that has the highest rank. This con-
trasts with classification-based approaches, where
many clustering algorithms have been employed
to co-ordinate the pairwise coreference decisions
(because it is unclear which one is the best).

To address the second weakness, researchers
have investigated the acquisition ofentity-mention
coreference models (e.g., Luo et al. (2004), Yang
et al. (2004)). Unlike mention-pair models, these
entity-mention models are trained to determine
whether an active mention belongs to a preced-
ing, possibly partially-formed, coreference cluster.
Hence, they can employcluster-level features (i.e.,
features that are defined over any subset of men-
tions in a preceding cluster), which makes them
more expressive than mention-pair models.

Motivated in part by these recently developed
models, we propose in this paper acluster-
ranking approach to coreference resolution that
combines the strengths of mention-ranking mod-
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els and entity-mention models. Specifically, we
recast coreference as the problem of determining
which of a set of preceding coreferenceclusters
is the best to link to an active mention using a
learnedcluster ranker. In addition, we show how
discourse-new detection (i.e., the task of determin-
ing whether a mention introduces a new entity in
a discourse) can be learnedjointly with corefer-
ence resolution in our cluster-ranking framework.
It is worth noting that researchers typically adopt
a pipeline coreference architecture, performing
discourse-new detection prior to coreference res-
olution and using the resulting information to pre-
vent a coreference system from resolving men-
tions that are determined to be discourse-new (see
Poesio et al. (2004) for an overview). As a re-
sult, errors in discourse-new detection could be
propagated to the resolver, possibly leading to a
deterioration of coreference performance (see Ng
and Cardie (2002a)). Jointly learning discourse-
new detection and coreference resolution can po-
tentially address this error-propagation problem.

In sum, we believe our work makes three main
contributions to coreference resolution:

Proposing a simple, yet effective coreference
model. Our work advances the state-of-the-art
in coreference resolution by bringing learning-
based coreference systems to the next level of
performance. When evaluated on the ACE 2005
coreference data sets, cluster rankers outperform
three competing models — mention-pair, entity-
mention, and mention-ranking models — by a
large margin. Also, our joint-learning approach
to discourse-new detection and coreference reso-
lution consistently yields cluster rankers that out-
perform those adopting the pipeline architecture.
Equally importantly, cluster rankers are conceptu-
ally simple and easy to implement and do not rely
on sophisticated training and inference procedures
to make coreference decisions in dependent rela-
tion to each other, unlike relational coreference
models (see McCallum and Wellner (2004)).

Bridging the gap between machine-learning
approaches and linguistically-motivated ap-
proaches to coreference resolution. While ma-
chine learning approaches to coreference resolu-
tion have received a lot of attention since the mid-
90s, popular learning-based coreference frame-
works such as the mention-pair model are ar-
guably rather unsatisfactory from a linguistic point
of view. In particular, they have not leveraged

advances in discourse-based anaphora resolution
research in the 70s and 80s. Our work bridges
this gap by realizing in a new machine learn-
ing framework ideas rooted in Lappin and Leass’s
(1994) heuristic-based pronoun resolver, which in
turn was motivated by classic salience-based ap-
proaches to anaphora resolution.

Revealing the importance of adopting the right
model. While entity-mention models have pre-
viously been shown to be worse or at best
marginally better than their mention-pair counter-
parts (Luo et al., 2004; Yang et al., 2008), our
cluster-ranking models, which are a natural exten-
sion of entity-mention models, significantly out-
performed all competing approaches. This sug-
gests that the use of an appropriate learning frame-
work can bring us a long way towards high-
performance coreference resolution.

The rest of the paper is structured as follows.
Section 2 discusses related work. Section 3 de-
scribes our baseline coreference models: mention-
pair, entity-mention, and mention-ranking. We
discuss our cluster-ranking approach in Section 4,
evaluate it in Section 5, and conclude in Section 6.

2 Related Work

Heuristic-based cluster ranking. As men-
tioned previously, the work most related to ours is
Lappin and Leass (1994), whose goal is to perform
pronoun resolution by assigning an anaphoric pro-
noun to the highest-scored preceding cluster. Nev-
ertheless, Lappin and Leass’s work differs from
ours in several respects. First, they only tackle
pronoun resolution rather than the full coreference
task. Second, their algorithm is heuristic-based; in
particular, the score assigned to a preceding clus-
ter is computed by summing over the weights as-
sociated with the factors applicable to the cluster,
where the weights are determined heuristically,
rather than learned, unlike ours.

Like many heuristic-based pronoun resolvers
(e.g., Mitkov (1998)), they first apply a set of con-
straints to filter grammatically incompatible can-
didate antecedents and then rank the remaining
ones using salience factors. As a result, their
cluster-ranking model employs only factors that
capture the salience of a cluster, and can therefore
be viewed as a simple model of attentional state
(see Grosz and Sidner (1986)) realized by coref-
erence clusters. By contrast, our resolution strat-
egy is learned without applying hand-coded con-
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straints in a separate filtering step. In particular,
we attempt to determine the compatibility between
a cluster and an active mention, using factors that
determine not only salience (e.g., the distance be-
tween the cluster and the mention) but also lexical
and grammatical compatibility, for instance.

Entity-mention coreference models. Luo et al.
(2004) represent one of the earliest attempts to
investigate learning-based entity-mention models.
They use theANY predicate to generate cluster-
level features as follows: given a binary-valued
featureX defined over a pair of mentions, they
introduce anANY-X cluster-level feature, which
has the valueTRUE if X is true between the active
mention andany mention in the preceding clus-
ter under consideration. Contrary to common wis-
dom, this entity-mention model underperforms its
mention-pair counterpart in spite of the general-
ization from mention-pair to cluster-level features.

In Yang et al.’s (2004) entity-mention model, a
training instance is composed of an active men-
tion mk, a preceding clusterC, and a mention
mj in C that is closest in distance tomk in the
associated text. The feature set used to repre-
sent the instance is primarily composed of fea-
tures that describe the relationship betweenmj

and mk, as well as a few cluster-level features.
In other words, the model still relies heavily on
features used in a mention-pair model. In par-
ticular, the inclusion ofmj in the feature vector
representation to some extent reflects the authors’
lack of confidence that a strong entity-mention
model can be trained without mention-pair-based
features. Our ranking model, on the other hand, is
trained without such features. More recently, Yang
et al. (2008) have proposed another entity-mention
model trained by inductive logic programming.
Like their previous work, the scarcity of cluster-
level predicates (only two are used) under-exploits
the expressiveness of entity-mention models.

Mention ranking. The notion of ranking can-
didate antecedents can be traced back to center-
ing algorithms, many of which use grammatical
roles to rank forward-looking centers (see Grosz
et al. (1995), Walker et al. (1998), and Mitkov
(2002)). However, mention ranking has been
employed in learning-based coreference resolvers
only recently. As mentioned before, Denis and
Baldridge (2008) train a mention-ranking model.
Their work can be viewed as an extension of Yang
et al.’s (2003) twin-candidate coreference model,

which ranks only two candidate antecedents at a
time. Unlike ours, however, their model ranks
mentions rather than clusters, and relies on an
independently-trained discourse-new detector.

Discourse-new detection. Discourse-new de-
tection is often tackled independently of coref-
erence resolution. Pleonasticits have been de-
tected using heuristics (e.g., Kennedy and Bogu-
raev (1996)) and learning-based techniques such
as rule learning (e.g., M̈uller (2006)), kernels (e.g.,
Versley et al. (2008)), and distributional methods
(e.g., Bergsma et al. (2008)). Non-anaphoric defi-
nite descriptions have been detected using heuris-
tics (e.g., Vieira and Poesio (2000)) and unsu-
pervised methods (e.g., Bean and Riloff (1999)).
General discourse-new detectors that are applica-
ble to different types of NPs have been built using
heuristics (e.g., Byron and Gegg-Harrison (2004))
and modeled generatively (e.g., Elsner and Char-
niak (2007)) and discriminatively (e.g., Uryupina
(2003)). There have also been attempts to perform
joint inference for discourse-new detection and
coreference resolution using integer linear pro-
gramming (ILP), where a discourse-new classifier
and a coreference classifier are trainedindepen-
dently of each other, and then ILP is applied as a
post-processing step to jointly infer discourse-new
and coreference decisions so that they are consis-
tent with each other (e.g., Denis and Baldridge
(2007)). Joint inference is different from our joint-
learning approach, which allows the two tasks to
be learned jointly and not independently.

3 Baseline Coreference Models

In this section, we describe three coreference mod-
els that will serve as our baselines: the mention-
pair model, the entity-mention model, and the
mention-ranking model. For illustrative purposes,
we will use the text segment shown in Figure 1.
Each mentionm in the segment is annotated as
[m]cidmid, wheremid is the mention id andcid is
the id of the cluster to whichm belongs. As we
can see, the mentions are partitioned into four sets,
with Barack Obama, his, andhe in one cluster, and
each of the remaining mentions in its own cluster.

3.1 Mention-Pair Model

As noted before, a mention-pair model is a clas-
sifier that decides whether or not an active men-
tion mk is coreferent with a candidate antecedent
mj . Each instancei(mj , mk) representsmj and
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[Barack Obama]11 nominated [Hillary Rodham Clinton]22 as
[[his]13 secretary of state]34 on [Monday]45. [He]16 ...

Figure 1: An illustrative example

mk and consists of the 39 features shown in Ta-
ble 1. These features have largely been employed
by state-of-the-art learning-based coreference sys-
tems (e.g., Soon et al. (2001), Ng and Cardie
(2002b), Bengtson and Roth (2008)), and are com-
puted automatically. As can be seen, the features
are divided into four blocks. The first two blocks
consist of features that describe the properties of
mj andmk, respectively, and the last two blocks
of features describe the relationship betweenmj

andmk. The classification associated with a train-
ing instance is either positive or negative, depend-
ing on whethermj andmk are coreferent.

If one training instance were created from each
pair of mentions, the negative instances would
significantly outnumber the positives, yielding
a skewed class distribution that will typically
have an adverse effect on model training. As
a result, only a subset of mention pairs will
be generated for training. Following Soon et
al. (2001), we create (1) a positive instance for
each discourse-old mentionmk and its closest
antecedentmj ; and (2) a negative instance for
mk paired with each of the intervening mentions,
mj+1, mj+2, . . . , mk−1. In our running example
shown in Figure 1, three training instances will
be generated forHe: i(Monday, He), i(secretary
of state, He), and i(his, He). The first two of
these instances will be labeled as negative, and
the last one will be labeled as positive. To train a
mention-pair classifier, we use the SVM learning
algorithm from the SVMlight package (Joachims,
2002), converting all multi-valued features into an
equivalent set of binary-valued features.

After training, the resulting SVM classifier is
used to identify an antecedent for a mention in a
test text. Specifically, an active mentionmk se-
lects as its antecedent the closest preceding men-
tion that is classified as coreferent withmk. If mk

is not classified as coreferent with any preceding
mention, it will be considered discourse-new (i.e.,
no antecedent will be selected formk).

3.2 Entity-Mention Model

Unlike a mention-pair model, an entity-mention
model is a classifier that decides whether or not

an active mentionmk is coreferent with apar-
tial cluster cj that precedesmk. Each training
instance,i(cj , mk), representscj and mk. The
features for an instance can be divided into two
types: (1) features that describemk (i.e, those
shown in the second block of Table 1), and (2)
cluster-level features, which describe the relation-
ship betweencj and mk. Motivated by previ-
ous work (Luo et al., 2004; Culotta et al., 2007;
Yang et al., 2008), we create cluster-level fea-
tures from mention-pair features using four pred-
icates: NONE, MOST-FALSE, MOST-TRUE, and
ALL . Specifically, for each featureX shown in
the last two blocks in Table 1, we first convertX

into an equivalent set of binary-valued features if
it is multi-valued. Then, for each resulting binary-
valued featureXb, we create four binary-valued
cluster-level features: (1)NONE-Xb is true when
Xb is false betweenmk and each mention incj ; (2)
MOST-FALSE-Xb is true whenXb is true between
mk and less than half (but at least one) of the men-
tions incj ; (3) MOST-TRUE-Xb is true whenXb is
true betweenmk and at least half (but not all) of
the mentions incj ; and (4)ALL -Xb is true whenXb

is true betweenmk and each mention incj . Hence,
for eachXb, exactly one of these four cluster-level
features evaluates to true.

Following Yang et al. (2008), we create (1) a
positive instance for each discourse-old mention
mk and the preceding clustercj to which it be-
longs; and (2) a negative instance formk paired
with each partial cluster whose last mention ap-
pears betweenmk and its closest antecedent (i.e.,
the last mention ofcj). Consider again our run-
ning example. Three training instances will be
generated forHe: i({Monday}, He), i({secretary
of state}, He), and i({Barack Obama, his}, He).
The first two of these instances will be labeled as
negative, and the last one will be labeled as pos-
itive. As in the mention-pair model, we train an
entity-mention classifier using the SVM learner.

After training, the resulting classifier is used to
identify a preceding cluster for a mention in a test
text. Specifically, the mentions are processed in
a left-to-right manner. For each active mention
mk, a test instance is created betweenmk and
each of the preceding clusters formed so far. All
the test instances are then presented to the classi-
fier. Finally,mk will be linked to the closest pre-
ceding cluster that is classified as coreferent with
mk. If mk is not classified as coreferent with any
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Features describing mj , a candidate antecedent
1 PRONOUN 1 Y if mj is a pronoun; else N
2 SUBJECT 1 Y if mj is a subject; else N
3 NESTED 1 Y if mj is a nested NP; else N
Features describing mk, the mention to be resolved
4 NUMBER 2 SINGULAR or PLURAL, determined using a lexicon
5 GENDER 2 MALE , FEMALE, NEUTER, or UNKNOWN, determined using a list of common first names
6 PRONOUN 2 Y if mk is a pronoun; else N
7 NESTED 2 Y if mk is a nested NP; else N
8 SEMCLASS 2 the semantic class ofmk; can be one ofPERSON, LOCATION, ORGANIZATION, DATE, TIME,

MONEY, PERCENT, OBJECT, OTHERS, determined using WordNet and an NE recognizer
9 ANIMACY 2 Y if mk is determined asHUMAN or ANIMAL by WordNet and an NE recognizer; else N
10 PRO TYPE 2 the nominative case ofmk if it is a pronoun; else NA. E.g., the feature value forhim is HE

Features describing the relationship between mj , a candidate antecedent and mk, the mention to be resolved
11 HEAD MATCH C if the mentions have the same head noun; else I
12 STR MATCH C if the mentions are the same string; else I
13 SUBSTR MATCH C if one mention is a substring of the other; else I
14 PRO STR MATCH C if both mentions are pronominal and are the same string; else I
15 PN STR MATCH C if both mentions are proper names and are the same string; else I
16 NONPRO STR MATCH C if the two mentions are both non-pronominal and are the same string; elseI
17 MODIFIER MATCH C if the mentions have the same modifiers; NA if one of both of them don’t have a modifier;

else I
18 PRO TYPE MATCH C if both mentions are pronominal and are either the same pronoun or different only w.r.t.

case; NA if at least one of them is not pronominal; else I
19 NUMBER C if the mentions agree in number; I if they disagree; NA if the number for one or both

mentions cannot be determined
20 GENDER C if the mentions agree in gender; I if they disagree; NA if the gender for one or both mentions

cannot be determined
21 AGREEMENT C if the mentions agree in both gender and number; I if they disagree in bothnumber and

gender; else NA
22 ANIMACY C if the mentions match in animacy; I if they don’t; NA if the animacy for one orboth mentions

cannot be determined
23 BOTH PRONOUNS C if both mentions are pronouns; I if neither are pronouns; else NA
24 BOTH PROPERNOUNS C if both mentions are proper nouns; I if neither are proper nouns; elseNA
25 MAXIMALNP C if the two mentions does not have the same maximial NP projection; else I
26 SPAN C if neither mention spans the other; else I
27 INDEFINITE C if mk is an indefinite NP and is not in an appositive relationship; else I
28 APPOSITIVE C if the mentions are in an appositive relationship; else I
29 COPULAR C if the mentions are in a copular construction; else I
30 SEMCLASS C if the mentions have the same semantic class; I if they don’t; NA if the semantic class

information for one or both mentions cannot be determined
31 ALIAS C if one mention is an abbreviation or an acronym of the other; else I
32 DISTANCE binned values for sentence distance between the mentions
Additional features describing the relationship between mj , a candidate antecedent and mk, the mention to be resolved
33 NUMBER’ the concatenation of theNUMBER 2 feature values ofmj andmk. E.g., ifmj is Clinton and

mk is they, the feature value isSINGULAR-PLURAL, sincemj is singular andmk is plural
34 GENDER’ the concatenation of theGENDER 2 feature values ofmj andmk

35 PRONOUN’ the concatenation of thePRONOUN 2 feature values ofmj andmk

36 NESTED’ the concatenation of theNESTED 2 feature values ofmj andmk

37 SEMCLASS’ the concatenation of theSEMCLASS 2 feature values ofmj andmk

38 ANIMACY ’ the concatenation of theANIMACY 2 feature values ofmj andmk

39 PRO TYPE’ the concatenation of thePRO TYPE 2 feature values ofmj andmk

Table 1: The feature set for coreference resolution. Non-relationalfeatures describe a mention and in
most cases take on a value ofYES or NO. Relational features describe the relationship between the two
mentions and indicate whether they areCOMPATIBLE, INCOMPATIBLE or NOT APPLICABLE.

preceding cluster, it will be considered discourse-
new. Note that all partial clusters precedingmk

are formed incrementally based on the predictions
of the classifier for the firstk − 1 mentions.

3.3 Mention-Ranking Model

As noted before, a ranking model imposes a
ranking on all the candidate antecedents of an

active mentionmk. To train a ranker, we
use the SVM ranker-learning algorithm from the
SVMlight package. Like the mention-pair model,
each training instancei(mj , mk) representsmk

and a preceding mentionmj . In fact, the fea-
tures that represent the instance as well as the
method for creating training instances are identi-
cal to those employed by the mention-pair model.
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The only difference lies in the assignment of
class values to training instances. Assuming that
Sk is the set of training instances created for
anaphoric mentionmk, the class value for an in-
stancei(mj , mk) in Sk is the rank ofmj among
competing candidate antecedents, which is 2 if
mj is the closest antecedent ofmk, and 1 other-
wise.1 To exemplify, consider our running exam-
ple. As in the mention-pair model, three training
instances will be generated forHe: i(Monday, He),
i(secretary of state, He), i(his, He). The third in-
stance will have a class value of 2, and the remain-
ing two will have a class value of 1.

After training, the mention-ranking model is ap-
plied to rank the candidate antecedents for an ac-
tive mention in a test text as follows. Given an ac-
tive mentionmk, we follow Denis and Baldridge
(2008) and use an independently-trained classifier
to determine whethermk is discourse-new. If so,
mk will not be resolved. Otherwise, we create test
instances formk by pairing it with each of its pre-
ceding mentions. The test instances are then pre-
sented to the ranker, and the preceding mention
that is assigned the largest value by the ranker is
selected as the antecedent ofmk.

The discourse-new classifier used in the resolu-
tion step is trained with 26 of the 37 features2 de-
scribed in Ng and Cardie (2002a) that are deemed
useful for distinguishing between anaphoric and
non-anaphoric mentions. These features can be
broadly divided into two types: (1) features that
encode the form of the mention (e.g., NP type,
number, definiteness), and (2) features that com-
pare the mention to one of its preceding mentions.

4 Coreference as Cluster Ranking

In this section, we describe our cluster-ranking ap-
proach to NP coreference. As noted before, our
approach aims to combine the strengths of entity-
mention models and mention-ranking models.

4.1 Training and Applying a Cluster Ranker

For ease of exposition, we will describe in this
subsection how to train and apply a cluster ranker
when it is used in a pipeline architecture, where
discourse-new detection is performed prior to
coreference resolution. In the next subsection, we
will show how the two tasks can be learned jointly.

1A larger class value implies a better rank in SVMlight.
2The 11 features that we did not employ areCONJ,

POSSESSIVE, MODIFIER, POSTMODIFIED, SPECIAL NOUNS,
POST, SUBCLASS, TITLE, and the positional features.

Recall that a cluster ranker ranks a set of pre-
ceding clusters for an active mentionmk. Since
a cluster ranker is a hybrid of a mention-ranking
model and an entity-mention model, the way it is
trained and applied is also a hybrid of the two.
In particular, the instance representation employed
by a cluster ranker is identical to that used by
an entity-mention model, where each training in-
stancei(cj , mk) represents a preceding clustercj

and a discourse-old mentionmk and consists of
cluster-level features formed from predicates. Un-
like in an entity-mention model, however, in a
cluster ranker, (1) a training instance is created be-
tween each discourse-old mentionmk andeach of
its preceding clusters; and (2) since we are train-
ing a model for ranking clusters, the assignment of
class values to training instances is similar to that
of a mention ranker. Specifically, the class value of
a training instancei(cj , mk) created formk is the
rank ofcj among the competing clusters, which is
2 if mk belongs tocj , and 1 otherwise.

Applying the learned cluster ranker to a test text
is similar to applying a mention ranker. Specifi-
cally, the mentions are processed in a left-to-right
manner. For each active mentionmk, we first
apply an independently-trained classifier to deter-
mine if mk is discourse-new. If so,mk will not be
resolved. Otherwise, we create test instances for
mk by pairing it with each of its preceding clus-
ters. The test instances are then presented to the
ranker, andmk is linked to the cluster that is as-
signed the highest value by the ranker. Note that
these partial clusters precedingmk are formed in-
crementally based on the predictions of the ranker
for the firstk−1 mentions; no gold-standard coref-
erence information is used in their formation.

4.2 Joint Discourse-New Detection and
Coreference Resolution

The cluster ranker described above can be used
to determine which preceding cluster a discourse-
old mention should be linked to, but it cannot be
used to determine whether a mention is discourse-
new or not. The reason is simple: all the training
instances are generated from discourse-old men-
tions. Hence, to jointly learn discourse-new de-
tection and coreference resolution, we must train
the ranker using instances generated fromboth
discourse-old and discourse-new mentions.

Specifically, when training the ranker, we pro-
vide each active mention with the option to start
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a new cluster by creating an additional instance
that (1) contains features that solely describe the
active mention (i.e., the features shown in the sec-
ond block of Table 1), and (2) has the highest rank
value among competing clusters (i.e., 2) if it is
discourse-new and the lowest rank value (i.e., 1)
otherwise. The main advantage of jointly learning
the two tasks is that it allows the ranking model
to evaluateall possible options for an active men-
tion (i.e., whether to resolve it, and if so, which
preceding cluster is the best)simultaneously.

After training, the resulting cluster ranker pro-
cesses the mentions in a test text in a left-to-right
manner. For each active mentionmk, we create
test instances for it by pairing it with each of its
preceding clusters. To allow for the possibility that
mk is discourse-new, we create an additional test
instance that contains features that solely describe
the active mention (similar to what we did in the
training step above). All these test instances are
then presented to the ranker. If the additional test
instance is assigned the highest rank value by the
ranker, thenmk is classified as discourse-new and
will not be resolved. Otherwise,mk is linked to
the cluster that has the highest rank. As before,
all partial clusters precedingmk are formed incre-
mentally based on the predictions of the ranker for
the firstk − 1 mentions.

5 Evaluation

5.1 Experimental Setup

Corpus. We use the ACE 2005 coreference cor-
pus as released by the LDC, which consists of the
599 training documents used in the official ACE
evaluation.3 To ensure diversity, the corpus was
created by selecting documents from six different
sources: Broadcast News (bn), Broadcast Con-
versations (bc), Newswire (nw), Webblog (wb),
Usenet (un), and conversational telephone speech
(cts). The number of documents belonging to each
source is shown in Table 2. For evaluation, we par-
tition the 599 documents into a training set and a
test set following a 80/20 ratio, ensuring that the
two sets have the same proportion of documents
from the six sources.

Mention extractor. We evaluate each corefer-
ence model using bothtrue mentions (i.e., gold
standard mentions4) andsystem mentions (i.e., au-

3Since we did not participate in ACE 2005, we do not
have access to the official test set.

4Note that only mentionboundaries are used.

Dataset bn bc nw wl un cts
# of documents 60 226 106 119 49 39

Table 2: Statistics for the ACE 2005 corpus

tomatically identified mentions). To extract sys-
tem mentions from a test text, we trained a men-
tion extractor on the training texts. Following Flo-
rian et al. (2004), we recast mention extraction as
a sequence labeling task, where we assign to each
token in a test text a label that indicates whether it
begins a mention, isinside a mention, or isoutside
a mention. Hence, to learn the extractor, we create
one training instance for each token in a training
text and derive its class value (one ofb, i, ando)
from the annotated data. Each instance represents
wi, the token under consideration, and consists of
29 linguistic features, many of which are modeled
after the systems of Bikel et al. (1999) and Florian
et al. (2004), as described below.
Lexical (7): Tokens in a window of 7:
{wi−3, . . . , wi+3}.
Capitalization (4): Determine whether wi

IsAllCap, IsInitCap, IsCapPeriod, and
IsAllLower (see Bikel et al. (1999)).
Morphological (8): wi’s prefixes and suffixes of
length one, two, three, and four.
Grammatical (1): The part-of-speech (POS)
tag of wi obtained using the Stanford log-linear
POS tagger (Toutanova et al., 2003).
Semantic (1): The named entity (NE) tag ofwi

obtained using the Stanford CRF-based NE recog-
nizer (Finkel et al., 2005).
Gazetteers (8): Eight dictionaries containing
pronouns (77 entries), common words and words
that are not names (399.6k), person names (83.6k),
person titles and honorifics (761), vehicle words
(226), location names (1.8k), company names
(77.6k), and nouns extracted from WordNet that
are hyponyms ofPERSON(6.3k).

We employ CRF++5, a C++ implementation of
conditional random fields, for training the mention
detector, which achieves an F-score of 86.7 (86.1
recall, 87.2 precision) on the test set. These ex-
tracted mentions are to be used as system mentions
in our coreference experiments.
Scoring programs. To score the output of a
coreference model, we employ three scoring pro-
grams: MUC (Vilain et al., 1995), B3 (Bagga and
Baldwin, 1998), andφ3-CEAF (Luo, 2005).

5Available from http://crfpp.sourceforge.net
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There is a complication, however. When scor-
ing a response (i.e., system-generated) partition
against akey (i.e., gold-standard) partition, a scor-
ing program needs to construct a mapping between
the mentions in the response and those in the key.
If the response is generated using true mentions,
then every mention in the response is mapped to
some mention in the key and vice versa; in other
words, there are notwinless (i.e., unmapped) men-
tions (Stoyanov et al., 2009). However, this is
not the case when system mentions are used. The
aforementioned complication does not arise from
the construction of the mapping, but from the fact
that Bagga and Baldwin (1998) and Luo (2005) do
not specify how to apply B3 and CEAF to score
partitions generated from system mentions.

We propose a simple solution to this problem:
we remove all and only those twinless system
mentions that are singletons before applying B3

and CEAF. The reason is simple: since the coref-
erence resolver has successfully identified these
mentions as singletons, it should not be penal-
ized, and removing them allows us to avoid such
penalty. Note that we only remove twinless (as op-
posed to all) system mentions that are singletons:
this allows us to reward a resolver for success-
ful identification of singleton mentions that have
twins, thus overcoming a major weakness of and
common criticism against the MUC scorer. Also,
we retain twinless system mentions that are non-
singletons, as the resolver should be penalized for
identifying spurious coreference relations. On the
other hand, we do not remove twinless mentions
in the key partition, as we want to ensure that the
resolver makes the correct (non-)coreference de-
cisions for them. We believe that our proposal ad-
dresses Stoyanov et al.’s (2009) problem of hav-
ing very low precision when applying the CEAF
scorer to score partitions of system mentions.

5.2 Results and Discussions

The mention-pair baseline. We train our first
baseline, the mention-pair coreference classifier,
using the SVM learning algorithm as implemented
in the SVMlight package (Joachims, 2002).6 Re-
sults of this baseline using true mentions and sys-
tem mentions, shown in row 1 of Tables 3 and 4,
are reported in terms of recall (R), precision (P),
and F-score (F) provided by the three scoring pro-

6For this and subsequent uses of the SVM learner in our
experiments, we set all parameters to their default values.

grams. As we can see, this baseline achieves F-
scores of 54.3–70.0 and 53.4–62.5 for true men-
tions and system mentions, respectively.

The entity-mention baseline. Next, we train
our second baseline, the entity-mention corefer-
ence classifier, using the SVM learner. Results of
this baseline are shown in row 2 of Tables 3 and
4. For true mentions, this baseline achieves an F-
score of 54.8–70.7. In comparison to the mention-
pair baseline, F-score rises insignificantly accord-
ing to all three scorers.7 Similar trends can be ob-
served for system mentions, where the F-scores
between the two models are statistically indistin-
guishable across the board. While the insignifi-
cant performance difference is somewhat surpris-
ing given the improved expressiveness of entity-
mention models over mention-pair models, similar
trends have been reported by Luo et al. (2004).

The mention-ranking baseline. Our third base-
line is the mention-ranking coreference model,
trained using the ranker-learning algorithm in
SVMlight. To identify discourse-new mentions,
we employ two methods. In the first method, we
adopt a pipeline architecture, where we train an
SVM classifier for discourse-new detection inde-
pendently of the mention ranker on the training set
using the 26 features described in Section 3.3. We
then apply the resulting classifier to each test text
to filter discourse-new mentions prior to corefer-
ence resolution. Results of the mention ranker are
shown in row 3 of Tables 3 and 4. As we can
see, the ranker achieves F-scores of 57.8–71.2 and
54.1–65.4 for true mentions and system mentions,
respectively, yielding a significant improvement
over the entity-mention baseline in all but one case
(MUC/true mentions).

In the second method, we perform discourse-
new detection jointly with coreference resolution
using the method described in Section 4.2. While
we discussed this joint learning method in the con-
text of cluster ranking, it should be easy to see
that the method is equally applicable to a men-
tion ranker. Results of the mention ranker using
this joint architecture are shown in row 4 of Ta-
bles 3 and 4. As we can see, the ranker achieves
F-scores of 61.6–73.4 and 55.6–67.1 for true men-
tions and system mentions, respectively. For both
types of mentions, the improvements over the cor-
responding results for the entity-mention baseline

7We use Approximate Randomization (Noreen, 1989) for
testing statistical significance, withp set to 0.05.
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MUC CEAF B3

Coreference Model R P F R P F R P F
1 Mention-pair model 71.7 69.2 70.4 54.3 54.3 54.3 53.3 63.6 58.0
2 Entity-mention model 71.7 69.7 70.7 54.8 54.8 54.8 53.2 65.1 58.5
3 Mention-ranking model (Pipeline) 68.7 73.9 71.2 57.8 57.8 57.8 55.8 63.9 59.6
4 Mention-ranking model (Joint) 69.4 77.8 73.4 61.6 61.6 61.6 57.0 70.1 62.9
5 Cluster-ranking model (Pipeline) 71.7 78.2 74.8 61.8 61.8 61.8 58.2 69.1 63.2
6 Cluster-ranking model (Joint) 69.9 83.3 76.0 63.3 63.3 63.3 56.0 74.6 64.0

Table 3: MUC, CEAF, and B3 coreference results using true mentions.

MUC CEAF B3

Coreference Model R P F R P F R P F
1 Mention-pair model 70.0 56.4 62.5 56.1 51.0 53.4 50.8 57.9 54.1
2 Entity-mention model 68.5 57.2 62.3 56.3 50.2 53.1 51.2 57.8 54.3
3 Mention-ranking model (Pipeline) 62.2 68.9 65.4 51.6 56.7 54.1 52.3 61.8 56.6
4 Mention-ranking model (Joint) 62.1 73.0 67.1 53.0 58.5 55.6 50.4 65.5 56.9
5 Cluster-ranking model (Pipeline) 65.3 72.3 68.7 54.1 59.3 56.6 55.3 63.7 59.2
6 Cluster-ranking model (Joint) 64.1 75.4 69.3 56.7 62.6 59.5 54.4 70.5 61.4

Table 4: MUC, CEAF, and B3 coreference results using system mentions.

are significant, and suggest that mention ranking is
a precision-enhancing device. Moreover, in com-
parison to the pipeline architecture in row 3, we
see that F-score rises significantly by 2.2–3.8% for
true mentions, and improves by a smaller margin
of 0.3–1.7% for system mentions. These results
demonstrate the benefits of joint modeling.

Our cluster-ranking model. Finally, we evalu-
ate our cluster-ranking model. As in the mention-
ranking baseline, we employ both the pipeline ar-
chitecture and the joint architecture for discourse-
new detection. Results are shown in rows 5 and
6 of Tables 3 and 4, respectively, for the two ar-
chitectures. When true mentions are used, the
pipeline architecture yields an F-score of 61.8–
74.8, which represents a significant improvement
over the mention ranker adopting the pipeline ar-
chitecture. With the joint architecture, the clus-
ter ranker achieves an F-score of 63.3–76.0. This
also represents a significant improvement over the
mention ranker adopting the joint architecture, the
best of the baselines, and suggests that cluster
ranking is a better precision-enhancing model than
mention ranking. Moreover, comparing the re-
sults in these two rows reveals the superiority of
the joint architecture over the pipeline architec-
ture, particularly in terms of its ability to enhance
system precision. Similar performance trends can
be observed when system mentions are used.

6 Conclusions

We have presented a cluster-ranking approach that
recasts the mention resolution process as the prob-

lem of finding the best preceding cluster to link an
active mention to. Crucially, our approach com-
bines the strengths of entity-mention models and
mention-ranking models. Experimental results on
the ACE 2005 corpus show that (1) jointly learn-
ing coreference resolution and discourse-new de-
tection allows the cluster ranker to achieve bet-
ter performance than adopting a pipeline corefer-
ence architecture; and (2) our cluster ranker signif-
icantly outperforms the mention ranker, the best of
the three baseline coreference models, under both
the pipeline architecture and the joint architecture.
Overall, we believe that our cluster-ranking ap-
proach advances the state-of-the-art in coreference
resolution both theoretically and empirically.
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