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Abstract

We investigate the effectiveness of self-
training PCFG grammars with latent anno-
tations (PCFG-LA) for parsing languages
with different amounts of labeled training
data. Compared to Charniak’s lexicalized
parser, the PCFG-LA parser was more ef-
fectively adapted to a language for which
parsing has been less well developed (i.e.,
Chinese) and benefited more from self-
training. We show for the first time that
self-training is able to significantly im-
prove the performance of the PCFG-LA
parser, a single generative parser, on both
small and large amounts of labeled train-
ing data. Our approach achieves state-
of-the-art parsing accuracies for a single
parser on both English (91.5%) and Chi-
nese (85.2%).

1 Introduction

There is an extensive research literature on build-
ing high quality parsers for English (Collins, 1999;
Charniak, 2000; Charniak and Johnson, 2005;
Petrov et al., 2006), however, models for parsing
other languages are less well developed. Take Chi-
nese for example; there have been several attempts
to develop accurate parsers for Chinese (Bikel and
Chiang, 2000; Levy and Manning, 2003; Petrov
and Klein, 2007), but the state-of-the-art perfor-
mance, around 83% F measure on Penn Chinese
Treebank (achieved by the Berkeley parser (Petrov
and Klein, 2007)) falls far short of performance
on English (∼90-92%). As pointed out in (Levy
and Manning, 2003), there are many linguistic dif-
ferences between Chinese and English, as well as
structural differences between their corresponding
treebanks, and some of these make it a harder task
to parse Chinese. Additionally, the fact that the
available treebanked Chinese materials are more

limited than for English also increases the chal-
lenge of building high quality Chinese parsers.
Many of these differences would also tend to apply
to other less well investigated languages.

In this paper, we focus on English and Chinese
because the former is a language for which ex-
tensive parsing research has been conducted while
the latter is a language that has been less exten-
sively studied. We adapt and improve the Berke-
ley parser, which learns PCFG grammars with la-
tent annotations, and show through comparative
studies that this parser significantly outperforms
Charniak’s parser, which was initially developed
for English and subsequently ported to Chinese.
We focus on answering two questions: how well
does a parser perform across languages and how
much does it benefit from self-training?

The first question is of special interest when
choosing a parser that is designed for one language
and adapting it to another less studied language.
We improve the PCFG-LA parser by adding a
language-independent method for handling rare
words and adapt it to another language, Chinese,
by creating a method to better model Chinese un-
known words. Our results show that the PCFG-
LA parser performs significantly better than Char-
niak’s parser on Chinese, and is also somewhat
more accurate on English, although both parsers
have high accuracy.

The second question is important because la-
beled training data is often quite limited, espe-
cially for less well investigated languages, while
unlabeled data is ubiquitous. Early investigations
on self-training for parsing have had mixed re-
sults. Charniak (1997) reported no improvements
from self-training a PCFG parser on the standard
WSJ training set. Steedman et al. (2003) re-
ported some degradation using a lexicalized tree
adjoining grammar parser and minor improve-
ment using Collins lexicalized PCFG parser; how-
ever, this gain was obtained only when the parser
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was trained on a small labeled set. Reichart and
Rappoport (2007) obtained significant gains us-
ing Collins lexicalized parser with a different self-
training protocol, but again they only looked at
small labeled sets. McClosky et al. (2006) effec-
tively utilized unlabeled data to improve parsing
accuracy on the standard WSJ training set, but they
used a two-stage parser comprised of Charniak’s
lexicalized probabilistic parser with n-best pars-
ing and a discriminative reranking parser (Char-
niak and Johnson, 2005), and thus it would be bet-
ter categorized as “co-training” (McClosky et al.,
2008). It is worth noting that their attempts at self-
training Charniak’s lexicalized parser directly re-
sulted in no improvement. There are other suc-
cessful semi-supervised training approaches for
dependency parsing, such as (Koo et al., 2008;
Wang et al., 2008), and it would be interesting
to investigate how they could be applied to con-
stituency parsing.

We show in this paper, for the first time, that
self-training is able to significantly improve the
performance of the PCFG-LA parser, a single gen-
erative parser, on both small and large amounts of
labeled training data, for both English and Chi-
nese. With self-training, a fraction of the WSJ
or CTB6 treebank training data is sufficient to
train a PCFG-LA parser that is able to achieve or
even beat the accuracies obtained using a single
parser trained on the entire treebank without self-
training. We conjecture based on our comparison
of the PCFG-LA parser to Charniak’s parser that
the addition of self-training data helps the former
parser learn more fine-grained latent annotations
without over-fitting.

The rest of this paper is organized as follows.
We describe the PCFG-LA parser and several en-
hancements in Section 2, and discuss self-training
in Section 3. We then outline the experimental
setup in Section 4, describe the results in Sec-
tion 5, and present a detailed analysis in Section 6.
The last section draws conclusions and describes
future work.

2 Parsing Model

The Berkeley parser (Petrov et al., 2006; Petrov
and Klein, 2007) is an efficient and effective parser
that introduces latent annotations (Matsuzaki et
al., 2005) to refine syntactic categories to learn
better PCFG grammars. In the example parse tree
in Figure 1(a), each syntactic category is split into

multiple latent subcategories, and accordingly the
original parse tree is decomposed into many parse
trees with latent annotations. Figure 1(b) depicts
one of such trees. The grammar and lexical rules
are split accordingly, e.g., NP→PRP is split into
different NP-i→PRP-j rules. The expansion prob-
abilities of these split rules are the parameters of a
PCFG-LA grammar.
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Figure 1: (a) original treebank tree, (b) after latent
annotation.

The objective of training is to learn a grammar
with latent annotations that maximizes the like-
lihood of the training trees, i.e., the sum of the
likelihood of all parse trees with latent annota-
tions. Since the latent annotations are not avail-
able in the treebank, a variant of the EM algo-
rithm is utilized to learn the rule probabilities for
them. The Berkeley parser employs a hierarchi-
cal split-merge method that gradually increases the
number of latent annotations and adaptively allo-
cates them to different treebank categories to best
model the training data. In this paper, we call a
grammar trained after n split-merge steps an n-
th order grammar. The order of a grammar is a
step (not continuous) function of the number of la-
tent annotations because the split-merge algorithm
first splits each latent annotation into two and then
merges some of the splits back based on their abil-
ity to increase training likelihood.

For this paper, we implemented1 our own ver-
sion of Berkeley parser. Updates include better
handling of rare words across languages, as well
as unknown Chinese words. The parser is able
to process difficult sentences robustly using adap-
tive beam expansion. The training algorithm was
updated to support a wide range of self-training
experiments (e.g., posterior-weighted unlabeled
data, introducing self-training in later iterations)
and to make use of multiple processors to paral-
lelize EM training. The parallelization is crucial

1A major motivation for this implementation was to sup-
port some algorithms we are developing. Most of our en-
hancements will be merged with a future release of the Berke-
ley parser.
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for training a model with large volumes of data in
a reasonable amount of time2.

We next describe the language-independent
method to handle rare words, which is impor-
tant for training better PCFG-LA grammars es-
pecially when the training data is limited in size,
and our unknown Chinese word handling method,
highlighting the importance of utilizing language-
specific features to enhance parsing performance.
As we will see later, both of these methods signif-
icantly improve parsing performance.

2.1 Rare Word Handling

Whereas rule expansions are frequently observed
in the treebank, word-tag co-occurrences are
sparser and more likely to suffer from over-fitting.
Although the lexicon smoothing method in the
Berkeley parser is able to make the word emis-
sion probabilities of different latent states of a
POS tag more alike, the EM training algorithm
still strongly discriminates among word identities.
Suppose word tag pairs 〈w1, t〉 and 〈w2, t〉 both
appear the same number of times in the training
data. In a PCFG grammar without latent annota-
tions, the probabilities of emitting these two words
given tag t would be the same, i.e., p(w1|t) =
p(w2|t). After introducing latent annotation x to
tag t, the emission probabilities of these two words
given a latent state tx may no longer be the same
because p(w1|tx) and p(w2|tx) are two indepen-
dent parameters that the EM algorithm optimizes
on. It is beneficial to learn subcategories of POS
tags to model different types of words, especially
for frequent words; however, it is not desirable to
strongly discriminate among rare words because it
could distract the model from learning about com-
mon phenomena.

To handle this problem, the probability of a la-
tent state tx generating a rare word w is forced
to be proportional to the emission probability of
word w given the surface tag t. This is achieved
by mapping all words with frequency less than
threshold3 λ to the unk symbol, and for each la-
tent state tx of a POS tag t, accumulating the word
tag statistics of these rare words to cr(tx, unk) =∑

w:c(w)<λ c(tx, w), and then redistributing them
among the rare words to estimate their emission

2The parallel version is able to train our largest grammar
on a 8-core machine within a week, while the non-parallel
version is not able to finish even after 3 weeks.

3The value of λ is tuned on the development set.

probabilities:

c(tx, w) = cr(tx, unk) · c(t, w)
cr(t, unk)

p(w|tx) = c(tx, w)/
∑

w
c(tx, w)

2.2 Chinese Unknown Word Handling
The Berkeley parser utilizes statistics associated
with rare words (e.g., suffix, capitalization) to esti-
mate the emission probabilities of unknown words
at decoding time. This is adequate for for English,
however, only a limited number of classes of un-
known words, such as digits and dates, are handled
for Chinese. In this paper, we develop a character-
based unknown word model inspired by (Huang
et al., 2007) that reflects the fact that characters in
any position (prefix, infix, or suffix) can be predic-
tive of the part-of-speech (POS) type for Chinese
words. In our model, the word emission proba-
bility, p(w|tx), of an unknown word w given the
latent state tx of POS tag t is estimated by the ge-
ometric average of the emission probability of the
characters ck in the word:

P (w|tx) = n

√∏
ck∈w,P (ck|t)6=0

P (ck|t)

where n = |{ck ∈ w|P (ck|t) 6= 0}|. Characters
not seen in the training data are ignored in the
computation of the geometric average. We back
off to use the rare word statistics regardless of
word identity when the above equation cannot be
used to compute the emission probability.

3 Parser Self-Training

Our hypothesis is that combining automatically la-
beled parses with treebank trees will help the EM
training of the PCFG-LA parser to make more in-
formed decisions about latent annotations and thus
generate more effective grammars. In this section,
we discuss how self-training is applied to train a
PCFG-LA parser.

There are several ways to automatically label
the data. A fairly standard method is to parse the
unlabeled sentences with a parser trained on la-
beled training data, and then combine the result-
ing parses with the treebank training data to re-
train the parser. This is the approach we chose
for self-training. An alternative approach is to run
EM directly on the labeled treebank trees and the
unlabeled sentences, without explicit parse trees
for the unlabeled sentences. However, because the
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brackets would need to be determined for the un-
labeled sentences together with the latent annota-
tions, this would increase the running time from
linear in the number of expansion rules to cubic in
the length of the sentence.

Another important decision is how to weight
the gold standard and automatically labeled data
when training a new parser model. Errors in the
automatically labeled data could limit the accu-
racy of the self-trained model, especially when
there is a much greater quantity of automatically
labeled data than the gold standard training data.
To balance the gold standard and automatically
labeled data, one could duplicate the treebank
data to match the size of the automatically la-
beled data; however, the training of the PCFG-
LA parser would result in redundant applications
of EM computations over the same data, increas-
ing the cost of training. Instead we weight the
posterior probabilities computed for the gold and
automatically labeled data, so that they contribute
equally to the resulting grammar. Our preliminary
experiments show that balanced weighting is ef-
fective, especially for Chinese (about 0.4% abso-
lute improvement) where the automatic parse trees
have a relatively lower accuracy.

The training procedure of the PCFG-LA parser
gradually introduces more latent annotations dur-
ing each split-merge stage, and the self-labeled
data can be introduced at any of these stages. In-
troduction of the self-labeled data in later stages,
after some important annotations are learned from
the treebank, could result in more effective learn-
ing. We have found that a middle stage introduc-
tion (after 3 split-merge iterations) of the automat-
ically labeled data has an effect similar to balanc-
ing the weights of the gold and automatically la-
beled trees, possibly due to the fact that both meth-
ods place greater trust in the former than the latter.
In this study, we introduce the automatically la-
beled data at the outset and weight it equally with
the gold treebank training data in order to focus
our experiments to support a deeper analysis.

4 Experimental Setup

For the English experiments, sections from the
WSJ Penn Treebank are used as labeled training
data: section 2-19 for training, section 22 for de-
velopment, and section 23 as the test set. We also

used 210k4 sentences of unlabeled news articles in
the BLLIP corpus for English self-training.

For the Chinese experiments, the Penn Chinese
Treebank 6.0 (CTB6) (Xue et al., 2005) is used
as labeled data. CTB6 includes both news articles
and transcripts of broadcast news. We partitioned
the news articles into train/development/test sets
following Huang et al. (2007). The broadcast news
section is added to the training data because it
shares many of the characteristics of newswire text
(e.g., fully punctuated, contains nonverbal expres-
sions such as numbers and symbols). In addi-
tion, 210k sentences of unlabeled Chinese news
articles are used for self-training. Since the Chi-
nese parsers in our experiments require word-
segmented sentences as input, the unlabeled sen-
tences need to be word-segmented first. As shown
in (Harper and Huang, 2009), the accuracy of au-
tomatic word segmentation has a great impact on
Chinese parsing performance. We chose to use
the Stanford segmenter (Chang et al., 2008) in
our experiments because it is consistent with the
treebank segmentation and provides the best per-
formance among the segmenters that were tested.
To minimize the discrepancy between the self-
training data and the treebank data, we normalize
both CTB6 and the self-training data using UW
Decatur (Zhang and Kahn, 2008) text normaliza-
tion.

Table 1 summarizes the data set sizes used
in our experiments. We used slightly modi-
fied versions of the treebanks; empty nodes and
nonterminal-yield unary rules5, e.g., NP→VP, are
deleted using tsurgeon (Levy and Andrew, 2006).

Train Dev Test Unlabeled

English 39.8k 1.7k 2.4k 210k
(950.0k) (40.1k) (56.7k) (5,082.1k)

Chinese 24.4k 1.9k 2.0k 210k
(678.8k) (51.2k) (52.9k) (6,254.9k)

Table 1: The number of sentences (and words in
parentheses) in our experiments.

We trained parsers on 20%, 40%, 60%, 80%,
and 100% of the treebank training data to evaluate

4This amount was constrained based on both CPU and
memory. We plan to investigate cloud computing to exploit
more unlabeled data.

5As nonterminal-yield unary rules are less likely to be
posited by a statistical parser, it is common for parsers trained
on the standard Chinese treebank to have substantially higher
precision than recall. This gap between bracket recall and
precision is alleviated without loss of parse accuracy by delet-
ing the nonterminal-yield unary rules. This modification sim-
ilarly benefits both parsers we study here.
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the effect of the amount of labeled training data on
parsing performance. We also compare how self-
training impacts the models trained with different
amounts of gold-standard training data. This al-
lows us to simulate scenarios where the language
has limited human-labeled resources.

We compare models trained only on the gold
labeled training data with those that utilize ad-
ditional unlabeled data. Self-training (PCFG-LA
or Charniak) proceeds in two steps. In the first
step, the parser is first trained on the allocated la-
beled training data (e.g., 40%) and is then used
to parse the unlabeled data. In the second step,
a new parser is trained on the weighted combina-
tion6 of the allocated labeled training data and the
additional automatically labeled data. The devel-
opment set is used in each step to select the gram-
mar order with the best accuracy for the PCFG-LA
parser and to tune the smoothing parameters for
Charniak’s parser.

5 Results

In this section, we first present the effect of un-
known and rare word handling for the PCFG-LA
parser, and then compare and discuss the perfor-
mance of the PCFG-LA parser and Charniak’s
parser across languages with different amounts
of labeled training, either with or without self-
training.

5.1 Rare and Unknown Word Handling

Table 2 reports the effect of unknown and rare
word handing for the PCFG-LA parser trained on
100%7 of the labeled training data. The rare word
handling improves the English parser by 0.68%
and the Chinese parser by 0.56% over the Berke-
ley parser. The Chinese unknown word handling
method alone improves the Chinese parser by
0.47%. The rare and unknown handling methods
together improve the Chinese parser by 0.92%. All
the improvements are statistically significant8.

We found that the rare word handling method
becomes more effective as the number of latent an-
notations increases, especially when there is not a

6We balance the size of manually and automatically la-
beled data by posterior weighting for the PCFG-LA parsers
and by duplication for Charniak’s parser.

7Greater improvements are obtained using smaller
amounts of labeled training data.

8We use Bikel’s randomized parsing evaluation compara-
tor to determine the significance (p < 0.05) of difference
between two parsers’ output.

English Chinese
PCFG-LA 89.95 83.23

+R 90.63 83.79
+U N/A 83.70

+R+U N/A 84.15

Table 2: Effects of rare word handling (+R) and
Chinese unknown handling (+U) on the test set.

sufficient amount of labeled training data. Shar-
ing statistics of the rare words during training re-
sults in more robust grammars with better pars-
ing performance. The unknown word handling
method also gives greater improvements on gram-
mars trained on smaller amounts of training data,
suggesting that it is quite helpful for modeling un-
seen words at decoding time. However, it tends to
be less effective when the number of latent anno-
tations increases, probably because the probability
estimation of unseen words based on surface tags
is less reliable for finer-gained latent annotations.

5.2 Labeled Data Only

When comparing the two parsers on both lan-
guages in Figure 2 with treebank training, it is
clear that they perform much better on English
than Chinese. While this is probably due in part
to the years of research on English, Chinese still
appears to be more challenging than English. The
comparison between the two parsing approaches
provides two interesting conclusions.

First, the PCFG-LA parser always performs sig-
nificantly better than Charniak’s parser on Chi-
nese, although both model English well. Ad-
mittedly Charniak’s parser has not been opti-
mized9 on Chinese, but neither has the PCFG-
LA parser10. The lexicalized model in Charniak’s
parser was first optimized for English and required
sophisticated smoothing to deal with sparseness;
however, the lexicalized model developed for Chi-
nese works less well. In contrast, the PCFG-LA
parser learns the latent annotations from the data,
without any specification of what precisely should
be modeled and how it should be modeled. This
flexibility may help it better model new languages.

Second, while both parsers benefit from in-
creased amounts of gold standard training data,
the PCFG-LA parser gains more. The PCFG-LA
parser is initially poorer than Charniak’s parser

9The Chinese port includes modification of the head table,
implementation of a Chinese punctuation model, etc.

10The PCFG-LA parser without the unknown word han-
dling method still outperforms Charniak’s parser on Chinese.
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Figure 2: The performance of the PCFG-LA
parser and Charniak’s parser evaluated on the test
set, trained with different amounts of labeled train-
ing data, with and without self-training (ST).

when trained on 20% WSJ training data, proba-
bly because the training data is too small for it to
learn fine-grained annotations without over-fitting.
As more labeled training data becomes avail-
able, the performance of the PCFG-LA parser im-
proves quickly and finally outperforms Charniak’s
parser significantly. Moreover, performance of the
PCFG-LA parser continues to grow when more la-
beled training data is available, while the perfor-
mance of Charniak’s parser levels out at around
80% of the labeled data. The PCFG-LA parser im-
proves by 3.5% when moving from 20% to 100%
training data, compared to a 2.21% gain for Char-
niak’s parser. Similarly for Chinese, the PCFG-
LA parser also gains more (4.48% vs 3.63%).

5.3 Labeled + Self-Labeled

The PCFG-LA parser is also able to benefit more
from self-training than Charniak’s parser. On the
WSJ data set, Charniak’s parser benefits from self-
training initially when there is little labeled train-
ing data, but the improvement levels out quickly
as more labeled training trees become available.
In contrast, the PCFG-LA parser benefits consis-
tently from self-training11, even when using 100%

11One may notice that the self-trained PCFG-LA parser
with 100% labeled WSJ data has a slightly lower test accu-

of the labeled training set. Similar trends are also
found for Chinese.

It should be noted that the PCFG-LA parser
trained on a fraction of the treebank training data
plus a large amount of self-labeled training data,
which comes with little or no cost, performs com-
parably or even better than grammars trained with
additional labeled training data. For example, the
self-trained PCFG-LA parser with 60% labeled
data is able to outperform the grammar trained
with 100% labeled training data alone for both En-
glish and Chinese. With self-training, even 40%
labeled WSJ training data is sufficient to train a
PCFG-LA parser that is comparable to the model
trained on the entire WSJ training data alone. This
is of significant importance, especially for lan-
guages with limited human-labeled resources.

One might conjecture that the PCFG-LA parser
benefits more from self-training than Charniak’s
parser because its self-labeled data has higher ac-
curacy. However, this is not true. As shown in Fig-
ure 2 (a), the PCFG-LA parser trained with 40%
of the WSJ training set alone has a much lower
performance (88.57% vs 89.96%) than Charniak’s
parser trained on the full WSJ training set. With
the same amount of self-training data (labeled by
each parser), the resulting PCFG-LA parser ob-
tains a much higher F score than the self-trained
Charniak’s parser (90.52% vs 90.18%). Similar
patterns can also be found for Chinese.

English Chinese
PCFG-LA 90.63 84.15

+ Self-training 91.46 85.18

Table 3: Final results on the test set.

Table 3 reports the final results on the test set
when trained on the entire WSJ or CTB6 training
set. For English, self-training contributes 0.83%
absolute improvement to the PCFG-LA parser,
which is comparable to the improvement obtained
from using semi-supervised training with the two-
stage parser in (McClosky et al., 2006). Note that
their improvement is achieved with the addition
of 2,000k unlabeled sentences using the combi-
nation of a generative parser and a discriminative
reranker, compared to using only 210k unlabeled
sentences with a single generative parser in our
approach. For Chinese, self-training results in a

racy than the self-trained PCFG-LA parser with 80% labeled
WSJ data. This is due to the variance in parser performance
when initialized with different seeds and the fact that the de-
velopment set is used to pick the best model for evaluation.
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Figure 3: (a) The training/test accuracy of Charniak’s parser trained on varying amounts of labeled
WSJ training data, with and without self-training (ST). (b) The training/test accuracy and the number
of nonzero rules of the PCFG-LA grammars trained on 20% of the labeled WSJ training data, w/ and
w/o ST. (c) The training/test accuracy of the PCFG-LA parser trained on varying amount of labeled WSJ
training data, w/ and w/o ST; the numbers along the training curves indicate the order of the grammars.
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training data, w/ and w/o ST; the numbers along the training curves indicate the order of the grammars.

state-of-the-art parsing model with 85.18% accu-
racy (1.03% absolute improvement) on a represen-
tative test set. Both improvements are statistically
significant.

6 Analysis

In this section, we perform a series of analyses,
focusing on English (refer to Figure 3), to investi-
gate why the PCFG-LA parser benefits more from
additional data, most particularly automatically la-
beled data, when compared to Charniak’s parser.
Similar analyses have been done for Chinese with
similar results (refer to Figure 4).

Charniak’s parser is a lexicalized PCFG parser
that models lexicalized dependencies explicitly
observable in the training data and relies on

smoothing to avoid over-fitting. Although it is
able to benefit from more training data because of
broader lexicon and rule coverage and more robust
estimation of parameters, its ability to benefit from
the additional data is limited in the sense that it is
not able to generate additional predictive features
that are supported by this data. As shown in fig-
ure 3(a), the parsing accuracy of Charniak’s parser
on the test set improves as the amount of labeled
training data increases; however, the training accu-
racy12 degrades as more data is added. Note that
the training accuracy13 of Charniak’s parser also

12The parser is tested on the treebank labeled set that the
parser is trained on.

13The self-training data is combined with the labeled tree-
bank trees in a weighted manner; otherwise, the training ac-
curacy would be even lower.

838



decreases after the addition of self-training data.
This is expected for models like Charniak’s parser
with fixed model parameters; it is harder to model
more data with greater diversity. The addition of
self-labeled data helps on the test set initially but it
provides little gain when the labeled training data
becomes relatively large.

In contrast, the PCFG-LA grammar is able to
model the training data with different granulari-
ties. Fewer latent annotations are employed when
the training set is small. As the size of the train-
ing data increases, it is able to allocate more latent
annotations to better model the data. As shown in
Figure 3 (b), for a fixed amount (20%) of labeled
training data, the accuracy of the model on train-
ing data continues to improve as the number of la-
tent annotation increases. Although it is important
to limit the number of latent annotations to avoid
over-fitting, the ability to model training data ac-
curately given sufficient latent annotations is desir-
able when more training data is available. When
trained on the labeled data (20%) alone, the 5-th
order grammar achieves its optimal generalization
performance (based on the development set) and
begins to degrade afterwords. With the addition of
self-training data, the 5-th order grammar achieves
an even greater accuracy on the test set and its per-
formance continues to increase14 when moving to
the 6-th or even 7-th order grammar.

Figure 3 (c) plots the training and test curves
of the English PCFG-LA parser with varying
amounts of labeled training data, with and with-
out self-training. This figure differs substantially
from Figure 3 (a). First, as mentioned earlier, the
PCFG-LA parser benefits much more from self-
training than Charniak’s parser with moderate to
large amounts of labeled training data. Second, in
contrast to Charniak’s parser for which training ac-
curacy degrades consistently as the amount of la-
beled training data increases, the training accuracy
of the PCFG-LA parser sometimes improves when
trained on more labeled training data (e.g., the best
model (at order 6) trained on 40%15 labeled train-

14Although the 20% self-trained grammar has a higher test
accuracy at the 7-th round than the 6-th round, the develop-
ment accuracy was better at the 6-th round, and thus we report
the test accuracy of the 6-th round grammar in Figure 3 (c).

15For models trained with greater amounts of labeled train-
ing data, although their training accuracy becomes lower (due
to greater diversity) for the grammars (all at order 6) selected
by the development set, their 7-th order grammars (not re-
ported in the figure) actually have both higher training and
test accuracies than the 6-th order grammar trained on less
training data.

ing data alone has a higher training accuracy than
the best model (at order 5) trained on 20% labeled
training data). Third, the addition of self-labeled
data supports more accurate PCFG-LA grammars
with higher orders than those trained without self-
training, as evidenced by scores on both the train-
ing and test data. This suggests that the self-
trained grammars are able to utilize more latent
annotations to learn deeper dependencies.
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Figure 5: The relative reduction of bracketing er-
rors for different span lengths, evaluated on the
test set. The baseline model is the PCFG-LA
parser trained on 20% of the WSJ training data.
The +Unlabeled curve corresponds to the parser
trained with the additional automatically labeled
data and the +Labeled curve corresponds to the
parser trained with additional 20% labeled training
data. The counts of the brackets are computed on
the gold reference. Span length ‘0’ is designated
for the effect on preterminal POS tags to differ-
entiate it from the non-terminal brackets spanning
only one word.

Figure 5 compares the effect of additional tree-
bank labeled and automatically labeled data on the
relative reduction of bracketing errors for different
span lengths. It is clear from the figure that the im-
provement in parsing accuracy from self-training
is the result of better bracketing across all span
lengths16. However, even though the automati-
cally labeled training data provides more improve-
ment than the additional treebank labeled data in
terms of parsing accuracy, this data is less effective
at improving tagging accuracy than the additional
treebank labeled training data.

So, how could self-training improve rule esti-
mation when training the PCFG-LA parser with
more latent annotations? One possibility is that the
automatically labeled data smooths the parameter

16There is a slight degradation in bracketing accuracy for
some spans longer than 16 words, but the effect is negligible
due to their low counts.
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estimates in the EM algorithm, enabling effective
training of models with more parameters to learn
deeper dependencies. Let p(a → b|e, t) be the
posterior probability of expanding subcategories a
to b given the event e, which is a rule expansion
on a treebank parse tree t. Tl and Tu are the sets
of gold and automatically labeled parse trees, re-
spectively. The update of the rule expansion prob-
ability p(a → b) in self-training (with weighting
parameter α) can be expressed as:

P
t∈Tl

P
e∈t

p(a→ b|e, t) + α
P

t∈Tu

P
e∈t

p(a→ b|e, t)P
b

(
P

t∈Tl

P
e∈t

p(a→ b|e, t) + α
P

t∈Tu

P
e∈t

p(a→ b|e, t))

Since the unlabeled data is parsed by a lower
order grammar (with fewer latent annotations),
the expected counts from the automatically la-
beled data can be thought of as counts from a
lower-order grammar17 that smooth the higher-
order (with more latent annotations) grammar.

We observe that many of the rule parameters of
the grammar trained on WSJ training data alone
have zero probabilities (rules with extremely low
probabilities are also filtered to zero), as was also
pointed out in (Petrov et al., 2006). On the one
hand, this is what we want because the grammar
should learn to avoid impossible rule expansions.
On the other hand, this might also be a sign of
over-fitting of the labeled training data. As shown
in Figure 3 (b), the grammar obtained with the ad-
dition of automatically labeled data contains many
more non-zero rules, and its performance contin-
ues to improve with more latent annotations. Sim-
ilar patterns also appear when using self-training
for other amounts of labeled training data. As is
partially reflected by the zero probability rules, the
addition of the automatically labeled data enables
the exploration of a broader parameter space with
less danger of over-fitting the data. Also note that
the benefit of the automatically labeled data is less
clear in the early training stages (i.e., when there
are fewer latent annotations), as can be seen in Fig-
ure 3 (b). This is probably because there is a small
number of free parameters and the treebank data is
sufficiently large for robust parameter estimation.

17We also trained models using only the automatically la-
beled data without combining it with human-labeled training
data, but they were no more accurate than those trained on
the human-labeled training data alone without self-training.

7 Conclusion

In this paper, we showed that PCFG-LA parsers
can be more effectively applied to languages
where parsing is less well developed and that they
are able to benefit more from self-training than
lexicalized generative parsers. We show for the
first time that self-training is able to significantly
improve the performance of a PCFG-LA parser, a
single generative parser, on both small and large
amounts of labeled training data.

We conjecture based on our analysis that the
EM training algorithm is able to exploit the in-
formation available in both gold and automati-
cally labeled data with more complex grammars
while being less affected by over-fitting. Bet-
ter results would be expected by combining the
PCFG-LA parser with discriminative reranking
approaches (Charniak and Johnson, 2005; Huang,
2008) for self training. Self-training should also
benefit other discriminatively trained parsers with
latent annotations (Petrov and Klein, 2008), al-
though training would be much slower compared
to using generative models, as in our case.

In future work, we plan to scale up the training
process with more unlabeled training data (e.g.,
gigaword) and investigate automatic selection of
materials that are most suitable for self-training.
We also plan to investigate domain adaptation and
apply the model to other languages with modest
treebank resources. Finally, it is also important to
explore other ways to exploit the use of unlabeled
data.
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