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Abstract
Combining information extraction sys-
tems yields significantly higher quality re-
sources than each system in isolation. In
this paper, we generalize such a mixing of
sources and features in a framework called
Ensemble Semantics. We show very large
gains in entity extraction by combining
state-of-the-art distributional and pattern-
based systems with a large set of fea-
tures from a webcrawl, query logs, and
Wikipedia. Experimental results on a web-
scale extraction of actors, athletes and mu-
sicians show significantly higher mean av-
erage precision scores (29% gain) com-
pared with the current state of the art.

1 Introduction

Mounting evidence shows that combining infor-
mation sources and information extraction algo-
rithms leads to improvements in several tasks
such as fact extraction (Paşca et al., 2006), open-
domain IE (Talukdar et al., 2008), and entailment
rule acquisition (Mirkin et al., 2006). In this paper,
we show large gains in entity extraction by com-
bining state-of-the-art distributional and pattern-
based systems with a large set of features from
a 600 million document webcrawl, one year of
query logs, and a snapshot of Wikipedia. Further,
we generalize such a mixing of sources and fea-
tures in a framework called Ensemble Semantics.

Distributional and pattern-based extraction al-
gorithms capture aspects of paradigmatic and syn-
tagmatic dimensions of semantics, respectively,
and are believed to be quite complementary. Paşca
et al. (2006) showed that filtering facts, extracted
by a pattern-based system, according to their ar-
guments’ distributional similarity with seed facts
yielded large precision gains. Mirkin et al. (2006)
showed similar gains on the task of acquiring lex-
ical entailment rules by exploring a supervised

combination of distributional and pattern-based al-
gorithms using an ML-based SVM classifier.

This paper builds on the above work, by study-
ing the impact of various sources of features exter-
nal to distributional and pattern-based algorithms,
on the task of entity extraction. Mirkin et al.’s re-
sults are corroborated on this task and large and
significant gains over this baseline are obtained
by incorporating 402 features from a webcrawl,
query logs and Wikipedia. We extracted candidate
entities for the classes Actors, Athletes and Mu-
sicians from a webcrawl using a variant of Paşca
et al.’s (2006) pattern-based engine and Pantel et
al.’s (2009) distributional extraction system. A
gradient boosted decision tree is used to learn a re-
gression function over the feature space for rank-
ing the candidate entities. Experimental results
show 29% gains (19% nominal) in mean average
precision over Mirkin et al.’s method and 34%
gains (22% nominal) in mean average precision
over an unsupervised baseline similar to Paşca et
al.’s method. Below we summarize the contribu-
tions of this paper:

• We explore the hypothesis that although dis-
tributional and pattern-based algorithms are
complementary, they do not exhaust the se-
mantic space; other sources of evidence can
be leveraged to better combine them;

• We model the mixing of knowledge sources
and features in a novel and general informa-
tion extraction framework called Ensemble
Semantics; and

• Experiments over an entity extraction task
show that our model achieves large and sig-
nificant gains over state-of-the-art extractors.
A detailed analysis of feature correlations
and interactions shows that query log and we-
bcrawl features yield the highest gains, but
easily accessible Wikipedia features also im-
prove over current state-of-the-art systems.
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Figure 1: The Ensemble Semantics framework for information extraction.

The remainder of this paper is organized as fol-
lows. In the next section, we present our Ensemble
Semantics framework and outline how various in-
formation extraction systems can be cast into the
framework. Section 3 then presents our entity ex-
traction system as an instance of Ensemble Se-
mantics, comparing and contrasting it with previ-
ous information extraction systems. Our experi-
mental methodology and analysis is described in
Section 4 and shows empirical evidence that our
extractor significantly outperforms prior art. Fi-
nally, Section 5 concludes with a discussion and
future work.

2 Ensemble Semantics

Ensemble Semantics (ES) is a general framework
for modeling information extraction algorithms
that combine multiple sources of information and
multiple extractors. The ES framework allows to:

• Represent multiple sources of knowledge and
multiple extractors of that knowledge;
• Represent multiple sources of features;
• Integrate both rule-based and ML-based

knowledge ranking algorithms; and
• Model previous information extraction sys-

tems (i.e., backwards compatibility).

2.1 ES Framework
ES can be instantiated to extract various types of
knowledge such as entities, facts, and lexical en-
tailment rules. It can also be used to better under-
stand the commonalities and differences between
existing information extraction systems.

After presenting the framework in the next sec-
tion, Section 2.2 shows how previous information
extraction algorithms can be cast into ES. In Sec-
tion 3 we describe our novel entity extraction al-
gorithm based on ES.

The ES framework is illustrated in Figure 1. It
decomposes the process of information extraction
into the following components:

Sources (S): textual repositories of information,
either structured (e.g., a database such as DBpe-
dia), semi-structured (e.g., Wikipedia Infoboxes or
HTML tables) or unstructured (e.g., news articles
or a webcrawl).

Knowledge Extractors (KE): algorithms re-
sponsible for extracting candidate instances such
as entities or facts. Examples include fact extrac-
tion systems such as (Cafarella et al., 2005) and
entity extraction systems such as (Paşca, 2007).

Feature Generators (FG): methods that extract
evidence (features) of knowledge in order to de-
cide which candidate instances extracted from
KEs are correct. Examples include capitalization
features for named entity extractors, and the dis-
tributional similarity matrix used in (Paşca et al.,
2006) for filtering facts.

Aggregator (A). A module collecting and as-
sembling the instances coming from the different
extractors. This module keeps the footprint of
each instance, i.e. the number and the type of the
KEs that extracted the instance. This information
can be used by the Ranker module to build a rank-
ing strategy, as described below.

Ranker (R): a module for ranking the knowl-
edge instances returned from KEs using the fea-
tures generated by FGs. Ranking algorithms may
be rule-based (e.g., the one using a threshold on
distributional similarity in (Paşca et al., 2006)) or
ML-based (e.g., the SVM model in (Mirkin et al.,
2006) for combining pattern-based and distribu-
tional features).
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The Ranker is composed of two sub-modules:
the Modeler and the Decoder. The Modeler is re-
sponsible for creating the model which ranks the
candidate instances. The Decoder collects the can-
didate instances from the Aggregator, and applies
the model to produce the final ranking.

In rule-based systems, the Modeler corresponds
to a set of manually crafted or automatically in-
duced rules operating on the features (e.g. a com-
bination of thresholds). In ML-based systems, it is
an actual machine learning algorithm, that takes as
input a set of labeled training instances, and builds
the model according to their features. Training in-
stances can be obtained as a subset of those col-
lected by the Aggregator, or from some exter-
nal resource. In many cases, training instances
are manually labeled by human experts, through
a long and costly editorial process.

Information sources (S) serve as inputs to the
system. Some sources will serve as sources for
knowledge extractors to generate candidate in-
stances, some will serve as sources for feature gen-
erators to generate features or evidence of knowl-
edge, and some will serve as both.

2.2 Related Work

To date, most information extraction systems rely
on a model composed of a single source S, a single
extractor KE and a single feature generator FG.
For example, many classic relation extraction sys-
tems (Hearst, 1992; Riloff and Jones, 1999; Pan-
tel and Pennacchiotti, 2006; Paşca et al., 2006)
are based on a single pattern-based extractor KE,
which is seeded with a set of patterns or instances
for a given relation (e.g. the pattern ‘X starred in
Y’ for the act-in relation). The extractor then itera-
tively extracts new instances until a stop condition
is met. The resulting extractor scores are proposed
by FG as a feature. The Ranker simply consists
of a sorting function on the feature from FG.

Systems such as the above that do not consist
of multiple sources, knowledge extractors or fea-
ture generators are not considered Ensemble Se-
mantics models, even though they can be cast into
the framework. Recently, some researchers have
explored more complex systems, having multiple
sources, extractors and feature generators. Below
we show examples and describe how they map as
Ensemble Semantics systems. We use this charac-
terization to clearly outline how our proposed en-
tity extraction system, proposed in Section 3, dif-

fers from previous work.
Talukdar et al. (2008) present a weakly-

supervised system for extracting large sets of
class-instance pairs using two knowledge extrac-
tors: a pattern-based extractor supported by distri-
butional evidence, which harvests candidate pairs
from a Web corpus; and a table extractor that har-
vests candidates from Web tables. The Ranker
uses graph random walks to combine the informa-
tion of the two extractors and output the final list.
The authors show large improvements in coverage
with little precision loss.

Mirkin et al. (2006) introduce a machine learn-
ing system for extracting lists of lexical entail-
ments (e.g. ‘government’→ ‘organization’). They
rely on two knowledge extractors, operating on a
same large textual source: a pattern-based extrac-
tor, leveraging the Hearst (1992) is-a patterns; and
a distributional extractor applied to a set of entail-
ment seeds. Candidate instances are passed to an
SVM Ranker, which uses features stemming from
the two extractors, to decide which instances are
output in the final list. The authors report a +9%
increase in F-measure over a rule-based system
that takes the union of the instances extracted by
the two modules.

Other examples include the system for
taxonomic-relation extraction by Cimiano et
al. (2005), using a pool of feature genera-
tors based on pattern-based, distributional
and WordNet techniques; and Paşca and Van
Durme’s (2008) system that uses a Web corpus
and query logs to extract semantic classes and
their attributes.

Similarly to these methods, our proposed entity
extractor (Section 3) utilizes multiple sources and
extractors. A key difference of our method lies in
the Feature Generator module. We propose sev-
eral generators resulting in 402 features extracted
from Web pages, query logs and Wikipedia arti-
cles. The use of these features results in dramatic
performance improvements, reported in Section 4.

3 ES for Entity Extraction

Entity extraction is a fundamental task in NLP
responsible for extracting instances of semantic
classes (e.g., ‘Brad Pitt’ and ‘Tom Hanks’ are in-
stances of the class Actors). It forms a build-
ing block for various NLP tasks such as on-
tology learning (Cimiano and Staab, 2004) and
co-reference resolution (Mc Carthy and Lehn-
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Family Type Features
Web (w) Frequency (wF ) term frequency; document frequency; term frequency as noun phrase

Pattern (wP ) confidence score returned by KEpat; pmi with the 100 most reliable patterns
used by KEpat

Distributional (wD) distributional similarity with the centroid in KEdis; distributional similarities
with each seed in S

Termness (wT ) ratio between term frequency as noun phrase and term frequency; pmi between
internal tokens of the instance; capitalization ratio

Query log (q) Frequency (qF ) number of queries matching the instance; number of queries containing the in-
stance

Co-occurrence (qC) query log pmi with any seed in S
Pattern (qP ) pmi with a set of trigger words T (i.e., the 10 words in the query logs with

highest pmi with S)
Distributional (qD) distributional similarity with S (vector coordinates consist of the instance’s pmi

with the words in T )
Termness (qT ) ratio between the two frequency features F

Web table (t) Frequency (tF ) table frequency
Co-occurrence (tC) table pmi with S; table pmi with any seed in S

Wikipedia (k) Frequency (kF ) term frequency
Co-occurrence (kC) pmi with any seed in S
Distributional (kD) distributional similarity with S

Table 1: Feature space describing each candidate instance (S indicates the set of seeds for a given class).

ert, 2005). Search engines such as Yahoo, Live,
and Google collect large sets of entities (Paşca,
2007; Chaudhuri et al., 2009) to better interpret
queries (Tan and Peng, 2006), to improve query
suggestions (Cao et al., 2008) and to understand
query intents (Hu et al., 2009). Entity extraction
differs from the similar task of named entity ex-
traction, in that classes are more fine-grained and
possibly overlapping.

Below, we propose a new method for entity ex-
traction built on the ES framework (Section 3.1).
Then, we comment on related work in entity ex-
traction (Section 3.2).

3.1 ES Entity Extraction Model
In this section, we propose a novel entity ex-
traction model following the Ensemble Semantics
framework presented in Section 2. The sources of
our systems can come from any textual corpus. In
our experiments (described in Section 4.1), we ex-
tracted entities from a large crawl of the Web, and
generated features from this crawl as well as query
logs and Wikipedia.

3.1.1 Knowledge extractors
Our system relies on two knowledge extractors:
one pattern-based and the other distributional.

Pattern-based extractor (KEpat). We reimple-
mented Paşca et al.’s (2006) state-of-the-art web-
scale fact extractor, which, given seed instances of
a binary relation, finds instances of that relation.
We extract entities of a class, such as Actors, by
instantiating typical relations involving that class

such as act-in(Actor, Movie). We instantiate such
relations instead of the classical is-a patterns since
these have been shown to bring in too many false
positives, see (Pantel and Pennacchiotti, 2006) for
a discussion of such generic patterns. The extrac-
tor’s confidence score for each instance is used by
the Ranker to score the entities being extracted.
Section 4.1 lists the system parameters we used in
our experiments.

Distributional extractor (KEdis). We use Pan-
tel et al.’s (2009) distributional entity extractor.
For each noun in our source corpus, we build a
context vector consisting of the noun chunks pre-
ceding and following the target noun, scored us-
ing pointwise mutual information (pmi). Given
a small set of seed entities S of a class, the ex-
tractor computes the centroid of the seeds’ context
vectors as a geometric mean, and then returns all
nouns whose similarity with the centroid exceeds a
threshold τ (using the cosine measure between the
context vectors). Full algorithmic details are pre-
sented in (Pantel et al., 2009). Section 4.1 lists the
threshold and text preprocessing algorithms used
in our experiments.

The Aggregator simply takes a union of the en-
tities discovered by the two extractors.

3.1.2 Feature generators
Our model includes four feature generators,
which compute a total of 402 features (full set
described in Table 1). Each generator extracts
from a specific source a feature family, as follows:
• Web (w): a body of 600 million documents
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crawled from the Web at Yahoo! in 2008;

• Query logs (q): one year of web search
queries issued to the Yahoo! search engine;

• Web tables: all HTML inner tables extracted
from the above Web source; and

• Wikipedia: an official Wikipedia dump from
February 2008, consisting of about 2 million
articles.

Feature families are further subclassified into
five types: frequency (F) (frequency-based fea-
tures); co-occurrence (C) (features capturing first
order co-occurrences between an instance and
class seeds); distributional (D) (features based on
the distributional similarity between an instance
and class seeds); pattern (P) (features indicat-
ing class-specific lexical pattern matches); and
termness (T) (features used to distinguish well-
formed terms such as ‘Brad Pitt’ from ill-formed
ones such as ‘with Brad Pitt’). The seeds S used
in many of the feature families are the same seeds
used by the KEpat extractor, described in Sec-
tion 3.1.1.

The different seed families are designed to cap-
ture different semantic aspects: paradigmatic (D),
syntagmatic (C and P), popularity (F), and term
cohesiveness (T).

3.1.3 ML-based Ranker
Our Modeler adopts a supervised ML regression
model. Specifically, we use a Gradient Boosted
Decision Tree regression model - GBDT (Fried-
man, 2001), which consists of an ensemble of de-
cision trees, fitted in a forward step-wise manner
to current residuals. Friedman (2001) shows that
by drastically easing the problem of overfitting on
training data (which is common in boosting al-
gorithms), GDBT competes with state-of-the-art
machine learning algorithms such as SVM (Fried-
man, 2006) with much smaller resulting models
and faster decoding time. The model is trained
on a manually annotated random sample of enti-
ties taken from the Aggregator, using the features
generated by the four generators presented in Sec-
tion 3.1.2. The Decoder then ranks each entity ac-
cording to the trained model.

3.2 Related Work
Entity extraction systems follow two main ap-
proaches: pattern-based and distributional. The
pattern-based approach leverages lexico-syntactic
patterns to extract instances of a given class. Most

commonly used are is-a pattern families such as
those first proposed by Hearst (1992) (e.g., ‘Y such
as X’ for matching ‘actors such as Brad Pitt’).
Minimal supervision is used in the form of small
sets of manually provided seed patterns or seed in-
stances. This approach is very common in both
the NLP and Semantic Web communities (Cimi-
ano and Staab, 2004; Cafarella et al., 2005; Pantel
and Pennacchiotti, 2006; Paşca et al., 2006).

The distributional approach uses contextual ev-
idence to model the instances of a given class,
following the distributional hypothesis (Harris,
1964). Weakly supervised, these methods take a
small set of seed instances (or the class label) and
extract new instances from noun phrases that are
most similar to the seeds (i.e., that share similar
contexts). Following Lin (1998), example sys-
tems include Fleischman and Hovy (2002), Cimi-
ano and Volker (2005), Tanev and Magnini (2006),
and Pantel et al. (2009).

4 Experimental Evaluation

This section reports our experiments, showing the
effectiveness of our entity extraction system and
the importance of our different feature families.

4.1 Experimental Setup

Evaluated classes. We evaluate our system over
three classes: Actors (movie, tv and stage ac-
tors); Athletes (professional and amateur); Musi-
cians (singers, musicians, composers, bands, and
orchestras)

System setup. We instantiated our knowledge
extractors, KEpat and KEdis from Section 3.1.1,
over our Web crawl of 600 million documents (see
Section 3.1.2). The documents were preprocessed
using Brill’s POS-tagger (Brill, 1995) and the Ab-
ney’s chunker (Abney, 1991). For KEdis, context
vectors are extracted for noun phrases recognized
as NP-chunks with removed modifiers. The vec-
tor space includes the 250M most frequent noun
chunks in the corpus. KEdis returns as instances
all noun phrases having a similarity with the seeds’
centroid above τ = 0.0051. The sets of seeds S
for KEdis include 10, 24 and 10 manually chosen
instances for respectively the Actors, Athletes and
Musicians classes2. The sets of seedsP forKEpat

1Experimentally set on an independent development set.
2The higher number of seeds for Athletes is chosen to

cover different sports.
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Dataset Actors Athletes Musicians
KEpat 58,005 40,816 125,657
KEdis 72,659 24,380 24,593
KEpat ∪KEdis 113,245 61,709 142,694
KEpat ∩KEdis 17,419 3,487 7,556
R 500 500 500

P =80 P =258 P =134
N=420 N=242 N=366

Table 2: Number of extracted instances and the
sample sizes (P and N indicate positive and neg-
ative annotations).

include 11, 8 and 9 pairs respectively for the Ac-
tors (relation acts-in), Athletes (relation plays-for)
and Musicians (relation part-of-band) classes. Ta-
ble 6 lists all seeds for both KEdis and KEpat.
The GBDT ranker uses an ensemble of 300 trees.3

Goldset Preparation. The number of instances
extracted by KEpat and KEdis for each class
is reported in Table 2. For each class, we ex-
tract a random sample R of 500 instances from
KEpat ∪KEdis. A pool of 10 paid expert editors
annotated the instances of each class inR as posi-
tive or negative. Inter-annotator overlap was 0.88.
Uncertain instances were manually adjudicated by
a separate paid expert editor, yielding a gold stan-
dard dataset for each class.

Evaluation Metrics. Entity extraction perfor-
mance is evaluated using the average precision
(AP) statistic, a standard information retrieval
measure for evaluating ranking algorithms, de-
fined as:

AP (L) =
∑|L|

i=1 P (i) · corr(i)∑|L|
i=1 corr(i)

(1)

where L is a ranked list produced by an extractor,
P (i) is the precision of L at rank i, and corr(i) is 1
if the instance at rank i is correct, and 0 otherwise.
AP is computed overR for each class.

We also evaluate the coverage, i.e. the percent-
age of instances extracted by a system wrt those
extracted by all systems.

In order to accurately compute statistical signif-
icance, our experiments are performed using 10-
fold cross validation.

Baselines and comparisons. We compare our
proposed ES entity extractor, using different fea-
ture configurations, with state-of-the-art systems
(referred to as baselines B* below):

3GBDT model parameters were experimentally set on an
independent development set as follows: trees=300, shrink-
age=0.01, max nodes per tree=12, sample rate=0.5.

System Actors Athletes Musicians
AP Cov AP Cov AP Cov

B1 0.729 51.2% 0.616 66.1% 0.570 88.1%
B2 0.618 64.1% 0.687 39.5% 0.681 17.2%
B3 0.676 100% 0.664 100% 0.576 100%
B4 0.715 100% 0.697 100% 0.579 100%
ES-all 0.860‡ 100% 0.915‡ 100% 0.788‡ 100%

Table 3: Average precision (AP) and coverage
(Cov) results for our proposed system ES-all and
the baselines. ‡ indicates AP statistical signifi-
cance at the 0.95 level wrt all baselines.

ES-all. Our ES system, usingKEpat andKEdis,
the full set of feature families described in
Section 3.1.2, and the GBDT ranker.

B1. KEpat alone, a state-of-the-art pattern-
based extractor reimplementing (Paşca et al.,
2006), where the Ranker assigns scores to in-
stances using the confidence score returned
by KEpat.

B2. KEdis alone, a state-of-the-art distributional
system implementing (Pantel et al., 2009),
where the Ranker assigns scores to instances
using the similarity score returned by KEdis

alone.
B3. A rule-based ES system, combining B1 and

B2. This system uses bothKEpat andKEdis

as extractors, and a Ranker that assigns
scores to instances according to the sum of
their normalized confidence scores.

B4. A state-of-the-art machine learning system
based on (Mirkin et al., 2006). This ES
system uses KEpat and KEdis as extractors.
The Ranker is a GBDT regression model,
using the full sets of features derived from
the two extractors, i.e., wP and wD (see
Table 1). GBDT parameters are set as for our
proposed ES-all system.

4.2 Experimental Results

Table 3 summarizes the average-precision (AP)
and coverage results for our ES-all system and the
baselines. Figure 2 reports the precision at each
rank for the Athletes class (the other two classes
follow similar trends). Table 6 lists the top-10 en-
tities discovered for each class on one test fold.
ES-all outperforms all baselines in AP (all results
are statistically significant at the 0.95 level), offer-
ing at the same time full coverage4.

4Recall that coverage is reported relative to all instances
retrieved by extractors KEpat and KEdis.

243



Figure 2: Precision at rank for the different sys-
tems on the Athletes class.

Our simple rule-based combination baseline,
B3, leads to a large increase in coverage wrt the in-
dividual extractors alone (B1 and B2) without sig-
nificant impact on precision. The supervised ML-
based combination baseline (B4) consistently im-
proves AP across classes wrt the rule-based com-
bination (B3), but without statistical significance.
These results corroborate those found in (Mirkin et
al., 2006), where this ML-based combination was
reported to be significantly better than a rule-based
one on the task of lexical entailment acquisition.

The large set of features adopted in ES-all ac-
counts for a dramatic improvement in AP, indicat-
ing that existing state-of-the-art systems for entity
extraction (reflected by our baselines strategies)
are not making use of enough semantic cues. The
adoption of evidence other than distributional and
pattern-based, such as features coming from web
documents, HTML tables and query logs, is here
demonstrated to be highly valuable.

The above empirical claim can be grounded and
corroborated by a deeper semantic analysis. From
a semantic perspective, the above results translate
in the observation that distributional and pattern-
based evidence do not completely capture all se-
mantic aspects of entities. Other evidence, such as
popularity, term cohesiveness and co-occurrences
capture other aspects. For instance, in one of our
Actors folds, the B3 system ranks the incorrect in-
stance ‘Tom Sellek’ (a misspelling of ‘Tom Sel-
leck’) in 9th position (out of 142), while ES-all
lowers it to the 33rd position, by relying on table-
based features (intuitively, tables contain much
fewer misspelling than running text). Other than
misspellings, ES-all fixes errors that are either typ-
ical of distributional approaches, such as the in-
clusion of instances of other classes (e.g. the
movie ‘Someone Like You’ often appears in con-
texts similar to those of actors); errors typical
of pattern-based approaches, such as incorrect in-

System AP MAP
Actors Athletes Musicians

B3 0.676 0.664 0.576 0.639
B4 0.715 0.697 0.579 0.664
B4+w 0.813‡ 0.908‡ 0.724‡ 0.815‡

B4+q 0.815‡ 0.905‡ 0.743‡ 0.821‡

B4+t 0.784† 0.825‡ 0.727‡ 0.779‡

B4+k 0.776† 0.825‡ 0.624 0.741†

B4+w+q 0.835‡ 0.915‡ 0.758‡ 0.836‡

B4+w+t 0.840‡ 0.906‡ 0.774‡ 0.840‡

B4+w+k 0.814‡ 0.903‡ 0.725‡ 0.814‡

B4+q+t 0.847‡ 0.910‡ 0.774‡ 0.844‡

B4+q+k 0.832‡ 0.906‡ 0.748‡ 0.829‡

B4+t+k 0.817‡ 0.861‡ 0.743‡ 0.807‡

B4+w+q+t 0.846‡ 0.917‡ 0.782‡ 0.849‡

B4+w+q+k 0.841‡ 0.916‡ 0.756‡ 0.838‡

B4+w+t+k 0.835‡ 0.906‡ 0.783‡ 0.841‡

Es-all 0.860‡ 0.915‡ 0.788‡ 0.854‡

Table 4: Overall AP results of the different feature
configurations, compared to two baselines. † in-
dicates statistical significance at the 0.95 level wrt
B3. ‡ indicates statistical significance at 0.95 level
wrt both B3 and B4.

stances highly-associated with an ambiguous pat-
tern (e.g., the pattern ‘X of the rock band Y’ for
finding Musicians matched an incorrect instance
‘song submission’); or errors typical of both, such
as the inclusion of common nouns (e.g. ‘country
music hall’) or too generic last names (e.g. ‘John-
son’). ES-all successfully recovers all these error
by using termness, co-occurrence and frequency
features.

We also compare ES-all with a state-of-the-art
random walk system (RW) presented by Talukdar
et al. (2008) (see Section 2.2 for a description).
As we could not reimplement the system, we re-
port the following indirect comparison. RW was
evaluated on five entity classes, one of which, NFL
players, overlaps with our Athletes class. On this
class, they report 0.95 precision on the top-100
ranked entities. Unfortunately, they do not report
coverage or recall statistics, making the interpre-
tation of this analysis difficult. In an attempt to
compare RW with ES-all, we evaluated the preci-
sion of our top-100 Athletes, obtaining 0.99. Us-
ing a random sample of our extracted Athletes, we
approximate the precision of the top-22,000 Ath-
letes to be 0.97± 0.01 (at the 0.95 level).

4.3 Feature Analysis

Feature family analysis: Table 4 reports the av-
erage precision (AP) for our system using different
feature family combinations (see Table 1). Col-
umn 1 reports the family combinations; columns
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2-4 report AP for each class; and column 5 reports
the mean-average-precision (MAP) across classes.
In all configurations, except the k family alone,
and along all classes, our system significantly out-
performs (at the 0.95 level) the baselines.

Rows 3-6 report the performance of each fea-
ture family alone. w and t are consistently better
than q and k, across all classes. k is shown to be
the least useful family. This is mostly due to data
sparseness, e.g., in our experiments almost 40%
of the test instances in the Actors sample do not
have any occurrence in Wikipedia. However, with-
out access to richer resources such as a webcrawl
or query logs, the features from k do indeed pro-
vide large gains over current baselines (on average
+10.2% and +7.7% over B3 and B4).

Rows 7-12 report results for combinations of
two feature families. All combinations (except
those with k) appear valuable, substantially in-
creasing the single-family results in rows 3-6, in-
dicating that combining different feature families
(as suggested by the ES paradigm) is helpful. Sec-
ond, it indicates that q, w and t convey comple-
mentary information, thus boosting the regression
model when combined together. It is interesting to
notice that q+t tends to be the best combination,
surprising given that t alone did not show high per-
formance (row 5). One would expect the combina-
tion q+w to outperform q+t, but the good perfor-
mance of q+t is mainly due to the fact that these
two families are more complementary than q+w.
To verify this intuition, we compute the Spearman
correlation coefficient r among the rankings pro-
duced by the different combinations. As expected,
q and w have a higher correlation (r = 0.82) than
q and t (r = 0.67) and w and t (r = 0.66), suggest-
ing that q and w tend to subsume each other (i.e.
no added information for the regression model).

Rows 13-15 report results for combinations of
three feature families. As expected, the best
combination is q+w+t with an average precision
nearly identical to the full ES-all system. If one
has access to Web or query log sources, then the
value of the Wikipedia features tends to be sub-
sumed by our web and query log features.

Feature by feature analysis: The feature fam-
ilies analyzed in the previous section consist of
402 features. For each trained GBDT model,
one can inspect the resulting most important fea-
tures (Friedman, 2001). Consistently, the two
most important features for ES-all are, as ex-

System AP MAP
Actors Athletes Musicians

B4 0.715 0.697 0.579 0.664
B4+w 0.813 0.908 0.724 0.815
B4+wF 0.798 0.865 0.679 0.781
B4+wT 0.806 0.891 0.717 0.805
B4+t 0.784 0.825 0.727 0.779
B4+tF 0.760 0.802 0.701 0.781
B4+tC 0.771 0.815 0.718 0.805
B4+q 0.815 0.905 0.743 0.821
B4+qF 0.786 0.890 0.693 0.790
B4+qC 0.715 0.738 0.581 0.678
B4+qD 0.735 0.709 0.644 0.696
B4+qP 0.779 0.796 0.648 0.741
B4+qT 0.780 0.868 0.725 0.791
B4+qF+qW+qT 0.816 0.906 0.743 0.822
ES-all 0.860 0.915 0.788 0.854

Table 5: Ablation study of the web (w), query-
log (q) and table (t) features (bold letters indicate
whole feature families).

pected, the confidence scores of KEpat and
KEdis. This suggests that syntagmatic and
paradigmatic information are most important in
defining the semantics of entities. Also very im-
portant, in third position, is a feature from qT ,
namely the ratio between the number of queries
matching the instance and the number of queries
containing it as a substring. This feature is a strong
indicator of termness.

Webcrawl term frequencies and document fre-
quencies (from the wF set) are also important.
Very frequent and infrequent instances were found
to be often incorrect (e.g., respectively ‘song’ and
‘Brad Pitttt’). Table PMI (a feature in the qC fam-
ily) also ranked high in importance: instances that
co-occurr very frequently in the same column/row
with seeds S are often found to be correct (e.g.,
a column containing the seeds ‘Brad Pitt’ and
‘Tom Hanks’ will likely contains other actors).
Other termness (T ), frequency-based (F ) and co-
occurrence (C) features also play some role in the
model.

Variable importance is only an intrinsic indi-
cator of feature relevance. In order to better as-
sess the actual impact of the single features on
AP, we ran our system on each feature type: re-
sults for the web (w), query log (q) and table (t)
families are reported in Table 5. For reason of
space constraints, we here only focus on some
high level observations. The set of web termness
features (wT ) and frequency features (wF ) are
alone able to provide a large improvement over B4
(row 1), while their combination (row 2) does not
improve much over the features taken individually.
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Seed instances for KEdis

Actors Athletes Musicians
Jodie Foster Bob Gibson Jared Allen Randy Moss Rise Against the Machine
Humphrey Bogart Don Drysdale Andres Romero Peyton Manning Pink Floyd
Anthony Hopkins Albert Pujols Kenny Perry Jerry Rice Spice Girls
Katharine Hepburn Yogi Berra Martin Kaymer Robert Karlsson Pussycat Dolls
Christopher Walken Dejan Bodiroga Alexander Ovechkin Gheorghe Hagi The Beatles
Gene Hackman Allen Iverson Shea Weber Marco Van Basten Iron Maiden
Diane Keaton Yao Ming Patrick Roy Zinedine Zidane John Lennon
Edward Norton Tim Duncan Alexei Kovalev Roberto Baggio Frank Sinatra
Robert Duvall Led Zeppelin
Hilary Swank Freddie Mercury

Seed instances for KEpat

Actors Athletes Musicians
Dennis Hopper - The Good Life Dallas cowboys - Julius Crosslin Kevin Brown - Corndaddy
Tom Hanks - The Terminal New york Giants - Plaxico Burress Barry Gibb - The Bee Gees
Julia Roberts - Mona Lisa Smile Philadelphia Eagles - Danny Amendola Patty Smyth - Scandal
Kevin Bacon - Footloose Washington Redskins - Rock Cartwright Dave Matthews - Dave Mathews Band
Keanu Reeves - The Lake House New England Patriots - Laurence Maroney Gwen Stefani - No Doubt
Marlon Brando - Don Jaun Demarco Buffalo Bills - Xavier Omon George Michael - Wham
Morgan Freeman - The Shawshank Redemption Miami Dolphins - Ernest Wilford Mark Knopfler - Dire Straits
Nicole Kidman - Eyes Wide Shut New York Jets - Chansi Stuckey Brian Jones - The Rolling Stones
Al Pacino - The Godfather Pete Shelley - Buzzcocks
Johnny Depp - Chocolat
Halle Berry - Monster’s Ball

10-best ranked instances in one test fold
Actors Athletes Musicians

Gordon Tootoosis Ron Randell Rumeal Robinson Todd Warriner Colin Newman Wu-tang Clan
Rosalind Chao Alimi Ballard Jeff Mcinnis Hong-chih Kuo Ghost Circus Tristan Prettyman
John Hawkes Fernando Lamas Ahmad Nivins Leon Clarke Ray Dorset Top Cats
Jeffrey Dean Morgan Bruno Cremer Carlos Marchena Josh Dollard Plastic Tree *Roseanne
George Macready Muhammad Bakri Chad Kreuter Robbie Alomar *Doomwatch John Moen

Table 6: Listing of all seeds used for KEdis and KEpat, as well as the top-10 entities discovered by
ES-all on one of our test folds.

This suggests that wT and wF capture very simi-
lar information: they are indeed highly correlated
(r = 0.80). Rows 5-7 refer to web table features:
the features tC outperform and subsume the fre-
quency features tF (r = 0.92). For query log
features (rows 8-14), only qF , qP and qT signif-
icantly increase performance. Distributional and
co-occurrence features (qD and qC) have very low
effect, as they are mostly subsumed by the others.
The combination of qF , qP and qT (row 14) per-
forms as well as the whole q (row 8).

Experiment conclusions: From our experi-
ments, we can draw the following conclusions:

1. Wikipedia features taken alone outperform
the baselines, however, web and query log
features, if available, subsume Wikipedia fea-
tures;

2. q, t and w are all important, and should be
used in combination, as they drive mostly in-
dependent information;

3. the syntagmatic and paradigmatic informa-
tion conveyed by the two extractors are most
relevant, and can be significantly boosted by
adding frequency- and termness-based fea-
tures from other sources.

5 Conclusions and Future Work

In this paper, we presented a general informa-
tion extraction framework, called Ensemble Se-
mantics, for combining multiple sources of knowl-
edge, and we instantiated the framework to build
a novel ML-based entity extraction system. The
system significantly outperforms state-of-the-art
ones by up to 22% in mean average precision.
We provided an in-depth analysis of the impact of
our proposed 402 features, their feature families
(Web documents, HTML tables, query logs, and
Wikipedia), and feature types.

There is ample directions for future work. On
entity extraction, exploring more knowledge ex-
tractors from different sources (such as the HTML
tables and query log sources used for our features)
is promising. Other feature types may potentially
capture other aspects of the semantics of entities,
such as WordNet and search engine click logs. For
the ranking system, semi- or weakly-supervised
algorithms may provide competing performance
to our model with reduced manual labor. Finally,
there are many opportunities for applying the gen-
eral Ensemble Semantics framework to other in-
formation extraction tasks such as fact extraction
and event extraction.
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