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Abstract

We present a framework to extract the
most important features (tree fragments)
from a Tree Kernel (TK) space according
to their importance in the target kernel-
based machine, e.g. Support Vector Ma-
chines (SVMs). In particular, our min-
ing algorithm selects the most relevant fea-
tures based on SVM estimated weights
and uses this information to automatically
infer an explicit representation of the in-
put data. The explicit features (a) improve
our knowledge on the target problem do-
main and (b) make large-scale learning
practical, improving training and test time,
while yielding accuracy in line with tradi-
tional TK classifiers. Experiments on se-
mantic role labeling and question classifi-
cation illustrate the above claims.
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by the the implicit nature of the kernel space,
which prevents to directly observe the most rele-
vant features. As a consequence, even very accu-
rate models generally fail in providing useful feed-
back for improving our understanding of the prob-
lems at study. Moreover, the computational bur-
den induced by high dimensional kernels makes
the application of SVMs to large corpora still more
problematic.

In (Pighin and Moschitti, 2009), we proposed a
feature extraction algorithm for Tree Kernel (TK)
spaces, which selects the most relevant features
(tree fragments) according to the gradient compo-
nents (weight vector) of the hyperplane learnt by
an SVM, in line with current research, e.g. (Rako-
tomamonjy, 2003; Weston et al., 2003; Kudo and
Matsumoto, 2003). In particular, we provided al-
gorithmic solutions to deal with the huge dimen-
sionality and, consequently, high computational
complexity of the fragment space. Our experimen-
tal results showed that our approach reduces learn-
ing and classification processing time leaving the

The last decade has seen a massive use of Suppagcuracy unchanged.

Vector Machines (SVMs) for carrying out NLP  In this paper, we present a new version of such
tasks. Indeed, their appealing properties such asgorithm which, under the same parameteriza-
1) solid theoretical foundations, 2) robustness tdion, is almost three times as fast while produc-
irrelevant features and 3) outperforming accuracyng the same results. Most importantly, we ex-
have been exploited to design state-of-the-art lanplored tree fragment spaces for two interesting
guage applications. natural language tasks: Semantic Role Labeling
More recently, kernel functions, which im- (SRL) and Question Classification (QC). The re-
plicitly represent data in some high dimensionalsults show that: (a) on large data sets, our ap-
space, have been employed to study and fumproach can improve training and test time while
ther improve many natural language systems, e.gielding almost unaffected classification accuracy,
(Collins and Duffy, 2002), (Kudo and Matsumoto, and (b) our framework can effectively exploit the
2003), (Cumby and Roth, 2003), (Cancedda et alability of TKs and SVMs to, respectively, gener-
2003), (Culotta and Sorensen, 2004), (Toutanovate and recognize relevant structured features. In
et al., 2004), (Kazama and Torisawa, 2005), (Shepatrticular, we (i) study in more detail the relevant
et al., 2003), (Gliozzo et al., 2005), (Kudo et al.,fragments identfied for the boundary classification
2005), (Moschitti et al., 2008), (Diab et al., 2008). task of SRL, (ii) closely observe the most relevant
Unfortunately, the benefit to easily and effectively fragments for each QC class and (iii) look at the di-
model the target linguistic phenomena is reducederse syntactic patterns characterizing each ques-
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tion category. /A\ Fragment space
The rest of the paper is structured as follows: A A B A )
Section 2 will briefly review SVMs and TK func- O S
tions; Section 3 will detail our proposal for the lin- T B . £ e o5 % :
earization of a TK feature space; Section 4 will @% @ /@ /@\ @ g)
review previous work on related subjects; Section U )
5 will detail the outcome of our experiments, and
Section 6 will discuss some relevant aspects of the o
evaluation; finally, in Section 7 we will draw our ./ \, T =[1111,00 7\
conclusions. /\ $(T2) =10,0,0,0,1, 1, 1] ‘
Bl k@) = (e, 6(12)) = 1 c
2 Tree Kernel Functions E
The decision function of an SVM is: Figure 1: Esemplification of a fragment space and

n the kernel product between two trees.
f(f):w'-f—i-b:Zaiyifi-f—i—b 1)

i=1 the possible fragments. To simplify, a treean

be represented as a vector whose attributes count

whered' s a classifying example and andb are the occurrences of each fragment within the tree
the separating hyperplanegadientand itsbia . . )
P g hyperplanegs S The kernel between two trees is then equivalent to

respectively. The gradient is a linear combination h | duct b irs of h
of the training pointsz;, their labelsy; and their the sca ar pro .UCt. etween palrs of such vectors,
weightsca;. Applying the so-calledkernel trickit as exemplified in Figure 1.
is possib_le to r(_eplace the sc_alar pr_oduct witea 3 Linearization of a TK function
nel functiondefined over pairs afbjects
n Our objective is to efficiently mine the most rele-
flo) =" aiyik(os,0) +b vant fragments from the huge fragment space, so
i=1 that we can explicitly represent our input trees in

with the advantage that we do not need to providéerms of these fragments and learn fast and accu-

an explicit mappings(-) of our examples in a vec- rate linear classifiers.
tor space. The framework defines five distinct activities,
A Tree Kernel function is a convolution ker- detailed in the following paragraphs.
nel (Haussler, 1999) defined over pairs of trees, .
Praétically speaking,) the kernel betv[v)een two treeg -1 Kemel Space Leaming KSL)
evaluates the number of substructures ffag-  The first step involves the generation of an approx-
ment$ they have in common, i.e. it is a measureimation of the whole fragment space, i.e. we can
of their overlap. The function can be computed re-consider only the trees that encode the most rele-
cursively in closed form, and quite efficient imple- vant fragments. To this end, we can partition our
mentations are available (Moschitti, 2006). Dif- training data intaS smaller sets, and use the SVM
ferent TK functions are characterized by alterna-and the SST kernel to learsi models. We will
tive fragment definitions, e.g. (Collins and Duffy, only consider the fragments encoded by the sup-
2002) and (Kashima and Koyanagi, 2002). In theport vectors of theés' models. In the next stage, we
context of this paper we will be focusing on the will use the SVM estimated weights to drive our
SubSet Tree (SST) kernel described in (Collinsfeature selection process.
and Duffy, 2002), which relies on a fragment defi- Since time complexity of SVM training is ap-
nition that does not allow to break production rulesproximately quadratic in the number of examples,
(i.e. if any child of a node is included in a frag- by breaking training data into smaller sets we
ment, then also all the other children have to). Ascan considerably accelerate the process of filtering
such, it is especially indicated for tasks involving trees and estimating support vector weights. Ac-
constituency parsed texts. cording to statistical learning theory, being trained
Implicitly, a TK function establishes a corre- on smaller subsets of the available data these mod-
spondence between distinct fragments and dimerels will be less robust with respect to the min-
sions in somdragment space.e. the space of all imization of the empirical risk (Vapnik, 1998).
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Algorithm 3.1: MINE_MODEL(M, L, \)

global maxexp
prev «— () ; CLEARINDEX()
for each (ay,t) € M

do

T oyl
for eachn € \;
f—FRAG(n) ; rel =X-T;
do < prev — prev U {f,rel}
PUT(f, rel)

best_pr «— BEST(L) ;

while

do

true
next < ()
for each (f,rel) € previf f € best_pr
X = EXPAND(f, mazexp)
rel_exp «— X\ - rel
do for each frag € X
temp = {frag,rel_exp}
do { next «— next U temp
PUT(frag, rel_exp)
best «— BEST(L)
if not CHANGED()
then break

measured as:

‘2?21 ayiti jAUT)
B 1]

\w(j)\ -

Z aiyixz(‘j)
i=1
3)

We fix a thresholdL and from each model,
(learnt during KSL) we select the most relevant
fragments, i.e. we build the sé%, ;, = Uy {fx} so
that:

\For] = Landjw®| > wD|Vf; € F\ Fop .

To generate all the fragments encoded in a
model, we adopt the greedy strategy described in
Algorithm 3.1. Its arguments are: an SVM model
M represented a&vy,t) pairs, wheret is a tree
structure; the threshold valdg and the kernel de-

cay factor)\.

The function FRAG(n) generates the smallest
fragment rooted in node (i.e. for an SST kernel,
the fragment consisting af and its direct chil-
dren). We call such fragmentasefragment. The
Nonetheless, since we do not need to employ them,yction EXPAND( f, mazexp) generates all the
for classification (but just to direct our feature Se-fragments that can be derived from the fragment
lection process, as we will describe shortly), Wer hy expanding, i.e. including in the fragment the
can accept to rely on sub-optimal weights. Fur-gjrect children of some of its nodes. These frag-
thermore, research results in the field of SVM parnents arelerivedfrom . The parametenazexp
allelization using cascades of SVMs (Graf et al. jimits fragment proliferation by setting the maxi-
2004) suggest that support vectors collected fromy,um number of nodes which can be expanded in
locally learnt models can encode many of the rel— fragment expansion operation. For example, if
evant features retained by models learnt globallyihere are 10 nodes which can be expanded in frag-
Henceforth, letM; be the model associated with ment , then only the fragments where at most 3
the s-th split, and¥; the fragment space that can f the 10 nodes are expanded will be generated by
describe all the trees if/;. a call toEXPAND(f,3).

Every time we generate a fragmefhtthe func-
tion PUT(f, rel) saves the fragment along with its
relevancerel in anindex The index keeps track
In Equation 1 it is possible to isolate the gradientof the cumulative relevance of a fragment, and its
@ = S oy, with £ = [551(1)7 o ,xZ(N)], N  implementation has been optimized for fast inser-
being the dimensionality of the feature space. Fotions and spatial compactness.

a tree kernel function, we can rewritéj) as: A whole cycle of expansions is considered as
an iteration of the mining process: we take into
account all the fragments that have undergéne
expansions and produce all the fragments that re-
sult from a further expansion, i.e. all the fragments
expanded: + 1 times.

We keep iterating until we reach a stop crite-
where: ¢; ; is the number of occurrences of the rion which we base on the threshold valligi.e.
fragment;, associated with th¢-th dimension of  {ne |imit on the number of fragments that we are
the feature space, in the treée A is the kernel de-  jnterested in mining from a model. During each it-
cay factor; and/(f;) is the depth of the fragment. grationk + 1, we only expand the begtfragments

The relevancéw!)| of the fragmentf; can be identified during the previous iteration When

best_pr «— best
prev «— next
Fr < best_pr

return (Fr)

3.2 Fragment Mining and Indexing (FMI)

) _ ti’j)\ﬁ(fj)

(2

t; N9
- @

1] _\/Z{{V:l(ti’k/\f(fk)p

X
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the iteration is complete we re-evaluate the set oformed to encode label-vector paifg;, v;). To
L best fragments in the index, and we stop only ifdo so, we generate the fragment space; pfis-
the worst of them, i.e. thé-th ranked fragment ing a variant of the mining algorithm described in
at the stepk + 1, and its score are the same as afAlgorithm 3.1, and encode if; all and only the
the end of the previous iteration. That is, we as{fragmentst; ; so thatt; ; € Dy. The algorithm
sume that if none of the fragments mined duringexploits labels and production rules found in the
the (k + 1)-th iteration managed to affect the bot- fragments listed in the dictionary to generate only
tom of the pool of thel. most relevant fragments, the fragments thathay bein the dictionary. For
then none of their expansions is likely to succeedexample, if the dictionary does not contain a frag-
In the algorithm,\; is the set of nodes of the tree ment whose root is labelel, then if a nodeV is
t; BEST(L) returns thel highest ranked fragments encountered during TFX neither its base fragment
in the index;,CHANGED() verifies whether the bot- nor its expansions are generated. The process is
tom of the L-best set has been affected by the lasapplied to the whole trainingT FX-train) and test
iteration or not. (TFX-tes} sets. The fragment space is n@x-
We call MINE_MODEL(-) on each of the mod- plicit, as there is a mapping between the input vec-
els M, that we learnt from thé initial splits. For  tors and the fragments they encode.
each model, the function returns the setLebest
fragments in the model. The union of all the frag-3-4 Explicit Space Learning ESL)

ments harvested from each model is then saveinearized training data is used to learn a very fast
into a dictionaryDy, which will be used by the next model by using all the available data and a linear
stage. kernel.

32.1  Discussion on FMI algorithm 3.5 Explicit Space Classification ESC)
With respect to the algorithm presented in (Pighin

and Moschitti, 2009), the one presented here ha-éhe Ilnegr mo?el IS u;.ed to classify ]Iclnﬁarlzed T?St
the following advantages: ata and evaluate the accuracy of the resulting

classifier.
e the process of building fragments is strictly
small-to-large: fragments that span-1lev- 4 Previous work

els of the tree may be generated only after aIIA h hensi , £ 1
those spanning levels: rather comprehensive overview of feature se-

lection techniques is carried out in (Guyon and
e the threshold valud. is a parameter of the Elisseeff, 2003). Non-filter approaches for SVMs
mining process, and it is used to prevent theand kernel machines are often concerned with
algorithm from generating more fragments polynomial and Gaussian kernels, e.g. (Weston et
than necessary, thus making it more efficiental., 2001) and (Neumann et al., 2005). Weston
i i et al. (2003) use thé;, norm in the SVM opti-
o ithas one less parametengadepth) Which ;o 1 stress the feature selection capabilities
was used to force fragments to span at-mosks the learning algorithm. In (Kudo and Mat-

agven number_ of_IeveIs. The new algorithm sumoto, 2003), an extension of the PrefixSpan al-
dqes ”9t negd_lt since the maximum rlumbergorithm (Pei et al., 2001) is used to efficiently
of iterations is implicitly set vial.. mine the features in a low degree polynomial ker-
These differences result in improved efficiency fornel space. The authors discuss an approximation
the FMI stage. For example, on the data for theof their method that allows them to handle high
boundary classification task (see Section 5), usinglegree polynomial kernels.
comparable parameters the old algorithm required Suzuki and Isozaki (2005) present an embed-
85 minutes to mine the most relevant fragmentsged approach to feature selection for convolution
whereas the new one only takes 31, i.e. it is 2.74&ernels based og?-driven relevance assessment.
times as fast. To our knowledge, this is the only published work

_ clearly focusing on feature selection for tree ker-
3.3 Tree Fragment Extraction (TFX) nel functions, and indeed has been one of the
During this phase we actually linearize our data:major sources of inspiration for our methodol-
a file encoding label-tree pair§;,¢;) is trans- ogy. With respect to their work, the difference
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in our approach is that we want to exploit the (g, °~_ VP VP

SVM optimizer to select the most relevant fea- ¥ " 4 ver Ve PR
tures instead of a relevance assessment measutéy “° /NF’\:‘ bought D{B bought ? N‘N
that moves from different statistical assumptionsMay bought ? N‘N a a cat
than the learning algorithm. a cat -1:8C +1: BCAL

-1: A0,A2,A3,A4,A5

In (Graf et al., 2004), an approach to SVM
parallelization is presented which is based on aigure 2: Examples of AS] structured features.
divide-et-impera strategy to reduce optimization
time. The idea of using a compact graph repand automatic Charniak parse trees (Charniak,
resentation to represent the support vectors of 4000) as provided for the CoNLL 2005 evaluation
TK function is explored in (Aiolli et al., 2006), campaign (Carreras and Marquez, 2005). SRL can
where a Direct Acyclic Graph (DAG) is employed. be decomposed into two taskboundary detec-
In (Moschitti, 2006; Bloehdorn and Moschitti, tion, where the word sequences that are arguments
2007a; Bloehdorn and Moschitti, 2007b; Mos-Of @ predicate worav are identified, andble clas-
chitti et al., 2007), the SST kernel along with othersification where each argument is assigned the
tree and combined kernels are employed for quedkroper role. The former task requires a binary

tion classification and semantic role labeling withBoundary Classifie(BC), whereas the second in-
interesting results. volves aRole Multi-class ClassifiefRM).

5.1.1 Setup

- If the constituency parse treeof a sentences
We evaluated the capability of our model to €X-is available, we can look at all the paits, n;),

tract relevant features on two data sets: th‘?/vheren is any node in the tree anglis the node
CoNLL 2005 shared task on Semantic Role Labe"dominatingw and decide whethet; is anargu-
3 T

ing (SRL) (Carreras and Marquez, 2005), and thgnent noder not, i.e. whether it exactly dominates
Question Classification (QC) task based on datg; 5ng only the words encoding any afs argu-
from the TREC 10 QA competition (Voorhees, nants  The objects that we classify are subsets
2001). The next sections will detail the setup andy¢ 1o input parse tree that encompass hotind
outcome of the two sets of experiments. ~n;. Namely, we use the AST structure defined
All the experiments were run on a machinej, (\oschitti et al., 2008), which is the minimal
equipped with 4 Intét Xeon® CPUs clocked at  {ree that covers all and only the wordsyofnd;.
'1.6 GHz and 4 GB of RAM. As a §uperV|sed .Iearn-m the AST,,, p andn; are marked so that they can
ing framework we used SVM_"—'_ght'TK which  pe gistinguished from the other nodes. An AST
extends the SVM-Light optimizer (Joachims, js regarded as a positive example for B@jfis an
2000) with tree kernel support. For each CIaSSi'argument node, otherwise it is considered a nega-

fication task, we compare the accuracy of a vanillg;ye example. Positive BC examples can be used to
SST classifier against the corresponding linearizeg5in an efficient RM: for each role we can train

SST classifier (SSJ. For KSL and SST training 4 ¢|assifier whose positive examples are argument
we used the default decay factdr= 0.4. FOr poges whose label is exactly whereas negative
ESL, we use a non-normalized, linear kernel. Noexamples are argument nodes labeleg 7. Two
further parametrization of the learning algorithms AST,,s extracted from an example parse tree are
is carried out. Indeed, our focus is on showingghown in Figure 2: the first structure is a negative
that, under the same conditions, our linearized tregyample for BC and is not part of the data set of

kernel can be as accurate as the original kemeRy \whereas the second is a positive instance for
and choosing of parameters may just bias suCBc gng A1

test.

5 Experiments

To train BC we used PropBank sections 1
through 6, extracting AS]] structures out of the
first 1 million (p, n;) pairs from the corresponding
For our experiments on semantic role labeling Wéarse trees. As a test set we used the 149,140 in-
used PropBank annotations (Palmer et al., 2008ance collected from the annotations in Section
" hup://disi.unitn.it/ ~ moschitt/ 24. There are 61,062 positive examples in the
Tree-Kernel.htm training set (i.e. 6.1%) and 8,515 in the test set

5.1 Semantic Role Labeling
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(i.e. 5.7%). Data set Accuracy

For RM we considered all the argument nodes Class ~ T¢ Te" SST SST
of any of the six PropBank core roles (i.e. AO, BC 61,062 8515 818 813
..., A5) from all the available training sections, " gg:ggg g:g}é gé:g gé:i
i.e. 2 through 21, for a total of 179,091 train- A2 21,291 697 731 73.0
ing instances. Similarly, we collected 5,928 test A3 3,481 105 56.8 53.0
instances from the annotations of Section 24. ﬁg 2'7£ 63 gg'% 607 'dg
ColumnsTrt and Tet of Table 1 show the num- RM 878 878

per of positive training and test_ (_axamples, r€SPE€Crable 1: Number of positive training (T) and test

tively, for BC apd th? role classlflers. (Te™) examples in the SRL dataset. Accuracy of
For all the linearized classifiers, we used 50 he non-linearized (SST) and linearized (S)5i-

splits for the FMI stage and we set the threshol ary classifiers (i.e. BC, A0, . .. A5) is Fneasure

value L = 50k andmazexp = 1 during FMland — »cc\\ a0y of RM is the percentage of correct class
TFX. We did not validate these parameters, Wh'chassignments

we know to be sub-optimal. These values were
selected during the development of the softwargf the selected linearization parameters generate
because, on a very small test bed, they resulted ig very rough approximation of the original frag-
aresponsive and accurate system. ment space, generally consisting of billions of
We should point out that other experiments haveragments. B (i.e. the linearized BC) has an
shown that linearization is very robust with re- F, of 81.3, just 0.5% less than BC, i.e. 81.8. Con-
spect to parametrization: due to the huge numcerning RM, its accuracy is the same as the non
ber and variety of fragments in the TK space, dif-|inearized classifier, i.e. 87.8.
ferent choices of the parameters result in differ- e should consider that the linearization frame-
ent explicit spaces and more or less efficient soluwork can drastically improve the efficiency of
tions, but in most cases the final accuracy of thgearning and classification when dealing with large
linearized classifiers is affected only marginally.amounts of data. For a linearized classifier, we
For example, it could be expected that reducingonsidertraining timeto be the overall time re-
the number of splits during KSL would improve quired to carry out the following activities: KSL,
the final accuracy of a linearized classifier, as the=m|, TFX on training data and ESL. Similarly,
weights used for FMI would then converge to thewe consider test time the time necessary to per-
global optimum. Instead, we have observed thajorm TFX on test data and ESC. Training BC took
increasing the number of splits does not necessamore than two days of CPU time and testing about
ily decrease the accuracy of the linearized classig hours, while training and testing the linearized
fier. boundary classifier required only 381 and 25 min-
The evaluation on the whole SRL task usingutes, respectively. That is, on the same amount
the official CONLL'05 evaluator was not carried of data we can train a linearized classifier about
out because producing complete annotations reg times as fast, and test it in about 1 tenth of the
quires several steps (e.g. overlap resolution, OvAime. Concerning RM, sequential training of the
or Pairwise combination of individual role classi- § models took 2,596 minutes, while testing took
fiers) that would shade off the actual impact of thep7 minutes. The linearized role multi classifier re-
methodology on classification. quired 448 and 24 minutes for training and test-
512 Results ing, respectively, i.e. training is about 5 times as

] o fast while testing time is about the same. If com-
The left side of Table 1 shows the distribution of . .4 \vith the boundary classifier, the improve-

pos;':lvelz da?? pomtslln the tralnlgg and test sets °E1ent in efficiency is less evident: indeed, the rel-
each classifier. ColumrSSTandSS§ compare 4 ey small size of the role classifiers data sets

side _by S"?'e the Fm_egsure of the non-linearized limits the positive effect of splitting training data
and linearized classifier for each class. The acClz o smaller chunks

racy of the RM classifier is the percentage of cor-

rect class assignments. SRL fragment space. Table 3 lists the best frag-
We can see that the accuracy of linearized clasments identified for the Boundary Classifier. We

sifiers is always in line with vanilla SST, even should remember that we are using AS$truc-
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tures as input to our classifiers: nodes whose la- Data set Accuracy

bel end with “-P” are predicate nodes, while nodes Class TF  Te" SST SST
whose label ends with “-B” are candidate argu- ABBR 89 9 800 875
DESC 1,164 138 96.0 945
MENENOGES: _ ENTY 1269 94 639 635
All'the most relevant fragments encode the min- HUM 1,231 65 881 87.2
imum sub-tree encompassing the predicate and the LOC 834 81 776 779

NUM 896 113 804 80.8

argument node. This kind of structured feature Overall 862  86.6

subsumes several features traditionally employed . — —
for explicit SRL models: the Path (i.e. the se- 1able 2: Number of positive training (Ty and test

quence of nodes connecting the predicate and tHd€') examples in the QA dataset. Accuracy of
candidate argument node), Phrase Type (i.e. th&€ non-linearized (SST) and linearized (SHI-
label of the candidate argument node), Predicat8’Y classifiers is Fmeasure. Overall accuracy is
POS (i.e. the POS of the predicate word), Posi:[he percentage of correct class assignments.

tion (i.e. whether the argument is to the leftorto o |assifiers are arranged in a one-vs.-all

the right of the predicate) and Governing CategoryOVA) configuration, where each sentence is a
(i.e. the label of the common ancestor) defineoL

_ _ ositive example for one of the six classes, and
in (Gildea and Jurafsky, 2002).

) ) ) negative for the other five. Given the very small
The linearized model for BC contains about 160

size of the data set, we uséd= 1 during KSL
thousand fragments. Of these, about 70 and 38, the jinearized classifier (i.e. we didn't parti-

thousand encompass the candidate argument or th§, yraining data). We carried out no validation of

predicate node, respectively. About 16 thousang},, parameters, and we ussthzerp = 4 and
fragments contain both. I ’

= 50k in order to generate a rich fragment

5.2 Question Classification space.

For question classification we used the data set-2-2 Results
from the TREC 10 QA evaluation campafgeon-  Table 2 shows the number of positive examples
sisting of 5,500 training and 500 test questions. in the training and test set of each individual bi-
nary classifiers. Columns SST and S®bdmpare
5.2.1 Setup the R measure of the vanilla and linearized classi-
Given a question, the QC task consists in selectinders on the individual classes, and the accuracy of
the most appropriate expected answer type from the complete QC task (Ro®verall) in terms of
given set of possibilities. We adopted the questiorpercentage of correct class assignments. Also in
taxonomy known asoarse grained which has this case, we can notice that the accuracy of the
been described in (Zhang and Lee, 2003) and (Liinearized classifiers is always in line with non-
and Roth, 2006), consisting of six non overlap-linearized ones, e.g. 86.6 vs. 86.2 for the multi-
ping classes: Abbreviations (ABBR), Descrip- classifiers. These results are lower than those de-
tions (DESC, e.g. definitions or explanations), En—ived in (Moschitti, 2006; Moschitti et al., 2007),
tity (ENTY, e.g. animal, body or color), Human i.e. 88.2 and 90.4, respectively, where the param-
(HUM, e.g. group or individual), Location (LOC, eters for each classifier were carefully optimized.

e.g. cities or countries) and Numeric (NUM, e.g. .
g ) ( g QC Fragment space. Tables from 4 to 9 list the
amounts or dates). ) .
top fragments identified for each cldss

For each question, we generate the full parse . .
of the sentence and use it to train SST and (lin- As expected, for all the categories the domain

. . lexical information is very relevant. For example,
earlz_ed) SS.J models. The autorgatlc parses arefilm, color, book novel and sport for ENTY or
ﬁﬂb;ﬁlr:}ig ;V(I)?g)t.h\?\/es;i‘:\:glrs hp;\/re i(nf)l/eén 4gg Zen_city, country, stateandcapitgl for LOC. Of the si>'<
tences ir; our training set, due to parsi1ng issuedasse.s’ ENTY (Table 6) 'S mosly chgracterlzed
with a few of them. ’ %y lexical features. Interestingly, function words,

which would have been eliminated by a pure In-

jhttp/://IZr.CS-uiUC-edulcogcomp/Data/ formation Retrieval approach (i.e. by means of
QA/QC -

Shttp://nlp.stanford.edu/software/ 4Some categories show meaningful syntactic fragments
lex-parser.shtml after the first 10, so for them we report more subtrees.
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standard stop-list), are in the top positions, e.g.:
whyandhowfor DESC,whatfor ENTY, who for Eﬁgg&éﬁ%?ﬁ%ﬁ'g)»
HUM, wherefor LOC andwhenfor NUM. Forthe  (s(NP-B)(vP))

latter, alsohow seems to be important suggesting(VP(VBD-P(said))(SBAR))

that features may strongly characterize more tha VE&Y/EQS;I(PN_S%)-B))

one given class. (VP(VBD-P)(NP-B))
iati i i VP(VBG-P)(NP-B))
Charg_cterlstlc syntactic features appear in th VP(VBZ PJ(NP-B))
top positions for each class, for examp(€P (VB (yp(vBN-P)(NP-B))
(stand)) (PP)) which suggests thattandshould  (VP(VBP-P)(NP-B))
e (NP(NP-B)(VP))
pe followed by a prepositional phrase to _ch_aracter (NP(VBG-P)(NN-B))
ize ABBR; or (NP (NP (DT) (NN (gbbrewatlon))) (S(S(VP(VBG-P)))(NP-B))
(PP)), Whlch s_uggests that, to be in a reIevant_pat— Table 3: Best fragments for SRL BC.
tern,abbreviationshould be preceded by an article
and followed by a PP. Also, the syntactic struc- b 5
; ; ; NN(abbreviation
f[ure is useful to differentiate the use of the sam NP(DT)(NN(abbreviation)))
important words, e.g(SBARQ (WHADVP (WRB (NP(DT(the))(NN(abbreviation)))
(How))) (SQ) (.)) for DESC better characterizes (IN(for))
the use ofhow with respect to NUM, in which a %E(zs(tc?gfg)
relevant use iSWHADJP (WRB (How)) (3J)) (PP(IN))

i . (VP(VB(stand))(PP))
In (Moschitti et al., 2007) it was shown that the (NP(NP(DT)(NN(abbreviation)))(PP))

use of TK improves QC of 1.2 percent points, i-e-(SQ(VBZ)(NP)(VP(VB(stand))(PP)))
from 90.6 to 91.8: further analysis of these frag-(SBARQ(WHNP)(SQ(VBZ)(NP)(VP(VB(stand))(PP)))(.))
ments may help us to device compact, less spari@Q(VBZ(does))(NP)(VP(VB(Stand))(PP)))

_ ) P(VBZ)(NP(NP(DT)(NN(abbreviation)))(PP)))
syntactic features and design more accurate mod
els for the task. Table 4: Best fragments for the ABBR class.

6 Discussion (WRB(Why))
(WHADVP(WRB(Why)))
The fact that our model doesn't always improve(WHADVP(WRB(How)))

the accuracy of a standard SST model might b W;ﬁ]zgﬁ)()WRB))

related to the process of splitting training data andVvBZ(causes))

. . . . (VB(dO))
employing locally estimated weights during FMI. (ROOT(SBARQ(WHADVP(WRB(How)))(SQ)()

Concerning the experiments presented in thi$RoOT(SBARQ(WHADVP(WRB(How)))(SQ)(.(?))))
paper, this objection might apply to the results on(SBARQ(WHADVP(WRB(How)))(SQ))
SRL, where we used 50 splits to identify the most?évE?ABng?\‘;vv)& ADVP(WRB(HOW))(SQ)())
relevant fragments, but not to those on QC, wheresBaRQ(WHADVP(WRB(How)))(SQ)(.(?)))

given the limited size of the data set we decidec{gg%i%\év:é*&\xé\gg\%mé)%)((vsvﬁ)%))(SQ)))
not to split training data at all as explained in Sec{spARQWHADVP(WRB))(SQ)) y

tion 5.2. Furthermore, as we already discussed,
we have evidence that there is no direct correlation
between the number of splits used for KSL and
the accuracy of the resulting classifier. After all,gmgg'orro)z))
the optimization carried out during ESL is global, (\book))
and we can assume that, if we mined enough fragiNN(novel))

ments during FMI, than those actually retained by(NN(spor)

Table 5: Best fragments for the DESC class.

. h
the global linear model would be by and large the?,(,vﬁ((f\é\gr%t»
same, regardless of the split configuration. (NN(movie))

' More in general, feature §e|ection'may givg gn&f}ﬁ,‘&’,"é’ﬁ@au ed)))
improvement to some learning algorithm but if it (NN(game))

can help SVMs is debatable, since its related theﬂ&lg(ﬁg)([')\lTN(mrl)()) op
ory show that they are robust to irrelevant fea-"NF (NP(OTI(NN(fean))(PP))

tures. In our specific case, we remove features Table 6: Best fragments for the ENTY class.
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(NN(company))

(WP(Who))

(WHNP(WP(Who)))

(NN(name))

(NN(team))

(NN(baseball))

(WHNP(WP))

(NN(character))

(NNP(President))

(NN(leader))

(NN(actor))

(NN(president))

(JI(Whose))

(VP(VBD)(NP))
(NP(NP)(JJ)(NN(name)))
(VP(VBD)(VP))

(NN(organization))
(VP(VBD)(NP)(PP(IN)(NP)))
(SBARQ(WHNP(WP(Who)))(SQ)(.))
(ROOT(SBARQ(WHNP(WP(Wh0)))(SQ)(.)))
(ROOT(SBARQ(WHNP(WP(Wh0)))(SQ)(-(?))))
(SBARQ(WHNP(WP(Who)))(SQ)(-(?)))

Table 7: Best fragments for the HUM class.

(NN(city))

(NN(country))

(WRB(Where))

(NN(state))

(WHADVP(WRB(Where)))

(NN(capital))

(NP(NN(city)))

(NNS(countries))

(NP(NN(state)))

(PP(IN(in)))
(SBARQ(WHADVP(WRB(Where)))(SQ)(.(?)))
(SBARQ(WHADVP(WRB(Where)))(SQ)(.))
(ROOT(SBARQ(WHADVP(WRB(Where)))(SQ)(.)))
(ROOT(SBARQ(WHADVP(WRB(Where)))(SQ)(.(?))))
(NN(island))

(NN(address))

(NN(river))

(NN(mountain))
(ROOT(SBARQ(WHADVP(WRB(Where)))(SQ)))
(SBARQ(WHADVP(WRB(Where)))(SQ))

Table 8: Best fragments for the LOC class.

(WRB(How))

(WHADVP(WRB(When)))

(WRB(When))

(JI(many))

(NN(year))

(WHADJP(WRB)(JJ))

(NP(NN(year)))

(WHADJP(WRB(How))(3J))

(NN(date))
(SBARQ(WHADVP(WRB(When)))(SQ)(.(?)))
(SBARQ(WHADVP(WRB(When)))(SQ)(.))
(NN(day))

(NN(population))
(ROOT(SBARQ(WHADVP(WRB(When)))(SQ)(.)))
(ROOT(SBARQ(WHADVP(WRB(When)))(SQ)(.(?7))))
(JJ(average))

(NN(number))

Table 9: Best fragments for the NUM class.
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whose SVM weights are the lowest, i.e. those
that are (almost) irrelevant for the SVM. There-
fore, the chance of this resulting in an improve-
ment is rather low.

With respect to cases where our model is less
accurate than a standard SST, we should consider
that our choice of parameters is sub-optimal and
we adopt avery aggressive feature selection strat-
egy, that only retains a few thousand features from
a space where there are hundreds of millions of
different features.

7 Conclusions

We introduced a novel framework for support vec-
tor classification that combines advantages of con-
volution kernels, i.e. the generation of a very high
dimensional structure space, with the efficiency
and clarity of explicit representations in a linear
space.

For this paper, we focused on the SubSet Tree
kernel and verified the potential of the proposed
solution on two NLP tasks, i.e. semantic role
labeling and question classification. The exper-
iments show that our framework drastically re-
duces processing time, e.g. boundary classifica-
tion for SRL, while preserving the accuracy.

We presented a selection of the most relevant
fragments identified for the SRL boundary classi-
fier as well as for each class of the coarse grained
QC task. Our analysis shows that our frame-
work can discover state-of-the-art features, e.g.
the Path feature for SRL. We believe that shar-
ing these fragments with the NLP community and
studying them in more depth will be useful to
identify new, relevant features for the character-
ization of several learning problems. For this
purpose, we made available the fragment spaces
at http://danielepighin.net and we will keep
them updated with new set of experiments on new
tasks, e.g. SRL based on FrameNet and VerbNet,
e.g. (Giuglea and Moschitti, 2004).

In our future work, we plan to widen the list
of covered tasks and to extend our algorithm to
cope with different kernel families, such as the
partial tree kernel and kernels defined over pairs
of trees, e.g. the ones used for textual entailment
in (Moschitti and Zanzotto, 2007). We also plan to
move from mining fragments to mining classes of
fragments, i.e. to identify prototypical fragments
in the fragment space that generalize topological
sub-classes of the most relevant fragments.
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