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Abstract

We consider a parsed text corpus as an in-
stance of a labelled directed graph, where
nodes represent words and weighted directed
edges represent the syntactic relations be-
tween them. We show that graph walks, com-
bined with existing techniques of supervised
learning, can be used to derive a task-specific
word similarity measure in this graph. We also
propose a newath-constrainedgraph walk
method, in which the graph walk process is
guided by high-level knowledge about mean-
ingful edge sequences (paths). Empirical eval-
uation on the task of named entity coordinate
term extraction shows that this framework is
preferable to vector-based models for small-
sized corpora. It is also shown that the path-
constrained graph walk algorithm yields both
performance and scalability gains.
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et al., 2004; Collins-Thompson and Callan, 2005;
Hughes and Ramage, 2007).

While these and other researchers have used
WordNet to evaluate similarity between words, there
has been much interest in extracting such a measure
from text corpora (e.g., (Snow et al., 2005; Bad
and Lapata, 2007)). In this paper, we suggest pro-
cessing dependency parse trees within the general
framework of directed labelled graphs. We construct
a graph that directly represents a corpus of struc-
tured (parsed) text. In the suggested graph scheme,
nodes denote words and weighted edges represent
the dependency relations between them. We apply
graph walks to derive an inter-word similarity mea-
sure. We further apply learning techniques, adapted
to this framework, to improve the derived corpus-
based similarity measure.

The learning methods applied include existing
learning techniques, namely edge weight tuning,
where weights are associated with the edge types,
and discriminative reranking of graph nodes, using

Graph-based similarity measures have been us@shtures that describe the possible paths between a
for a variety of language processing applicationggraph node and the initial “query nodes” (Minkov

In this paper we assume directed graphs, wheegd Cohen, 2007).

typed nodes denote entities and labelled directed | addition, we outline in this paper a novel

and weighted edges denote the relations betweekthod for learningpath-constrainedyraph walks.
them. In this framework, graph walks can be apyyhjle reranking allows use of high-level features
plied to draw a measure of similarity between thenat describe properties of the traversed paths, the
graph nodes. Previous works have applied grapyggested algorithm incorporates this information in
walks to draw a notion of semantic similarity overihe graph walk process. More specifically, we allow
such graphs that were carefully designed and maghe probability flow in the graph to be conditioned
ually tuned, based on WordNet reations (Toutanovgn the history of the walk. We show that this method

Current address: Nokia Research Center Cambridge, CaffSults in improved performance as it directs proba-
bridge, MA 02142, USA.

907

bility flow to meaningful paths. In addition, it leads

Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing, pages 907-916,
Honolulu, October 2008. (©)2008 Association for Computational Linguistics



to substantial gains in terms of runtime performance. nouhd partmod  prepaith

The graph representation and the set of learning (s, like, olaying,
techniques suggested are empirically evaluated ol
the task ofcoordinate termextractiort from small : :
to moderately sized corpora, where we compare@ ik doll
them against vector-based models, including a stat€] noys ]

of-the-art syntactic distributional similarity method

e | ‘ playing ‘

Kinds

(Pad and Lapata, 2007). It is shown that the graph nsuby partmod ?"”P-W““
walk based approach gives preferable res_ults for the 0 @
smaller datasets (and comparable otherwise), wher

learning yields significant gains in accuracy. det prep-of

_There are several contributions of this paperFigure 1: The suggested graph schema, demonstrated for
First, we represent dependency-parsed corpo

- POLGwo-sentence corpus.
within a general graph walk framework, and derive

inter-word similarity measures using graph walks
and learning techniques available in this frameworkncludes the dependency analysis of two sentences:
To our knowledge, the application of graph walks tdboys like playing with all kinds of cars”, and “girls
parsed text in general, and to the extraction of coolike playing with dolls”. In the graph, each word
dinate terms in particular, is novel. Another mairmention is represented as a node, which includes the
contribution of this paper is the path-constrainedihdex of the sentence in which it appears, as well
graph walk variant, which is a general learning techas its position within the sentence. Word mentions
nique for calculating the similarity between graphare marked as circles in the figure. The “type” of
nodes in directed and labelled graphs. each word — henceforthtarmnode — is denoted by

Below we first outline our proposed scheme for square in the figure. Each word mention is linked
representing a dependency-parsed text corpus asoathe corresponding term; for example, the nodes
graph, and provide some intuitions about the asséhke ;” and “like;” represent distinct word mentions
ciated similarity metric (Section 2). We then giveand both nodes are linked to therm “like”. For
an overview of the graph-walk based similarity metevery edge in the graph, we add another edge in the
ric (Section 3), as well as the known edge weighopposite direction (not shown in the figure); for ex-
tuning and reranking learning technigues (Sectioample, an inverse edge exists from “lik¢o “girls ;"
4). We next present the proposed algorithm of patiwith an edge labelled as “nsubj-inv”. The resulting
constrained graph walks (Section 5). The paper pr@raph is highly interconnected and cyclic.
ceeds with a review of related work (Section 6), a We will apply graph walks to derive an extended
discussion of the coordinate term extraction taskneasure of similarity, or relatedness, between word
empirical evaluation and our conclusions (Sectionterms(as defined above). For example, starting from
7-9). the term “girls”, we will reach the semantically re-
lated term “boys” via the following two paths:

(1) girls " girls1 ™Y Jike1 =™ like "

i ) . nsubj—inverse as—term

A typed dependency parse tree consists of directdige2 ~ "—  boys2™— " boys
links between words, where dependencies are la- (2) girls ™" girls1 "% likel "*""%** playingl
belled with the relevant grammatical relation (e.9.5=*I™ playing ™" playing2”*"""™**=4""*"* |ike2
nominal s_ubjectindirect objectetc.). We suggest nsubj—inverse boys2“*=tI™
representing a text corpus as a connected graphlntuitively, in a graph representing a large cor-

of depgndqncy structures, according t(_) the sghen&«as’ terms that are more semantically related will
shown in Figure 1. The graph shown in the figurg,q jiyeq by a larger number of connecting paths. In

Lin particular, we focus on the extraction of named entity@ddition, sh_orter connecting paths may be in general
classes. more meaningful. In the next section we show that

2 Representinga Corpusasa Graph

boys .
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the graph walk paradigm addresses both of these i€ohen (Minkov and Cohen, 2007): a hill-climbing
quirements. Further, different edge types, as well asethod that tunes the graph weights; and a reranking
the paths traversed, are expected to have varying imethod. We also specify the feature set to be used by
portance in different types of word similarity (for ex- the reranking method in the domain of parsed text.
ample, verbs and nouns are associated with different

connectivity patterns). These issues are addresséd Weight Tuning

using learning. There are several motivations for learning the graph

weights® in this domain. First, some dependency
relations — foremostkubjectandobject— are in gen-

This section provides a quick overview of the grapieral more salient than others (Lin, 1998; Baahd

walk induced similarity measure. For details, thd-apata, 2007). In addition, dependency relations

reader is referred to previous publications (e.gMay have varying importance per different notions

(Toutanova et al., 2004; Minkov and Cohen, 2007))f word similarity (e.g., noun vs. verb similarity
In summary, similarity between two nodes in theResnik and Diab, 2000)). Weight tuning allows the

graph is defined by a weighted graph walk proces&daption of edge weights to eatztsk(i.e., distribu-

where an edge of typeis assigned an edge weight,tion of queries).

0,, determined by its typ&. The transition proba-  The weight tuning method implemented in this

bility of reaching node; from nodex over a single work is based on an error backpropagation hill

time step,Pr(z — ), is defined as the weight climbing algorithm (Diligenti et al., 2005). The al-

of their connecting edge);, normalized by the to- gorithm minimizes the following cost function:

tal outgoing weight frome. Given these transition

probabilities, and starting from an initial distribu- - L ¥~ = Ly g, jom

tion V;, of interest (aquery), we perform a graph N €N N len 2

walk for a finite number of step&’. Further, at each

step of the walk, a proportion of the probab|||ty wheree, is the error foratarget nodedefined as the

mass at every node is emitted. Thus, this model agduared difference between the final score assigned

plies exponential decay on path length. The findP z by the graph walkp., and some ideal score ac-

probability distribution of this walk over the graph cording to the example’s labels?**.# Specifically,

nodes, which we denote ds, is Computed as fol- pZOpt is set to 1 in case that the nodes relevant
lows: R = 3K, Y'V,M’, where M is the transi- OF 0 otherwise. The error is averaged over a set of

tion matrix3 The answer to a query;, is a list of example instantiations of sizZ€. The cost function

nodes, ranked by the scores in the final distributiol$ minimized by gradient descent where the deriva-
R. In this multi-step walk, nodes that are reachedve of the error with respect to an edge weight
from the query nodes by many shorter paths will bé derived by decomposing the walk into single time

assigned a higher score than nodes connected o%@pPs, and considering the contribution of each node
fewer longer paths. traversed to the final node score.

3 Graph Walksand Similarity Queries

)2

4 Learning 4.2 Node Reranking

We consider a supervised setting, where we afderanking of the top canglidates in_a ranked list
given a dataset of example queries and labels ovBRS been successiully applied to multiple NLP tasks
the graph nodes, indicating which nodes are relevaf©llins, 2002; Collins and Koo, 2005). In essence,
to which query. For completeness, we describe hefliscriminative reranking allows the re-ordering of

two methods previously described by Minkov and€sults obtained by methods that perform some form
of local search, using features that encode higher

2In this paper, we consider either uniform edge weights; olevel information.
learn the set of weight® from examples.

3We tuneK empirically and set = 0.5, as in (Minkov and “4For every example query, a handful of the retrieved nodes
Cohen, 2007). are considered, including both relevant and irrelevant nodes.
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A number of features describing the set of paththat corresponds to the probability of the indicator
from V, can be conveniently computed in the probeing true for any path betweenand z;; (Cohen
cess of executing the graph walk, and it has beeand Minkov, 2006).
shown that reranking using these features can im-
prove results significantly. It has also been showb Path-Constrained Graph Walk
that reranking is complementary to weight tuning
(Minkov and Cohen, 2007), in the sense that th¥vhile node reranking allows the incorporation of
two techniques can be usefully combined by tunin§igh-level features that describe the traversed paths,
weights, and then reranking the results. it is desirable to incorporate such information ear-

In the reranking approach, for every training exlier in the graph walk process. In this paper, we
amplei (1 < i < N), the reranking algorithm is Suggest a variant of a graph-walk, whichden-
provided with the corresponding output ranked lisétrainedby path information. Assume that prelim-
of ; nodes. Let;; be the output node ranked at ramd'na@r_y knowledg'e is available that indicates the_prob-
jinl;, and letp.,, be the probability assigned tg; ability of reaching a relevant node after following a
by the graph walk. Each output nodg is repre- Particular edge type sequence (path) from the query
sented throughn features, which are computed bydistributioan to some node:. Rather than fix the

pre-defined feature functions, . .., f,.. Therank- €dge weight®, we can evaluate the weights of the
ing functionfor nodez;; is defined as: outgoing edges from nodedynamically, given the
. history of the walk (the path) up to this node. This
N hould result in gains in accuracy, as paths that lead
F(zij,a) = aplog(pz;;) + ij S : > .
(215, @) = colog(ps;) ;akfk(z]) mostly to irrelevant nodes can be eliminated in the

raph walk process. In addition, scalability gains
re expected, for the same reason.
We suggest a path-constrained graph walk algo-

wherea is a vector of real-valued parameters. Giverg
a new test example, the output of the model is the

output node list reranked ., ). Tolearnthe . . . o .
b by (235, ) rithm, where path information is maintained in a

parameter weightsy, we here applied a boosting
method (Collins and Koo, 2005) (see also (Minkovcornl.oaCt path-tree structure constructed based on
training examples. Each vertex in the path tree de-
et al., 2006)). ) . .
notes a particular walk history. In applying the graph

421 Features walk, the nodes traversed are represented as a set of

We evaluate the following feature templateshode pairs, comprised of the graph node and the cor-
Edge label sequendeatures indicate whether a par-responding vertices in the path tree. The outgoing
ticular sequence of edge labels occurred, in a €dge weights from each node pair will be estimated
particular order, within the set of paths leading tgiccording to the respective vertex in the path tree.
the target node;;. Lexical unigramfeature indi- This approach needs to address two subtasks: learn-
cate whether a word mention whose lexical valuég of the path-tree; and updating of the graph walk
is t,, was traversed in the set of paths leading t§aradigm to co-sample from the graph and the path
zij. Finally, the Source-counteature indicates the tree. We next describe these two components in de-
number of different source query nodes thgtwas  tail.
reached from. The intuition behind this last fea- ThePath-Tree
ture is that nodes linked to multiple query nodes, We construct a path-tre¢€ using a training set
where applicable, are more relevant. For exanof N example queries. Let pathp be a sequence
ple, for the query term “girl” in the graph depictedof £k < K edge types (wheré is the maximum
in Figure 1, the target node “boys” is describechumber of graph walk steps). For each training ex-
by the features (denoted dsature-name.feature- ample, we recover all of the connecting paths lead-
value: sequence.nsubj.nsubj-ifwwhere mention ing to the topM (correct and incorrect) nodes. We
andas-termedges are omitted)exical.“like” etc.  consider only acyclic paths. Let each patbe as-

In this work, the features encoded are binarysociated with its count, within the paths leading to
However, features can be assugned numeric weighte correct nodes, denoted é‘g Similarly, the
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+2 11 Given: graph G, path-treeT’, query distributionVj,

/—;’J’ number of stepg(

[
/‘“‘—;M -1 Initialize: for each x; € 1V, assign a pair

\K‘ [ +5 -1 < root(T),x; >
—_—

Repeat for stepsk = 0to K:

i For each< t;,z; >€ V..
; 0.2 m L B Let L bilthe sit of outgoing edge labels framin G.

" For eachl,,, € L:
D%?‘**L’ Foreach z; € G st,z; -2 z;, add< t;,z; > to
D}K[_‘, Vit1, Wheret; € T, sit. ¢; dm, t;, with probability

Pr(z;|Vi) x Pr(l,|t;,T). (The latter probabilities
Figure 2: An example path-tree. should be normalized with respectig)

If ¢; is a terminal node iff", emit z; with probability

| Vi Pr(t;|T).
count within paths leading to the negatively Iabellecfr(aj Vi) > Pr(t|T)

nodes is denoted,;". The full set of paths observed

is then represented as a tfeeThe leaves of the Figure 3: Pseudo-code for path-constrained graph walk
tree are assigned a Laplace-smoothed probability:

R En!
Pr(p) = Ci+Cy 12 from bothz, andz, over paths included in the path-

Given path probabilities, they are propagategiee, it will be represented by multiple node pairs,
backwards to all tree vertices, applying théAX e g <« T(1 — n),z3 > and< T(m — [, a5 >.
operatof? Consider the example given in Figure 2.A pseudo-code for a path-constrained graph walk is
The path-tree in the figure includes three paths (Cogsiven in Figure 3. It is straight-forward to discard
structed from edge typels,/,m,n). The top part paths inT that are associated with a lower proba-
of the figure gives the paths’ associated counts, anity than some threshold. A threshold of 0.5, for
the bottom part of the figure gives the derived outgoexample, implies that only paths that led to a major-

ing edge probabilities at each vertex. This path-trejy of positively labelled nodes in the training set are
specifies, for example, that given an edge of typefollowed.

was traversed from the root, the probability of reach-
ing a correct target node is 0.9 if an edge of type § Related Work
is followed, whereas the respective probability if an
edge of typem is followed is estimated at a lower Graph walks over typed graphs have been applied
0.2. to derive semantic similarity for NLP problems us-
A Concurrent Graph-walk ing WordNet as a primary information source. For
Given a generated path tree, we apmpsth- instance, Hughes and Ramage (2007) constructed a
constrainedgraph walks that adhere both to thegraph which represented various types of word re-
topology of the graph’, and to the path tre@. lations from WordNet, and compared random-walk
Walk histories of each node visited in the walk similarity to similarity assessments from human-
are compactly represented as pairg, = >, where subjecttrials. Random-walk similarity has also been
t denotes the relevant vertex in the path tree. Fatsed for lexical smoothing for prepositional word
example, suppose that after one walk step, the maiattachment (Toutanova et al., 2004) and query ex-
tained node-history pairs include T'(1),z; > and pansion (Collins-Thompson and Callan, 2005). In
< T(m),z9 >. If z3 is reached in the next walk stepcontrast to these works, our graph representation de-
—_— . . ~ scribes parsed text and has not been (consciously)
The conversion to a tree is straight-forward, where |dent|caéngineered for a particular task. Instead, we in-

path prefixes are merged. clude learning techniques to optimize the graph-
6Another possibility is to average the downstream cumula- g q P grap

tive counts at each vertex. The MAX operation gave better raV@lk based similarity measure. The learning meth-
sults in our experiments. ods described in this paper can be readily applied to
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other directed and labelled entity-relation graphs. we evaluate the extraction of named entities, includ-

The graph representation described in this papérg city namesand person namegrom newswire
is perhaps most related to syntax-based vector spagata, using word similarity measures. Coordinate
models, which derive a notion of semantic similarterms reflect a particular type of word similarity
ity from statistics associated with a parsed corpugelatedness), and are therefore an appropriate test
(Grefenstette, 1994; Lin, 1998; Radnd Lapata, case for our framework. While coordinate term ex-
2007). In most cases, these models construct vectdraction is often addressed by a rule-based (tem-
to represent each wotd;, where each element in the plates) approach (Hearst, 1992), this approach was
vector forw; corresponds to particular “context; designed for very large corpora such as the Web,
and represents a count or an indication of whethevhere the availability of many redundant documents
w; occurred in context. A “context” can refer to allows use of high-precision and low-recall rules.
simple co-occurrence with another wotg;, to a In this paper we focus on relatively small corpora.
particular syntactic relation to another word (e.g., ®mall limited text collections may correspond to
relation of “direct object” tow;), etc. Given these documents residing on a personal desktop, email
word vectors, inter-word similarity is evaluated us-collections, discussion groups and other specialized
ing some appropriate similarity measure for the vecsets of documents.
tor space, such as cosine vector similarityLor's The task defined in the experiments is to retrieve
similarity (Lin, 1998). a ranked list of city or person names given a small

Recently, Pad and Lapata (Pddand Lapata, set of seeds. This task is implemented in the graph
2007) have suggested an extended syntactic vects a query, where we let the query distributigrbe
space model calledependency vectarsn which uniform over the given seeds (and zero elsewhere).
rather than simple counts, the components of keally, the resulting ranked list will be populated
word vector of contexts consist @feighted scores with many additional city, or person, names.
which combine both co-occurrence frequency and We compare graph walks tdependency vec-
the importance of a context, based on properties @brs (DV) (Pac and Lapata, 200P),as well as to
the connecting dependency paths. They consideradvector-based bag-of-words co-occurrence model.
two different weighting schemes: langthweight- DV is a state-of-the-art syntactic vector-based model
ing scheme, assigning lower weight to longer con(see Section 6). The co-occurrence model represents
necting paths; and asbliguenessveighting hierar- a more traditional approach, where text is processed
chy (Keenan and Comrie, 1977), assigning higheds a stream rather than syntactic structures. In ap-
weight to paths that include grammatically salienplying the vector-space based methods, we compute
relations. In an evaluation of word pair similar-a similarity score betweeeverycandidate from the
ity based on statistics from a corpus of about 108orpus and each of the query terms, and then aver-
million words, they show improvements over sevage these scores (as the query distributions are uni-
eral previous vector space models. Below we wilform) to construct a ranked list. For efficiency, in
compare our framework to that of Ra@dnd Lap- the vector-based models we limit the considered set
ata. One important difference is that while Bahd  of candidates to named entities. Similarly, the graph
Lapata make manual choices (regarding the set afalk results are filtered to include named entifles.
paths considered and the weighting scheme), we ap-Corpora. As the experimental corpora, we use
ply learning to adjust the analogous parameters. the training set portion of the MUC-6 dataset (MUC,

) _ 1995) as well as articles from the Associated Press

7 Extraction of Coordinate Terms (AP) extracted from the AQUAINT corpus (Bilotti

We evaluate the text representation schema and thesy.~ ccq  the code from http:/www.coli.uni-

proposed set of graph-based similarity measures @garland.de/ pado/dv.html, and converted the underlying
the task ofcoordinate termextraction. In particular, syntactic patterns to the Stanford dependency parser conven-

tions.
"We refer the reader to the TextGraph workshop proceed- °In general, graph walk results can be filtered by various
ings, http://textgraphs.org. word properties, e.g., capitalization pattern, or part-of-speech.
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“CA‘SEUS X%‘f rg’zd}fs ijges “”iqugKNEs noisy negative examples were considered for the
MUC+AP  2.440K 1,030K 3,550K 36K larger automatically annotated AP corpus. (Specif-
Table 1: Corpus statistics ically, for cities, we only considered city names in-

cluded in the MUC corpus as correct answers.)

et al., 2007), all parsed using the Stanford depen- A co-occurrence vector-space model was applied

dency parser (de Marneffe et al., 2008)The MUC using a window of two tokens to the right gnd_ to
corpus provides true named entity tags, while thi'® left of the focus word. Inter-word similarity
AQUAINT corpus includes automatically generatedV@s evaluated in this model using cosine similar-
noisy, named entity tags. Statistics on the experly» Where the underlying co-occurrence counts were

mental corpora and their corresponding graph refiormalized by log-likelihood ratio (Padand Lap-
resentation are detailed in Table 1. As shown, th@t@ 2007). The parameters of the DV method were
MUC corpus contains about 140 thousand wordsSet based on a cross validation evaluation (using the
whereas the MUC+AP experimental corpus is suglUC*HAP corpus). Themediumset of dependency
stantially larger, containing about 2.5 million words Paths and thebliqueedge weighting scheme were
We generated 10 queries, each comprised of 4 cif§und to perform best. We experimented with co-
names selected randomly according to the distrib§n€ @s Well as Lin similarity measure in combina-
tion of city name mentions in MUC-6. Similarly tion with the dependency vectors representation. Fi-
we generated a set of 10 queries that include 4 pdf@lly: given the large number of candidates in the
son names selected randomly from the MUC corpu/UC+AP corpus (Table 1), we show the results of
(The MUC corpus was appended to AP, so that thHaPPlying the considered vector-space models to the
same query sets are applicable in both cases.) gop. high-quality, entities retrieved with reranking

) o . i 1
each task, we use 5 queries for training and tuniny" tis corpus.

name (top) and the person name (bottom) extraction
8 Experimental Results tasks. The left part of the figure shows results us-

ing the MUC corpus, and its right part — using the
UC+AP corpus. The curves show precision as a
unction of rank in the ranked list, up to rank 100.
(For this evaluation, we hand-labeled all the top-
) : ranked results as to whether they are city names or
small (and in factdet_enorateq fof = 9). We there_- person names.) Included in the figure are the curves
fore se_tK = 0. _Welght tuning was trained using of the graph-walk method with uniform weights
the training queries and two dozens of target nodza:UW), learned weights (G:Lw), graph-walk with
overa_ll. In reranklng_, we set_a_feature count cuto eranking (Rerank) and a path-constrained graph-
of 3,. in order to avoid over-fitting. Reranking was, ik (PCW). Also given are the results of the co-
applied to the top 200 ranked nodes output by thg

. . ) ccurrence model (CO), and the syntactic vector-
graph walk using the tuned edge weights. Fma"yESace DV model, using the Lin similarity measure

Experimental setup. We evaluated cross-validation
performance over the training queries in terms
mean average precision for varying walk lengtts
We found that beyond{ = 6 improvements were

pa:jh—treesdv;eor(_e constrl:cteg usmgz Fhe té)pl):)zczhcorre V:Lin). Performance of the DV model using co-
nodes an Incorrect nodes retneved by the Ung, e similarity was found comparable or inferior to

formly weighted graph walk. In the experiments, . e | in measure, and is omitted from the fig-
we apply a threshold of 0.5 to the path constraineare for clarity ’

graph walk method. Several trends can be observed from the results.

We note that for learning, true labels were used f(yVith respect to the graph walk methods, the graph
the fully annotated MUC corpus (we hand labelle . . .
walk using the learned edge weights consistently

all of the named entities of type location in the cor- : : )
. outperforms the graph walk with uniform weights.
pus as to whether they were city names). Howevi

eIEEeranking and the path-constrained graph walk,

http://nlp.stanford.edu/software/lex-parser.shtml; sen-
tences longer than 70 words omitted. We process the union of the top 200 results per each query.
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Figure 4: Test results: Precision at the top 100 ranks, ®city name extraction task (top) and person name extraction
task (bottom).

however, yield superior results. Both of these learrfound highly indicative for city names (see below).
ing methods utilize a richer set of features than thelowever, this relation is not emphasized by the DV
graph walk and weight tuning, which can consideweighting schema. As expected, the performance of
only local information. In particular, while the graphthe vector-based models improves for larger corpora
walk paradigm assigns lower importance to longefTerra and Clarke, 2003). These models demonstrate
connecting paths (as described in Section 3), rerangood performance for the larger MUC+AP corpus,
ing and the path-constrained walker allow to disbut only mediocre performance for the smaller MUC
card short yet irrelevant paths, and by that eliminateorpus.

noise at the top ranks of the retrieved list. In gen- Contrasting the graph-based methods with the
eral, the results show that edge sequences carry 3gcior-hased models, the difference in performance
ditional meaning compared with the individual edggy, tayor of reranking and PCW, especially for the
label segments traversed. smaller corpus, can be attributed to two factors. The
Out of the vector-based models, the cofirst factor is learning, which optimizes performance

occurrence model is preferable for the city nam&r the underlying data. A second factor is the incor-
extraction task, and the syntactic dependency Ve[;gpratlon of non-local information, encoding proper-
tors model gives substantially better performanches of the traversed paths.

for person name extraction. We conjecture that city Models. Following is a short description of the
name mentions are less structured in the underlyingodels learned by the different methods and tasks.
text. In addition, the syntactic weighting scheme ofWeight tuning assigned high weights to edge types
the DV model is probably not optimal for the case okuch asconj-and prep-in and prep-from nn, ap-

city names. For example,anjunctionrelation was posandamodfor the city extraction task. For per-
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shown that this task can be performed using similar-
ity queries in a general-purpose graph-walk based
query language. Further, we have successfully ap-
plied learning techniques that tune weights assigned
to different dependency relations, and re-score can-
didates using features derived from the graph walk.

Another orthogonal contribution of this paper is
a path-constrained graph walk variant, where the
graph walk is guided by high level knowledge about
meaningful paths, learned from training examples.
This method was shown to yield improved perfor-
Figure 5: The graph walk exponential spread is boundegance for the suggested graph representation, and
by the path constrained walk. improved scalability compared with the local graph
walk. The method is general, and can be readily ap-
plied in similar settings.

20
18
16
14
12
10
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son extraction, prominent edge types incluged) __ ) i
obj, possandnn. (The latter preferences are sim- Er_npmcal evaluation of the coordinate term ex-
ilar to the linguistically motivated weights of DV.) traction task shows that the graph-based framework

High weight features assigned by reranking for Cinperforms better than vector-space models for the

name extraction included, for example, lexical feaSMaller corpus, and comparably otherwise. Over-

tures such as “based” and “downtown”, and edge bp_\ll, we find thgt the suggested model is s_ui'FabIe for
grams such as “prep-in-Inverseonj-and” or “nn- deep (syntactic) processing of small specialized cor-

Inverse—nn”. Positive highly predictive paths in pora. I.n preliminary experiments Where'we evalu-
the constructed path tree included many symmetrfi€d this framework on the task of extracting general
paths, such as —conj andinverse.-.conjand..., WOord synonyms, using a relatively large corpus of

..—prepininverse.—.prepin..., for the city name 15 million words, we found the graph-walk perfor-
extraction task. mance to be better than DV using cosine similarity

Scalability. Figure 5 shows the number of gralohm(—:‘asures, but second to DV using Lin’s similarity

nodes maintained in each step of the graph waflpeasure. While this set of results is incomplete, we

(logarithm scale) for a typical city extraction queryflnd that it is consistent with the results reported in

and the MUC+AP corpus. As shown by the solidS Paper. _

line, the number of graph nodes visited using the The framewor}( presented can be enhanced in sev-
weighted graph walk paradigm grows exponentiallf@ ways. For instance, WordNet edges and mor-
with the length of the walk. Applying a path- phology relathns can be_readlly encoded in the

constrained walk with a threshold of 0 (PCW:0) re9raph. We Dbelieve that this framework can be ap-

duces the maximal number of nodes expanded (R4€d for the extraction of more specialized no-

paths not observed in the training set are discarde&gnS of word relatedness, as in relation extraction
As shown, increasing the threshold leads to signiffBunescu and Mooney, 2005). The path-constrained

cant gains in scalability. Overall, query processingaPh walk method proposed may be enhanced by
time averaged at a few minutes, using a commoditfaning edge probabilities, using a rich set of fea-

PC. fures. We are also interested in exploring a possi-
ble relation between the path-constrained walk ap-
9 Conclusion and Future Directions proach and reinforcement learning.

In this paper we make several contributions. F"Sié\cknowledgments

we have explored a novel but natural representation

for a corpus of dependency-parsed text, as a labell&@the authors wish to thank the anonymous reviewers
directed graph. We have evaluated the task of cooand Hanghang Tong for useful advice. This material
dinate term extraction using this representation, arid based upon work supported by Yahoo! Research.

915



References Egidio Terra and C. L. A. Clarke. 2003. Frequency

_—— - . . estimates for statistical word similarity measures. In
Matthew W. Bilotti, Paul Ogilvie, Jamie Callan, and Eric NAACL

Nyberg. 2007. Structured retrieval for question ankistina Toutanova, Christopher D. Manning, and An-
swering. InSIGIR drew Y. Ng. 2004. Learning random walk models for

Razvan C. Bunescu and Raymond J. Moone)_/. 2005. A inducing word dependency distributions. IBML.
shortest path dependency kernel for relation extrac-
tion. INHLT-EMNLP,

William W. Cohen and Einat Minkov. 2006. A graph-
search framework for associating gene identifiers with
documentsBMC Bioinformatics 7(440).

Michael Collins and Terry Koo. 2005. Discrimina-
tive reranking for natural language parsinGompu-
tational Linguistics 31(1):25-69.

Kevyn Collins-Thompson and Jamie Callan. 2005.
Query expansion using random walk models. In
CIKM.

Michael Collins. 2002. Ranking algorithms for named-
entity extraction: Boosting and the voted perceptron.
In ACL.

Marie-Catherine de Marneffe, Bill MacCartney, and
Christopher D. Manning. 2006. Generating typed
dependency parses from phrase structure parses. In
LREC

Michelangelo Diligenti, Marco Gori, and Marco Mag-
gini. 2005. Learning web page scores by error back-
propagation. IHJCAI.

Gregory Grefenstette. 1994xplorations in Automatic
Thesaurus DiscoveryKluwer Academic Publishers,
Dordrecht.

Marti Hearst. 1992. Automatic acquisition of hyponyms
from large text corpora. ICOLING.

Thad Hughes and Daniel Ramage. 2007. Lexical seman-
tic relatedness with random graph walks . BRINLP.

Edward Keenan and Bernard Comrie. 1977. Noun
phrase accessibility and universal grammhiinguis-
tic Inquiry, 8.

Dekang Lin. 1998. Automatic retrieval and clustering of
similar words. INCOLING-ACL

Einat Minkov and William W. Cohen. 2007. Learning to
rank typed graph walks: Local and global approaches.
In WebKDD/KDD-SNA workshop

Einat Minkov, William W. Cohen, and Andrew Y. Ng.
2006. Contextual search and name disambiguation in
email using graphs. IBIGIR

1995. Proceedings of the sixth message understanding
conference (muc-6). IiMorgan Kaufmann Publish-
ers, Inc. Columbia, Maryland.

Sebastian Pddand Mirella Lapata. 2007. Dependency-
based construction of semantic space modetsnpu-
tational Linguistics 33(2).

Philip Resnik and Mona Diab. 2000. Measuring verb
similarity. In CogSci

Rion Snow, Daniel Jurafsky, and Andrew Y. Ng. 2005.
Learning syntactic patterns for automatic hypernym
discovery. INNIPS

916



