
Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing, pages 907–916,
Honolulu, October 2008. c©2008 Association for Computational Linguistics

Learning Graph Walk Based Similarity Measures for Parsed Text

Einat Minkov∗

Language Technologies Institute
Carnegie Mellon University
Pittsburgh, PA 15213, USA
einat@cs.cmu.edu

William W. Cohen
Machine Learning Department

Carnegie Mellon University
Pittsburgh, PA 15213, USA
wcohen@cs.cmu.edu

Abstract

We consider a parsed text corpus as an in-
stance of a labelled directed graph, where
nodes represent words and weighted directed
edges represent the syntactic relations be-
tween them. We show that graph walks, com-
bined with existing techniques of supervised
learning, can be used to derive a task-specific
word similarity measure in this graph. We also
propose a newpath-constrainedgraph walk
method, in which the graph walk process is
guided by high-level knowledge about mean-
ingful edge sequences (paths). Empirical eval-
uation on the task of named entity coordinate
term extraction shows that this framework is
preferable to vector-based models for small-
sized corpora. It is also shown that the path-
constrained graph walk algorithm yields both
performance and scalability gains.

1 Introduction

Graph-based similarity measures have been used
for a variety of language processing applications.
In this paper we assume directed graphs, where
typed nodes denote entities and labelled directed
and weighted edges denote the relations between
them. In this framework, graph walks can be ap-
plied to draw a measure of similarity between the
graph nodes. Previous works have applied graph
walks to draw a notion of semantic similarity over
such graphs that were carefully designed and man-
ually tuned, based on WordNet reations (Toutanova

∗Current address: Nokia Research Center Cambridge, Cam-
bridge, MA 02142, USA.

et al., 2004; Collins-Thompson and Callan, 2005;
Hughes and Ramage, 2007).

While these and other researchers have used
WordNet to evaluate similarity between words, there
has been much interest in extracting such a measure
from text corpora (e.g., (Snow et al., 2005; Padó
and Lapata, 2007)). In this paper, we suggest pro-
cessing dependency parse trees within the general
framework of directed labelled graphs. We construct
a graph that directly represents a corpus of struc-
tured (parsed) text. In the suggested graph scheme,
nodes denote words and weighted edges represent
the dependency relations between them. We apply
graph walks to derive an inter-word similarity mea-
sure. We further apply learning techniques, adapted
to this framework, to improve the derived corpus-
based similarity measure.

The learning methods applied include existing
learning techniques, namely edge weight tuning,
where weights are associated with the edge types,
and discriminative reranking of graph nodes, using
features that describe the possible paths between a
graph node and the initial “query nodes” (Minkov
and Cohen, 2007).

In addition, we outline in this paper a novel
method for learningpath-constrainedgraph walks.
While reranking allows use of high-level features
that describe properties of the traversed paths, the
suggested algorithm incorporates this information in
the graph walk process. More specifically, we allow
the probability flow in the graph to be conditioned
on the history of the walk. We show that this method
results in improved performance as it directs proba-
bility flow to meaningful paths. In addition, it leads

907

to substantial gains in terms of runtime performance.
The graph representation and the set of learning

techniques suggested are empirically evaluated on
the task ofcoordinate termextraction1 from small
to moderately sized corpora, where we compare
them against vector-based models, including a state-
of-the-art syntactic distributional similarity method
(Pad́o and Lapata, 2007). It is shown that the graph
walk based approach gives preferable results for the
smaller datasets (and comparable otherwise), where
learning yields significant gains in accuracy.

There are several contributions of this paper.
First, we represent dependency-parsed corpora
within a general graph walk framework, and derive
inter-word similarity measures using graph walks
and learning techniques available in this framework.
To our knowledge, the application of graph walks to
parsed text in general, and to the extraction of coor-
dinate terms in particular, is novel. Another main
contribution of this paper is the path-constrained
graph walk variant, which is a general learning tech-
nique for calculating the similarity between graph
nodes in directed and labelled graphs.

Below we first outline our proposed scheme for
representing a dependency-parsed text corpus as a
graph, and provide some intuitions about the asso-
ciated similarity metric (Section 2). We then give
an overview of the graph-walk based similarity met-
ric (Section 3), as well as the known edge weight
tuning and reranking learning techniques (Section
4). We next present the proposed algorithm of path-
constrained graph walks (Section 5). The paper pro-
ceeds with a review of related work (Section 6), a
discussion of the coordinate term extraction task,
empirical evaluation and our conclusions (Sections
7-9).

2 Representing a Corpus as a Graph

A typed dependency parse tree consists of directed
links between words, where dependencies are la-
belled with the relevant grammatical relation (e.g.,
nominal subject, indirect objectetc.). We suggest
representing a text corpus as a connected graph
of dependency structures, according to the scheme
shown in Figure 1. The graph shown in the figure

1In particular, we focus on the extraction of named entity
classes.

Figure 1: The suggested graph schema, demonstrated for
a two-sentence corpus.

includes the dependency analysis of two sentences:
“boys like playing with all kinds of cars”, and “girls
like playing with dolls”. In the graph, each word
mention is represented as a node, which includes the
index of the sentence in which it appears, as well
as its position within the sentence. Word mentions
are marked as circles in the figure. The “type” of
each word – henceforth atermnode – is denoted by
a square in the figure. Each word mention is linked
to the corresponding term; for example, the nodes
“like1” and “like2” represent distinct word mentions
and both nodes are linked to theterm “like”. For
every edge in the graph, we add another edge in the
opposite direction (not shown in the figure); for ex-
ample, an inverse edge exists from “like1” to “girls1”
with an edge labelled as “nsubj-inv”. The resulting
graph is highly interconnected and cyclic.

We will apply graph walks to derive an extended
measure of similarity, or relatedness, between word
terms(as defined above). For example, starting from
the term “girls”, we will reach the semantically re-
lated term “boys” via the following two paths:

(1) girls
mention
−→ girls1

nsubj
−→ like1

as−term
−→ like

mention
−→

like2
nsubj−inverse

−→ boys2
as−term
−→ boys

(2) girls
mention
−→ girls1

nsubj
−→ like1

partmod
−→ playing1

as−term
−→ playing

mention
−→ playing2

partmod−inverse
−→ like2

nsubj−inverse
−→ boys2

as−term
−→ boys .

Intuitively, in a graph representing a large cor-
pus, terms that are more semantically related will
be linked by a larger number of connecting paths. In
addition, shorter connecting paths may be in general
more meaningful. In the next section we show that

908

the graph walk paradigm addresses both of these re-
quirements. Further, different edge types, as well as
the paths traversed, are expected to have varying im-
portance in different types of word similarity (for ex-
ample, verbs and nouns are associated with different
connectivity patterns). These issues are addressed
using learning.

3 Graph Walks and Similarity Queries

This section provides a quick overview of the graph
walk induced similarity measure. For details, the
reader is referred to previous publications (e.g.,
(Toutanova et al., 2004; Minkov and Cohen, 2007)).

In summary, similarity between two nodes in the
graph is defined by a weighted graph walk process,
where an edge of typèis assigned an edge weight,
θ`, determined by its type.2 The transition proba-
bility of reaching nodey from nodex over a single
time step,Pr(x −→ y), is defined as the weight
of their connecting edge,θl, normalized by the to-
tal outgoing weight fromx. Given these transition
probabilities, and starting from an initial distribu-
tion Vq of interest (aquery), we perform a graph
walk for a finite number of stepsK. Further, at each
step of the walk, a proportionγ of the probability
mass at every node is emitted. Thus, this model ap-
plies exponential decay on path length. The final
probability distribution of this walk over the graph
nodes, which we denote asR, is computed as fol-
lows: R =

∑K
i=1 γiVqM

i, whereM is the transi-
tion matrix.3 The answer to a query,Vq, is a list of
nodes, ranked by the scores in the final distribution
R. In this multi-step walk, nodes that are reached
from the query nodes by many shorter paths will be
assigned a higher score than nodes connected over
fewer longer paths.

4 Learning

We consider a supervised setting, where we are
given a dataset of example queries and labels over
the graph nodes, indicating which nodes are relevant
to which query. For completeness, we describe here
two methods previously described by Minkov and

2In this paper, we consider either uniform edge weights; or,
learn the set of weightsΘ from examples.

3We tuneK empirically and setγ = 0.5, as in (Minkov and
Cohen, 2007).

Cohen (Minkov and Cohen, 2007): a hill-climbing
method that tunes the graph weights; and a reranking
method. We also specify the feature set to be used by
the reranking method in the domain of parsed text.

4.1 Weight Tuning

There are several motivations for learning the graph
weightsΘ in this domain. First, some dependency
relations – foremost,subjectandobject– are in gen-
eral more salient than others (Lin, 1998; Padó and
Lapata, 2007). In addition, dependency relations
may have varying importance per different notions
of word similarity (e.g., noun vs. verb similarity
(Resnik and Diab, 2000)). Weight tuning allows the
adaption of edge weights to eachtask(i.e., distribu-
tion of queries).

The weight tuning method implemented in this
work is based on an error backpropagation hill
climbing algorithm (Diligenti et al., 2005). The al-
gorithm minimizes the following cost function:

E =
1

N

∑

z∈N

ez =
1

N

∑

z∈N

1

2
(pz − pOpt

z)2

whereez is the error for a target nodez defined as the
squared difference between the final score assigned
to z by the graph walk,pz, and some ideal score ac-
cording to the example’s labels,pOpt

z .4 Specifically,
pOpt

z is set to 1 in case that the nodez is relevant
or 0 otherwise. The error is averaged over a set of
example instantiations of sizeN . The cost function
is minimized by gradient descent where the deriva-
tive of the error with respect to an edge weightθ`

is derived by decomposing the walk into single time
steps, and considering the contribution of each node
traversed to the final node score.

4.2 Node Reranking

Reranking of the top candidates in a ranked list
has been successfully applied to multiple NLP tasks
(Collins, 2002; Collins and Koo, 2005). In essence,
discriminative reranking allows the re-ordering of
results obtained by methods that perform some form
of local search, using features that encode higher
level information.

4For every example query, a handful of the retrieved nodes
are considered, including both relevant and irrelevant nodes.

909

A number of features describing the set of paths
from Vq can be conveniently computed in the pro-
cess of executing the graph walk, and it has been
shown that reranking using these features can im-
prove results significantly. It has also been shown
that reranking is complementary to weight tuning
(Minkov and Cohen, 2007), in the sense that the
two techniques can be usefully combined by tuning
weights, and then reranking the results.

In the reranking approach, for every training ex-
amplei (1 ≤ i ≤ N), the reranking algorithm is
provided with the corresponding output ranked list
of li nodes. Letzij be the output node ranked at rank
j in li, and letpzij

be the probability assigned tozij

by the graph walk. Each output nodezij is repre-
sented throughm features, which are computed by
pre-defined feature functionsf1, . . . , fm. Therank-
ing functionfor nodezij is defined as:

F (zij , ᾱ) = α0log(pzij
) +

m∑

k=1

αkfk(zij)

whereᾱ is a vector of real-valued parameters. Given
a new test example, the output of the model is the
output node list reranked byF (zij , ᾱ). To learn the
parameter weights̄α, we here applied a boosting
method (Collins and Koo, 2005) (see also (Minkov
et al., 2006)).

4.2.1 Features

We evaluate the following feature templates.
Edge label sequencefeatures indicate whether a par-
ticular sequence of edge labels`i occurred, in a
particular order, within the set of paths leading to
the target nodezij . Lexical unigramfeature indi-
cate whether a word mention whose lexical value
is tk was traversed in the set of paths leading to
zij . Finally, theSource-countfeature indicates the
number of different source query nodes thatzij was
reached from. The intuition behind this last fea-
ture is that nodes linked to multiple query nodes,
where applicable, are more relevant. For exam-
ple, for the query term “girl” in the graph depicted
in Figure 1, the target node “boys” is described
by the features (denoted asfeature-name.feature-
value): sequence.nsubj.nsubj-inv(where mention
andas-termedges are omitted) ,lexical.’“like” etc.

In this work, the features encoded are binary.
However, features can be assugned numeric weights

that corresponds to the probability of the indicator
being true for any path betweenx andzij (Cohen
and Minkov, 2006).

5 Path-Constrained Graph Walk

While node reranking allows the incorporation of
high-level features that describe the traversed paths,
it is desirable to incorporate such information ear-
lier in the graph walk process. In this paper, we
suggest a variant of a graph-walk, which iscon-
strainedby path information. Assume that prelim-
inary knowledge is available that indicates the prob-
ability of reaching a relevant node after following a
particular edge type sequence (path) from the query
distributionVq to some nodex. Rather than fix the
edge weightsΘ, we can evaluate the weights of the
outgoing edges from nodex dynamically, given the
history of the walk (the path) up to this node. This
should result in gains in accuracy, as paths that lead
mostly to irrelevant nodes can be eliminated in the
graph walk process. In addition, scalability gains
are expected, for the same reason.

We suggest a path-constrained graph walk algo-
rithm, where path information is maintained in a
compact path-tree structure constructed based on
training examples. Each vertex in the path tree de-
notes a particular walk history. In applying the graph
walk, the nodes traversed are represented as a set of
node pairs, comprised of the graph node and the cor-
responding vertices in the path tree. The outgoing
edge weights from each node pair will be estimated
according to the respective vertex in the path tree.
This approach needs to address two subtasks: learn-
ing of the path-tree; and updating of the graph walk
paradigm to co-sample from the graph and the path
tree. We next describe these two components in de-
tail.

The Path-Tree
We construct a path-treeT using a training set

of N example queries. Let apath p be a sequence
of k < K edge types (whereK is the maximum
number of graph walk steps). For each training ex-
ample, we recover all of the connecting paths lead-
ing to the topM (correct and incorrect) nodes. We
consider only acyclic paths. Let each pathp be as-
sociated with its count, within the paths leading to
the correct nodes, denoted asC+

p . Similarly, the

910

Figure 2: An example path-tree.

count within paths leading to the negatively labelled
nodes is denotedC−

p . The full set of paths observed
is then represented as a tree.5 The leaves of the
tree are assigned a Laplace-smoothed probability:

Pr(p) =
C+

p +1

C+
p +C−

p +2
.

Given path probabilities, they are propagated
backwards to all tree vertices, applying theMAX

operator.6 Consider the example given in Figure 2.
The path-tree in the figure includes three paths (con-
structed from edge typesk, l, m, n). The top part
of the figure gives the paths’ associated counts, and
the bottom part of the figure gives the derived outgo-
ing edge probabilities at each vertex. This path-tree
specifies, for example, that given an edge of typel

was traversed from the root, the probability of reach-
ing a correct target node is 0.9 if an edge of typen

is followed, whereas the respective probability if an
edge of typem is followed is estimated at a lower
0.2.

A Concurrent Graph-walk
Given a generated path tree, we applypath-

constrainedgraph walks that adhere both to the
topology of the graphG, and to the path treeT .
Walk histories of each nodex visited in the walk
are compactly represented as pairs< t, x >, where
t denotes the relevant vertex in the path tree. For
example, suppose that after one walk step, the main-
tained node-history pairs include< T (l), x1 > and
< T (m), x2 >. If x3 is reached in the next walk step

5The conversion to a tree is straight-forward, where identical
path prefixes are merged.

6Another possibility is to average the downstream cumula-
tive counts at each vertex. The MAX operation gave better re-
sults in our experiments.

Given: graph G, path-treeT , query distributionV0,
number of stepsK
Initialize: for each xi ∈ V0, assign a pair
< root(T), xi >

Repeat for steps k = 0 to K:
For each< ti, xi >∈ Vk:
Let L be the set of outgoing edge labels fromxi, in G.
For eachlm ∈ L:
For each xj ∈ G s.t., xi

lm−→ xj , add< tj , xj > to

Vk+1, wheretj ∈ T , s.t. ti
lm−→ tj , with probability

Pr(xi|Vk) × Pr(lm|ti, T). (The latter probabilities
should be normalized with respect toxi.)
If ti is a terminal node inT , emit xi with probability
Pr(xi|Vk) × Pr(ti|T).

Figure 3: Pseudo-code for path-constrained graph walk

from bothx1 andx2 over paths included in the path-
tree, it will be represented by multiple node pairs,
e.g.,< T (l → n), x3 > and< T (m → l, x3 >.
A pseudo-code for a path-constrained graph walk is
given in Figure 3. It is straight-forward to discard
paths inT that are associated with a lower proba-
bility than some threshold. A threshold of 0.5, for
example, implies that only paths that led to a major-
ity of positively labelled nodes in the training set are
followed.

6 Related Work

Graph walks over typed graphs have been applied
to derive semantic similarity for NLP problems us-
ing WordNet as a primary information source. For
instance, Hughes and Ramage (2007) constructed a
graph which represented various types of word re-
lations from WordNet, and compared random-walk
similarity to similarity assessments from human-
subject trials. Random-walk similarity has also been
used for lexical smoothing for prepositional word
attachment (Toutanova et al., 2004) and query ex-
pansion (Collins-Thompson and Callan, 2005). In
contrast to these works, our graph representation de-
scribes parsed text and has not been (consciously)
engineered for a particular task. Instead, we in-
clude learning techniques to optimize the graph-
walk based similarity measure. The learning meth-
ods described in this paper can be readily applied to

911

other directed and labelled entity-relation graphs.7

The graph representation described in this paper
is perhaps most related to syntax-based vector space
models, which derive a notion of semantic similar-
ity from statistics associated with a parsed corpus
(Grefenstette, 1994; Lin, 1998; Padó and Lapata,
2007). In most cases, these models construct vectors
to represent each wordwi, where each element in the
vector forwi corresponds to particular “context”c,
and represents a count or an indication of whether
wi occurred in contextc. A “context” can refer to
simple co-occurrence with another wordwj , to a
particular syntactic relation to another word (e.g., a
relation of “direct object” towj), etc. Given these
word vectors, inter-word similarity is evaluated us-
ing some appropriate similarity measure for the vec-
tor space, such as cosine vector similarity, orLin’s
similarity (Lin, 1998).

Recently, Pad́o and Lapata (Padó and Lapata,
2007) have suggested an extended syntactic vector
space model calleddependency vectors, in which
rather than simple counts, the components of a
word vector of contexts consist ofweighted scores,
which combine both co-occurrence frequency and
the importance of a context, based on properties of
the connecting dependency paths. They considered
two different weighting schemes: alengthweight-
ing scheme, assigning lower weight to longer con-
necting paths; and anobliquenessweighting hierar-
chy (Keenan and Comrie, 1977), assigning higher
weight to paths that include grammatically salient
relations. In an evaluation of word pair similar-
ity based on statistics from a corpus of about 100
million words, they show improvements over sev-
eral previous vector space models. Below we will
compare our framework to that of Padó and Lap-
ata. One important difference is that while Padó and
Lapata make manual choices (regarding the set of
paths considered and the weighting scheme), we ap-
ply learning to adjust the analogous parameters.

7 Extraction of Coordinate Terms

We evaluate the text representation schema and the
proposed set of graph-based similarity measures on
the task ofcoordinate termextraction. In particular,

7We refer the reader to the TextGraph workshop proceed-
ings, http://textgraphs.org.

we evaluate the extraction of named entities, includ-
ing city namesand person namesfrom newswire
data, using word similarity measures. Coordinate
terms reflect a particular type of word similarity
(relatedness), and are therefore an appropriate test
case for our framework. While coordinate term ex-
traction is often addressed by a rule-based (tem-
plates) approach (Hearst, 1992), this approach was
designed for very large corpora such as the Web,
where the availability of many redundant documents
allows use of high-precision and low-recall rules.
In this paper we focus on relatively small corpora.
Small limited text collections may correspond to
documents residing on a personal desktop, email
collections, discussion groups and other specialized
sets of documents.

The task defined in the experiments is to retrieve
a ranked list of city or person names given a small
set of seeds. This task is implemented in the graph
as a query, where we let the query distributionVq be
uniform over the given seeds (and zero elsewhere).
Ideally, the resulting ranked list will be populated
with many additional city, or person, names.

We compare graph walks todependency vec-
tors (DV) (Pad́o and Lapata, 2007),8 as well as to
a vector-based bag-of-words co-occurrence model.
DV is a state-of-the-art syntactic vector-based model
(see Section 6). The co-occurrence model represents
a more traditional approach, where text is processed
as a stream rather than syntactic structures. In ap-
plying the vector-space based methods, we compute
a similarity score betweeneverycandidate from the
corpus and each of the query terms, and then aver-
age these scores (as the query distributions are uni-
form) to construct a ranked list. For efficiency, in
the vector-based models we limit the considered set
of candidates to named entities. Similarly, the graph
walk results are filtered to include named entities.9

Corpora. As the experimental corpora, we use
the training set portion of the MUC-6 dataset (MUC,
1995) as well as articles from the Associated Press
(AP) extracted from the AQUAINT corpus (Bilotti

8We used the code from http://www.coli.uni-
saarland.de/ pado/dv.html, and converted the underlying
syntactic patterns to the Stanford dependency parser conven-
tions.

9In general, graph walk results can be filtered by various
word properties, e.g., capitalization pattern, or part-of-speech.

912

Corpus words nodes edges unique NEs
MUC 140K 82K 244K 3K
MUC+AP 2,440K 1,030K 3,550K 36K

Table 1: Corpus statistics

et al., 2007), all parsed using the Stanford depen-
dency parser (de Marneffe et al., 2006).10 The MUC
corpus provides true named entity tags, while the
AQUAINT corpus includes automatically generated,
noisy, named entity tags. Statistics on the experi-
mental corpora and their corresponding graph rep-
resentation are detailed in Table 1. As shown, the
MUC corpus contains about 140 thousand words,
whereas the MUC+AP experimental corpus is sub-
stantially larger, containing about 2.5 million words.

We generated 10 queries, each comprised of 4 city
names selected randomly according to the distribu-
tion of city name mentions in MUC-6. Similarly,
we generated a set of 10 queries that include 4 per-
son names selected randomly from the MUC corpus.
(The MUC corpus was appended to AP, so that the
same query sets are applicable in both cases.) For
each task, we use 5 queries for training and tuning
and the remaining queries for testing.

8 Experimental Results

Experimental setup. We evaluated cross-validation
performance over the training queries in terms of
mean average precision for varying walk lengthsK.
We found that beyondK = 6 improvements were
small (and in fact deteriorated forK = 9). We there-
fore setK = 6. Weight tuning was trained using
the training queries and two dozens of target nodes
overall. In reranking, we set a feature count cutoff
of 3, in order to avoid over-fitting. Reranking was
applied to the top 200 ranked nodes output by the
graph walk using the tuned edge weights. Finally,
path-trees were constructed using the top 20 correct
nodes and 20 incorrect nodes retrieved by the uni-
formly weighted graph walk. In the experiments,
we apply a threshold of 0.5 to the path constrained
graph walk method.

We note that for learning, true labels were used for
the fully annotated MUC corpus (we hand labelled
all of the named entities of type location in the cor-
pus as to whether they were city names). However,

10http://nlp.stanford.edu/software/lex-parser.shtml; sen-
tences longer than 70 words omitted.

noisy negative examples were considered for the
larger automatically annotated AP corpus. (Specif-
ically, for cities, we only considered city names in-
cluded in the MUC corpus as correct answers.)

A co-occurrence vector-space model was applied
using a window of two tokens to the right and to
the left of the focus word. Inter-word similarity
was evaluated in this model using cosine similar-
ity, where the underlying co-occurrence counts were
normalized by log-likelihood ratio (Padó and Lap-
ata, 2007). The parameters of the DV method were
set based on a cross validation evaluation (using the
MUC+AP corpus). Themediumset of dependency
paths and theobliqueedge weighting scheme were
found to perform best. We experimented with co-
sine as well as Lin similarity measure in combina-
tion with the dependency vectors representation. Fi-
nally, given the large number of candidates in the
MUC+AP corpus (Table 1), we show the results of
applying the considered vector-space models to the
top, high-quality, entities retrieved with reranking
for this corpus.11

Test set results. Figure 4 gives results for the city
name (top) and the person name (bottom) extraction
tasks. The left part of the figure shows results us-
ing the MUC corpus, and its right part – using the
MUC+AP corpus. The curves show precision as a
function of rank in the ranked list, up to rank 100.
(For this evaluation, we hand-labeled all the top-
ranked results as to whether they are city names or
person names.) Included in the figure are the curves
of the graph-walk method with uniform weights
(G:Uw), learned weights (G:Lw), graph-walk with
reranking (Rerank) and a path-constrained graph-
walk (PCW). Also given are the results of the co-
occurrence model (CO), and the syntactic vector-
space DV model, using the Lin similarity measure
(DV:Lin). Performance of the DV model using co-
sine similarity was found comparable or inferior to
using the Lin measure, and is omitted from the fig-
ure for clarity.

Several trends can be observed from the results.
With respect to the graph walk methods, the graph
walk using the learned edge weights consistently
outperforms the graph walk with uniform weights.
Reranking and the path-constrained graph walk,

11We process the union of the top 200 results per each query.

913

MUC MUC+AP

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

P
re

ci
si

on

Rank

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

P
re

ci
si

on

Rank

G:Uw
G:Lw

CO
DV:Lin

PCW
Rerank

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

P
re

ci
si

on

Rank

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

P
re

ci
si

on

Rank

Figure 4: Test results: Precision at the top 100 ranks, for the city name extraction task (top) and person name extraction
task (bottom).

however, yield superior results. Both of these learn-
ing methods utilize a richer set of features than the
graph walk and weight tuning, which can consider
only local information. In particular, while the graph
walk paradigm assigns lower importance to longer
connecting paths (as described in Section 3), rerank-
ing and the path-constrained walker allow to dis-
card short yet irrelevant paths, and by that eliminate
noise at the top ranks of the retrieved list. In gen-
eral, the results show that edge sequences carry ad-
ditional meaning compared with the individual edge
label segments traversed.

Out of the vector-based models, the co-
occurrence model is preferable for the city name
extraction task, and the syntactic dependency vec-
tors model gives substantially better performance
for person name extraction. We conjecture that city
name mentions are less structured in the underlying
text. In addition, the syntactic weighting scheme of
the DV model is probably not optimal for the case of
city names. For example, aconjunctionrelation was

found highly indicative for city names (see below).
However, this relation is not emphasized by the DV
weighting schema. As expected, the performance of
the vector-based models improves for larger corpora
(Terra and Clarke, 2003). These models demonstrate
good performance for the larger MUC+AP corpus,
but only mediocre performance for the smaller MUC
corpus.

Contrasting the graph-based methods with the
vector-based models, the difference in performance
in favor of reranking and PCW, especially for the
smaller corpus, can be attributed to two factors. The
first factor is learning, which optimizes performance
for the underlying data. A second factor is the incor-
poration of non-local information, encoding proper-
ties of the traversed paths.

Models. Following is a short description of the
models learned by the different methods and tasks.
Weight tuning assigned high weights to edge types
such asconj-and, prep-in and prep-from, nn, ap-
posandamodfor the city extraction task. For per-

914

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 1 2 3 4 5 6N
um

be
r

of
 g

ra
ph

 n
od

es
 v

is
ite

d
[lo

g_
2]

Walk steps

G:U
PCW:0

PCW:0.5
PCW:0.8

Figure 5: The graph walk exponential spread is bounded
by the path constrained walk.

son extraction, prominent edge types includedsubj,
obj, possand nn. (The latter preferences are sim-
ilar to the linguistically motivated weights of DV.)
High weight features assigned by reranking for city
name extraction included, for example, lexical fea-
tures such as “based” and “downtown”, and edge bi-
grams such as “prep-in-Inverse→conj-and” or “nn-
Inverse→nn”. Positive highly predictive paths in
the constructed path tree included many symmetric
paths, such as ...→conj andInverse...→.conj and...,
...→prep inInverse...→.prepin..., for the city name
extraction task.

Scalability. Figure 5 shows the number of graph
nodes maintained in each step of the graph walk
(logarithm scale) for a typical city extraction query
and the MUC+AP corpus. As shown by the solid
line, the number of graph nodes visited using the
weighted graph walk paradigm grows exponentially
with the length of the walk. Applying a path-
constrained walk with a threshold of 0 (PCW:0) re-
duces the maximal number of nodes expanded (as
paths not observed in the training set are discarded).
As shown, increasing the threshold leads to signifi-
cant gains in scalability. Overall, query processing
time averaged at a few minutes, using a commodity
PC.

9 Conclusion and Future Directions

In this paper we make several contributions. First,
we have explored a novel but natural representation
for a corpus of dependency-parsed text, as a labelled
directed graph. We have evaluated the task of coor-
dinate term extraction using this representation, and

shown that this task can be performed using similar-
ity queries in a general-purpose graph-walk based
query language. Further, we have successfully ap-
plied learning techniques that tune weights assigned
to different dependency relations, and re-score can-
didates using features derived from the graph walk.

Another orthogonal contribution of this paper is
a path-constrained graph walk variant, where the
graph walk is guided by high level knowledge about
meaningful paths, learned from training examples.
This method was shown to yield improved perfor-
mance for the suggested graph representation, and
improved scalability compared with the local graph
walk. The method is general, and can be readily ap-
plied in similar settings.

Empirical evaluation of the coordinate term ex-
traction task shows that the graph-based framework
performs better than vector-space models for the
smaller corpus, and comparably otherwise. Over-
all, we find that the suggested model is suitable for
deep (syntactic) processing of small specialized cor-
pora. In preliminary experiments where we evalu-
ated this framework on the task of extracting general
word synonyms, using a relatively large corpus of
15 million words, we found the graph-walk perfor-
mance to be better than DV using cosine similarity
measures, but second to DV using Lin’s similarity
measure. While this set of results is incomplete, we
find that it is consistent with the results reported in
this paper.

The framework presented can be enhanced in sev-
eral ways. For instance, WordNet edges and mor-
phology relations can be readily encoded in the
graph. We believe that this framework can be ap-
plied for the extraction of more specialized no-
tions of word relatedness, as in relation extraction
(Bunescu and Mooney, 2005). The path-constrained
graph walk method proposed may be enhanced by
learning edge probabilities, using a rich set of fea-
tures. We are also interested in exploring a possi-
ble relation between the path-constrained walk ap-
proach and reinforcement learning.

Acknowledgments

The authors wish to thank the anonymous reviewers
and Hanghang Tong for useful advice. This material
is based upon work supported by Yahoo! Research.

915

References

Matthew W. Bilotti, Paul Ogilvie, Jamie Callan, and Eric
Nyberg. 2007. Structured retrieval for question an-
swering. InSIGIR.

Razvan C. Bunescu and Raymond J. Mooney. 2005. A
shortest path dependency kernel for relation extrac-
tion. In HLT-EMNLP.

William W. Cohen and Einat Minkov. 2006. A graph-
search framework for associating gene identifiers with
documents.BMC Bioinformatics, 7(440).

Michael Collins and Terry Koo. 2005. Discrimina-
tive reranking for natural language parsing.Compu-
tational Linguistics, 31(1):25–69.

Kevyn Collins-Thompson and Jamie Callan. 2005.
Query expansion using random walk models. In
CIKM.

Michael Collins. 2002. Ranking algorithms for named-
entity extraction: Boosting and the voted perceptron.
In ACL.

Marie-Catherine de Marneffe, Bill MacCartney, and
Christopher D. Manning. 2006. Generating typed
dependency parses from phrase structure parses. In
LREC.

Michelangelo Diligenti, Marco Gori, and Marco Mag-
gini. 2005. Learning web page scores by error back-
propagation. InIJCAI.

Gregory Grefenstette. 1994.Explorations in Automatic
Thesaurus Discovery. Kluwer Academic Publishers,
Dordrecht.

Marti Hearst. 1992. Automatic acquisition of hyponyms
from large text corpora. InCOLING.

Thad Hughes and Daniel Ramage. 2007. Lexical seman-
tic relatedness with random graph walks. InEMNLP.

Edward Keenan and Bernard Comrie. 1977. Noun
phrase accessibility and universal grammar.Linguis-
tic Inquiry, 8.

Dekang Lin. 1998. Automatic retrieval and clustering of
similar words. InCOLING-ACL.

Einat Minkov and William W. Cohen. 2007. Learning to
rank typed graph walks: Local and global approaches.
In WebKDD/KDD-SNA workshop.

Einat Minkov, William W. Cohen, and Andrew Y. Ng.
2006. Contextual search and name disambiguation in
email using graphs. InSIGIR.

1995. Proceedings of the sixth message understanding
conference (muc-6). InMorgan Kaufmann Publish-
ers, Inc. Columbia, Maryland.

Sebastian Padó and Mirella Lapata. 2007. Dependency-
based construction of semantic space models.Compu-
tational Linguistics, 33(2).

Philip Resnik and Mona Diab. 2000. Measuring verb
similarity. In CogSci.

Rion Snow, Daniel Jurafsky, and Andrew Y. Ng. 2005.
Learning syntactic patterns for automatic hypernym
discovery. InNIPS.

Egidio Terra and C. L. A. Clarke. 2003. Frequency
estimates for statistical word similarity measures. In
NAACL.

Kristina Toutanova, Christopher D. Manning, and An-
drew Y. Ng. 2004. Learning random walk models for
inducing word dependency distributions. InICML.

916

