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Abstract

While phrase-based statistical machine trans-
lation systems currently deliver state-of-the-
art performance, they remain weak on word
order changes. Current phrase reordering
models can properly handle swaps between
adjacent phrases, but they typically lack the
ability to perform the kind of long-distance re-
orderings possible with syntax-based systems.
In this paper, we present a novel hierarchical
phrase reordering model aimed at improving
non-local reorderings, which seamlessly in-
tegrates with a standard phrase-based system
with little loss of computational efficiency. We
show that this model can successfully han-
dle the key examples often used to motivate
syntax-based systems, such as the rotation of
a prepositional phrase around a noun phrase.
We contrast our model with reordering models
commonly used in phrase-based systems, and
show that our approach provides statistically
significant BLEU point gains for two language
pairs: Chinese-English (+0.53 on MT05 and
+0.71 on MTOS8) and Arabic-English (+0.55
on MTO05).

1 Introduction

Statistical phrase-based systems (Och and Ney,
2004; Koehn et al., 2003) have consistently de-
livered state-of-the-art performance in recent ma-
chine translation evaluations, yet these systems re-
main weak at handling word order changes. The re-
ordering models used in the original phrase-based
systems penalize phrase displacements proportion-
ally to the amount of nonmonotonicity, with no con-
sideration of the fact that some words are far more
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Figure 1: Phase orientations (monotone, swap, discontin-
uous) for Chinese-to-English translation. While previous
work reasonably models phrase reordering in simple ex-
amples (a), it fails to capture more complex reorderings,
such as the swapping of “of the region” (b).

likely to be displaced than others (e.g., in English-to-
Japanese translation, a verb should typically move to
the end of the clause).

Recent efforts (Tillman, 2004; Och et al., 2004;
Koehn et al., 2007) have directly addressed this issue
by introducing lexicalized reordering models into
phrase-based systems, which condition reordering
probabilities on the words of each phrase pair. These
models distinguish three orientations with respect to
the previous phrase—monotone (M), swap (S), and
discontinuous (D)—and as such are primarily de-
signed to handle local re-orderings of neighboring
phrases. Fig. 1(a) is an example where such a model
effectively swaps the prepositional phrase in Luxem-
bourg with a verb phrase, and where the noun min-
isters remains in monotone order with respect to the
previous phrase EU environment.

While these lexicalized re-ordering models have
shown substantial improvements over unlexicalized
phrase-based systems, these models only have a
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limited ability to capture sensible long distance re-
orderings, as can be seen in Fig. 1(b). The phrase
of the region should swap with the rest of the noun
phrase, yet these previous approaches are unable to
model this movement, and assume the orientation of
this phrase is discontinuous (D). Observe that, in
a shortened version of the same sentence (without
and progress), the phrase orientation would be dif-
ferent (S), even though the shortened version has es-
sentially the same sentence structure. Coming from
the other direction, such observations about phrase
reordering between different languages are precisely
the kinds of facts that parsing approaches to machine
translation are designed to handle and do success-
fully handle (Wu, 1997; Melamed, 2003; Chiang,
2005).

In this paper, we introduce a novel orientation
model for phrase-based systems that aims to bet-
ter capture long distance dependencies, and that
presents a solution to the problem illustrated in
Fig. 1(b). In this example, our reordering model
effectively treats the adjacent phrases the develop-
ment and and progress as one single phrase, and the
displacement of of the region with respect to this
phrase can be treated as a swap. To be able iden-
tify that adjacent blocks (e.g., the development and
and progress) can be merged into larger blocks, our
model infers binary (non-linguistic) trees reminis-
cent of (Wu, 1997; Chiang, 2005). Crucially, our
work distinguishes itself from previous hierarchical
models in that it does not rely on any cubic-time
parsing algorithms such as CKY (used in, e.g., (Chi-
ang, 2005)) or the Earley algorithm (used in (Watan-
abe et al., 2006)). Since our reordering model does
not attempt to resolve natural language ambigui-
ties, we can effectively rely on (linear-time) shift-
reduce parsing, which is done jointly with left-to-
right phrase-based beam decoding and thus intro-
duces no asymptotic change in running time. As
such, the hierarchical model presented in this pa-
per maintains all the effectiveness and speed advan-
tages of statistical phrase-based systems, while be-
ing able to capture some key linguistic phenomena
(presented later in this paper) which have motivated
the development of parsing-based approaches. We
also illustrate this with results that are significantly
better than previous approaches, in particular the
lexical reordering models of Moses, a widely used
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phrase-based SMT system (Koehn et al., 2007).

This paper is organized as follows: the train-
ing of lexicalized re-ordering models is described
in Section 3. In Section 4, we describe how to
combine shift-reduce parsing with left-to-right beam
search phrase-based decoding with the same asymp-
totic running time as the original phrase-based de-
coder. We finally show in Section 6 that our ap-
proach yields results that are significantly better than
previous approaches for two language pairs and dif-
ferent test sets.

2 Lexicalized Reordering Models

We compare our re-ordering model with related
work (Tillman, 2004; Koehn et al., 2007) using a
log-linear approach common to many state-of-the-
art statistical machine translation systems (Och and
Ney, 2004). Given an input sentence f, which is to
be translated into a target sentence e, the decoder
searches for the most probable translation & accord-
ing to the following decision rule:

& —

arg max {p(e|f)} (1)

J
= argmax { Ajh;(f, e)} 2)
=1

e

J

hj(f,e) are J arbitrary feature functions over
sentence pairs. These features include lexicalized
re-ordering models, which are parameterized as
follows: given an input sentence f, a sequence of
target-language phrases e = (ey,...,¢e,) currently
hypothesized by the decoder, and a phrase alignment
a = (aj,...,a,) that defines a source f, for each
translated phrase e;, these models estimate the prob-
ability of a sequence of orientations 0 = (01,...,0,)

p(O’e,f) :Hp(0i|Ei7?a,-aai717ai)7 (3)
i=1

where each o; takes values over the set of possi-
ble orientations & = {M,S,D}.! The probability is
conditioned on both a;_; and a; to make sure that
the label o; is consistent with the phrase alignment.
Specifically, probabilities in these models can be

'We note here that the parameterization and terminology in
(Tillman, 2004) is slightly different. We purposely ignore these
differences in order to enable a direct comparison between Till-
man’s, Moses’, and our approach.
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Figure 2: Occurrence of a swap according to the three
orientation models: word-based, phrase-based, and hier-
archical. Black squares represent word alignments, and
gray squares represent blocks identified by phrase-extract.
In (a), block b; = (e;, fai) is recognized as a swap accord-
ing to all three models. In (b), b; is not recognized as a
swap by the word-based model. In (c), b; is recognized
as a swap only by the hierarchical model.

greater than zero only if one of the following con-
ditions is true:

° oi:Mandai—ai_l =1
eo;=Sandag;—a;_1=—1
[ oi:Dand |ai—a,~_1| 751

At decoding time, rather than using the log-
probability of Eq. 3 as single feature function, we
follow the approach of Moses, which is to assign
three distinct parameters (A,,,As,Ay) for the three
feature functions:

o fu=X1 logp(o;=M|...)
o fi=Y" logp(o;i=3S5|...)
o fu=Y" logp(oi=D|...).

There are two key differences between this work
and previous orientation models (Tillman, 2004;
Koehn et al., 2007): (1) the estimation of factors in
Eq. 3 from data; (2) the segmentation of e and f into
phrases, which is static in the case of (Tillman, 2004;
Koehn et al., 2007), while it is dynamically updated
with hierarchical phrases in our case. These differ-
ences are described in the two next sections.

3 Training

We present here three approaches for computing
p(oilei, f o, ai-1,a;) on word-aligned data using rel-
ative frequency estimates. We assume here that
phrase e; spans the word range s, ..., in the target
sentence e and that the phrase ?a,- spans the range
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ORIENTATION MODEL | 0;=M 0;,=8S o0;j=D
word-based (Moses) 0.1750 0.0159 0.8092
phrase-based 0.3192 0.0704 0.6104
hierarchical 0.4878 0.1004 0.4116

Table 1: Class distributions of the three orientation mod-
els, estimated from 12M words of Chinese-English data
using the grow-diag alignment symmetrization heuristic
implemented in Moses, which is similar to the ‘refined’
heuristic of (Och and Ney, 2004).

u,...,v in the source sentence f. All phrase pairs in
this paper are extracted with the phrase-extract algo-
rithm (Och and Ney, 2004), with maximum length
set to 7.

Word-based orientation model: This model an-
alyzes word alignments at positions (s —1,u—1)
and (s—1,v+1) in the alignment grid shown in
Fig. 2(a). Specifically, orientation is set to o; =
M if (s —1,u— 1) contains a word alignment and
(s — 1,v+ 1) contains no word alignment. It is set to
0; =S if (s—1,u—1) contains no word alignment
and (s—1,v+ 1) contains a word alignment. In all
other cases, it is set to o; = D. This procedure is
exactly the same as the one implemented in Moses.?

Phrase-based orientation model: The model
presented in (Tillman, 2004) is similar to the word-
based orientation model presented above, except
that it analyzes adjacent phrases rather than specific
word alignments to determine orientations. Specif-
ically, orientation is set to o; =M if an adjacent
phrase pair lies at (s—1,u—1) in the alignment
grid. It is set to § if an adjacent phrase pair cov-
ers (s —1,v+1) (as shown in Fig. 2(b)), and is set
to D otherwise.

Hierarchical orientation model: This model an-
alyzes alignments beyond adjacent phrases. Specif-
ically, orientation is set to o; =M if the phrase-
extract algorithm is able to extract a phrase pair
at (s—1,u—1) given no constraint on maximum
phrase length. Orientation is § if the same is true
at (s— 1,v+ 1), and orientation is D otherwise.
Table 1 displays overall class distributions accord-
ing to the three models. It appears clearly that occur-
rences of M and S are too sparsely seen in the word-
based model, which assigns more than 80% of its

2http://WWW.statmt.org/moses/ n=Moses.AdvancedFeatures



word  phrase hier.

Monotone with previous ploi=Mlei, [y, ai-1,)

1 = and is 0.223  0.672  0.942
2 , and also 0.201 0.560  0.948
Swap with previous ploi= S|E,-,fﬂl,a,»,1 )

3] FEB of china 0303 0617 0651
4| fbik , he said 0.003  0.030  0.395
Monotone with next ploi =Mei, £y, a1, a:)

5 [ i ¥8E , | he pointed out that | 0.601  0.770  0.991
6 | i, however , 0517 0728 0968
Swap with next ploi = S[ei, [y, air1,4:)

7 W R the development of | 0.145 0.831 0.900
8 | HYIEE at the invitation of | 0.272  0.834  0.925

Table 2: Monotone and swap probabilities for specific
phrases according to the three models (word, phrase, and
hierarchical). To ensure probabilities are representative,
we only selected phrase pairs that occur at least 100 times
in the training data.

probability mass to D. Conversely, the hierarchical
model counts considerably less discontinuous cases,
and is the only model that accounts for the fact that
real data is predominantly monotone.

Since D is a rather uninformative default cat-
egory that gives no clue how a particular phrase
should be displaced, we will also provide MT evalu-
ation scores (in Section 6) for a set of classes that
distinguishes between left and right discontinuity
{M,S,D;,D,}, a choice that is admittedly more lin-
guistically motivated.

Table 2 displays orientation probabilities for con-
crete examples. Each example was put under one
of the four categories that linguistically seems the
best match, and we provide probabilities for that cat-
egory according to each model. Note that, while
we have so far only discussed left-to-right reorder-
ing models, it is also possible to build right-to-left
models by substituting a;_; with a;; in Eq. 3. Ex-
amples for right-to-left models appear in the second
half of the table. The table strongly suggests that
the hierarchical model more accurately determines
the orientation of phrases with respect to large con-
textual blocks. In Examples 1 and 2, the hierarchi-
cal model captures the fact that coordinated clauses
almost always remain in the same order, and that
words should generally be forbidden to move from
one side of “and” to the other side, a constraint that
is difficult to enforce with the other two reorder-
ing models. In Example 4, the first two models
completely ignore that “he said” sometimes rotates
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around its neighbor clause.

4 Decoding

Computing reordering scores during decoding with
word-based® and phrase-based models (Tillman,
2004) is trivial, since they only make use of local
information to determine the orientation of a new in-
coming block b;. For a left-to-right ordering model,
b; is scored based on its orientation with respect to
b;_,. For instance, if b; has a swap orientation with
respect to the previous phrase in the current trans-
lation hypothesis, feature p(o; = S|...) becomes ac-
tive.

Computing lexicalized reordering scores with
the hierarchical model is more complex, since the
model must identify contiguous blocks—monotone
or swapping—that can be merged into hierarchical
blocks. The employed method is an instance of the
well-known shift-reduce parsing algorithm, and re-
lies on a stack (S) of foreign substrings that have
already been translated. Each time the decoder adds
a new block to the current translation hypothesis, it
shifts the source-language indices of the block onto
S, then repeatedly tries reducing the top two ele-
ments of S if they are contiguous.* This parsing
algorithm was first applied in computational geome-
try to identify convex hulls (Graham, 1972), and its
running time was shown to be linear in the length
of the sequence (a proof is presented in (Huang et
al., 2008), which applies the same algorithm to the
binarization of SCFG rules).

Figure 3 provides an example of the execution
of this algorithm for the translation output shown
in Figure 4, which was produced by a decoder in-
corporating our hierarchical reordering model. The
decoder successively pushes source-language spans
[1], [2], [3], which are successively merged into
[1-3], and all correspond to monotone orientations.

3We would like to point out an inconsistency in Moses be-
tween training and testing. Despite the fact that Moses estimates
a word-based orientation model during training (i.e., it analyzes
the orientation of a given phrase with respect to adjacent word
alignments), this model is then treated as a phrase-based orien-
tation model during testing (i.e., as a model that orients phrases
with respect to other phrases).

It is not needed to store target-language indices onto the
stack, since the decoder proceeds left to right, and thus suc-
cessive blocks are always contiguous with respect to the target
language.



Target phrase Source  Op. o;  Stack

the russian side [1] S M

hopes [2] R M [1]

to [3] R M [1-2]

hold [11] S D [1-3]

consultations [12] R M [11],[1-3]

with iran [9-10] R S [11-12], [1-3]

on this [6-7] S D [9-12],[1-3]

issue [8] RR M [6-7],[9-12], [1-3]

in the near future  [4-5] RR S [6-12], [1-3]
[13] RA M [l1-12]

Figure 3: The application of the shift-reduce parsing al-
gorithm for identifying hierarchical blocks. This execu-
tion corresponds to the decoding example of Figure 4.
Operations (Op.) include shift (S), reduce (R), and ac-
cept (A). The source and stack columns contain source-
language spans, which is the only information needed to
determine whether two given blocks are contiguous. o; is
the label predicted by the hierarchical model by compar-
ing the current block to the hierarchical phrase that is at
the top of the stack.

- the
- russian
- side
. . . . . . . . . . .hopes
. |:|7.””. . . . . . . . .to
- hold
- consultations
- with
- iran
- on
- this
- issue
in
- i the
- I near
hs & future

W A ReRs £ T mt XA B8 LB BT RERY .

Figure 4: Output of our phrase-based decoder using the
hierarchical model on a sentence of MT06. Hierarchical
phrases i and h; indicate that with Iran and in the near
future have a swap orientation. i3 indicates that “f0” and
“.” are monotone. In this particular example, distortion
limit was set to 10.

It then encounters a discontinuity that prevents the
next block [11] from being merged with [1-3]. As
the decoder reaches the last words of the sentence (in
the near future), [4-5] is successively merged with
[6-12], then [1-3], yielding a stack that contains only
[1-12].

A nice property of this parsing algorithm is that
it does not worsen the asymptotic running time
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of beam-search decoders such as Moses (Koehn,
2004a). Such decoders run in time O(n?), where
n is the length of the input sentence. Indeed, each
time a partial translation hypothesis is expanded into
a longer one, the decoder must perform an O(n) op-
eration in order to copy the coverage set (indicating
which foreign words have already been translated)
into the new hypothesis. Since this copy operation
must be executed O(n) times, the overall time com-
plexity is quadratic. The incorporation of the shift-
reduce parser into such a decoder does not worsen
overall time complexity: whenever the decoder ex-
pands a given partial translation into a longer hy-
pothesis, it simply copies its stack into the newly
created hypothesis (similarly to copying the cover-
age vector, this is an O(n) operation). Hence, the
incorporation of the hierarchical models described
in the paper into a phrase-based decoder preserves
the O(n?) running time. In practice, we observe
based on a set of experiments for Chinese-English
and Arabic-English translation that our phrase-based
decoder is on average only 1.35 times slower when it
is running using hierarchical reordering features and
the shift-reduce parser.

We finally note that the decoding algorithm pre-
sented in this section can only be applied left-to-
right if the decoder itself is operating left-to-right.
In order to predict orientations relative to the right-
to-left hierarchical reordering model, we must re-
sort to approximations at decoding time. We experi-
mented with different approximations, and the one
that worked best (in the experiments discussed in
Section 6) is described as follows. First, we note that
an analysis of the alignment grid often reveals that
certain orientations are impossible. For instance, the
block issue in Figure 4 can only have discontinuous
orientation with respect to what comes next in En-
glish, since words surrounding the Chinese phrase
have already been translated. When several hier-
archical orientations are possible according to the
alignment grid, we choose according to the follow-
ing order of preference: (1) monotone, (2) swap, (3)
discontinuous. For instance, in the case of with iran
in Figure 4, only swap and discontinuous orienta-
tions are possible (monotone orientation is impossi-
ble because of the block hold consultations), hence
we give preference to swap. This prediction turns
out to be the correct one according to the decoding



steps that complete the alignment grid.

5 Discussion

We now analyze the system output of Figure 4 to fur-
ther motivate the hierarchical model, this time from
the perspective of the decoder. We first observe that
the prepositional phrase in the future should rotate
around a relatively large noun phrase headed by con-
sultations. Unfortunately, localized reordering mod-
els such as (Tillman, 2004) have no means of identi-
fying that such a displacement is a swap (S). Accord-
ing to these models, the orientation of in the future
with respect to what comes previously is discontin-
uous (D), which is an uninformative fall-back cate-
gory. By identifying h, (hold ... issue) as a hierarchi-
cal block, the hierarchical model can properly deter-
mine that the block in the near future should have a
swap orientation.”> Similar observations can be made
regarding blocks £ and h3, which leads our model
to predict either monotone orientation (between /3
and “70” and between h3 and “.”’) or swap orienta-
tion (between h; and with Iran) while local models
would predict discontinuous in all cases.

Another benefit of the hierarchical model is that
its representation of phrases remains the same dur-
ing both training and decoding, which is not the case
for word-based and phrase-based reordering mod-
els. The deficiency of these local models lies in the
fact that blocks handled by phrase-based SMT sys-
tems tend to be long at training time and short at
test time, which has adverse consequences on non-
hierarchical reordering models. For instance, in Fig-
ure 4, the phrase-based reordering model categorizes
the block in the near future as discontinuous, though
if the sentence pair had been a training example,
this block would count as a swap because of the ex-
tracted phrase on this issue.

6 Results

In our experiments, we use a re-implementation
of the Moses decoder (Koehn et al., 2007). Ex-
cept for lexical reordering models, all other fea-
tures are standard features implemented almost

SNote that the hierarchical phrase hold ... issue is not a well-
formed syntactic phrase — i.e., it neither matches the bracketing
of the verb phrase hold ... future nor matches the noun phrase
consultations ... issue — yet it enables sensible reordering.
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exactly as in Moses: four translation features
(phrase-based translation probabilities and lexically-
weighted probabilities), word penalty, phrase
penalty, linear distortion, and language model score.
We experiment with two language pairs: Chinese-
to-English (C-E) and Arabic-to-English (A-E). For
C-E, we trained translation models using a subset of
the Chinese-English parallel data released by LDC
(mostly news, in particular FBIS and Xinhua News).
This subset comprises 12.2M English words, and
11M Chinese words. Chinese words are segmented
with a conditional random field (CRF) classifier that
conforms to the Chinese Treebank (CTB) standard.
The training set for our A-E systems also includes
mostly news parallel data released by LDC, and
contains 19.5M English words, and 18.7M Arabic
tokens that have been segmented using the Arabic
Treebank (ATB) (Maamouri et al., 2004) standard.®

For our language model, we trained a 5-gram
model using the Xinhua and AFP sections of the
Gigaword corpus (LDC2007T40), in addition to the
target side of the parallel data. For both C-E and
A-E, we manually removed documents of Gigaword
that were released during periods that overlap with
those of our development and test sets. The language
model was smoothed with the modified Kneser-Ney
algorithm, and we kept only trigrams, 4-grams, and
5-grams that respectively occurred two, three, and
three times in the training data.

Parameters were tuned with minimum error-rate
training (Och, 2003) on the NIST evaluation set of
2006 (MTO06) for both C-E and A-E. Since MERT
is prone to search errors, especially with large num-
bers of parameters, we ran each tuning experiment
four times with different initial conditions. This pre-
caution turned out to be particularly important in the
case of the combined lexicalized reordering models
(the combination of phrase-based and hierarchical
discussed later), since MERT must optimize up to
26 parameters at once in these cases.” For testing,

6Catalog numbers for C-E: LDC2002E18, LDC2003E07,
LDC2003E14, LDC2005E83, LDC2005T06, LDC2006E26,
and LDC2006ES. For A-E: LDC2007E103, LDC2005E&3,
LDC2006E24, LDC2006E34, LDC2006E85, LDC2006E92,
LDC2007E06, LDC2007E101, LDC2007E46, LDC2007E86,
and LDC2008E40.

7We combine lexicalized reordering models by simply treat-
ing them as distinct features, which incidentally increases the
number of model parameters that must be tuned with MERT.
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Figure 5: Performance on the Chinese-English and

Arabic-English development sets (MT06) with increas-
ing distortion limits for all lexicalized reordering mod-
els discussed in the paper. Our novel hierarchical model
systematically outperforms all other models for distortion
limit equal to or greater than 4. The baseline is Moses
with no lexicalized reordering model.

we used the NIST evaluation sets of 2005 and 2008
(MTO05 and MTO8) for Chinese-English, and the test
set of 2005 (MTO5) for Arabic-English.

Statistical significance is computed using the
approximate randomization test (Noreen, 1989),
whose application to MT evaluation (Riezler and
Maxwell, 2005) was shown to be less sensitive to
type-1 errors (i.e., incorrectly concluding that im-
provement is significant) than the perhaps more
widely used bootstrap resampling method (Koehn,
2004b).

Tuning set performance is shown in Figure 5.
Since this paper studies various ordering models,
it is interesting to first investigate how the distor-
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LEXICALIZED REORDERING | MTO06 MTO05 MTO08
none 31.85 29.75 25.22
word-based 32.96 31.45 25.86
phrase-based 33.24 31.23 26.01
hierarchical 33.80%*  32.20*%*  26.38
phrase-based + hierarchical 33.86%*  32.85%*  26.53*

Table 3: BLEU[%] scores (uncased) for Chinese-English
and the orientation categories {M,S,D}. Maximum dis-
tortion is set to 6 words, which is the default in Moses.
The stars at the bottom of the tables indicate when a given
hierarchical model is significantly better than all local
models for a given development or test set (*: signifi-
cance at the .05 level; **: significance at the .01 level).

LEXICALIZED REORDERING | MT06 MTO5 MTOS8
phrase-based 33.79 32.32 26.32
hierarchical 34.01 32.35 26.58
phrase-based + hierarchical 34.36%* 3233 27.03%*

Table 4: BLEU[%] scores (uncased) for Chinese-English
and the orientation categories {M,S,D;,D,}. Since the
distinction between these four categories is not available
in Moses, hence we have no baseline results for this case.
Maximum distortion is set to 6 words.

tion limit affects performance.® As has been shown
in previous work in Chinese-English and Arabic-
English translation, limiting phrase displacements to
six source-language words is a reasonable choice.
For both C-E and A-E, the hierarchical model is sig-
nificantly better (p < .05) than either other models
for distortion limits equal to or greater than 6 (ex-
cept for distortion limit 12 in the case of C-E). Since
a distortion limit of 6 works reasonably well for both
language pairs and is the default in Moses, we used
this distortion limit value for all test-set experiments
presented in this paper.

Our main results for Chinese-English are shown
in Table 3. It appears that hierarchical models pro-
vide significant gains over all non-hierarchical mod-
els. Improvements on MT06 and MTO5 are very sig-
nificant (p < .01). In the case of MTO0S, significant
improvement is reached through the combination of
both phrase-based and hierarchical models. We of-
ten observe substantial gains when we combine such
models, presumably because we get the benefit of
identifying both local and long-distance swaps.

Since most orientations in the phrase-based model
are discontinuous, it is reasonable to ask whether

8Note that we ran MERT separately for each distinct distor-
tion limit.



LEXICALIZED REORDERING | MTO06 MTO05
none 44.03 54.87
word-based 44.64 54.96
phrase-based 45.01 55.09
hierarchical 45.51%* 55.50%*
phrase-based + hierarchical 45.64%%  56.01**

Table 5: BLEU[%] scores (uncased) for Arabic-English
and the reordering categories {M,S,D}.

LEXICALIZED REORDERING | MTO06 MTO05
phrase-based 44.74 55.52
hierarchical 45.53%*%  56.02%*
phrase-based + hierarchical 45.63%*  56.07**

Table 6: BLEU[%] scores (uncased) for Arabic-English
and the reordering categories {M,S,D;,D,}.

the relatively poor performance of the phrase-based
model is the consequence of an inadequate set of ori-
entation labels. To try to answer this question, we
use the set of orientation labels {M,S,D;,D,} de-
scribed in Section 3. Results for this different set of
orientations are shown in Table 4. While the phrase-
based model appears to benefit more from the dis-
tinction between left- and right-discontinuous, sys-
tems that incorporate hierarchical models remain the
most competitive overall: their best performance on
MTO06, MTO05, and MTOS8 are respectively 34.36,
32.85, and 27.03. The best non-hierarchical models
achieve only 33.79, 32.32, and 26.32, respectively.
All these differences (i.e., .57, .53, and .71) are sta-
tistically significant at the .05 level.

Our results for Arabic-English are shown in Ta-
bles 5 and 6. Similarly to C-E, we provide results for
two orientation sets: {M,S,D} and {M,S,D;,D,}.
We note that the four-class orientation set is overall
less effective for A-E than for C-E. This is probably
due to the fact that there is less probability mass in
A-E assigned to the D category, and thus it is less
helpful to split the discontinuous category into two.

For both orientation sets, we observe in A-E that
the hierarchical model significantly outperforms the
local ordering models. Gains provided by the hierar-
chical model are no less significant than for Chinese-
to-English. This positive finding is perhaps a bit
surprising, since Arabic-to-English translation gen-
erally does not require many word order changes
compared to Chinese-to-English translation, and this
translation task so far has seldom benefited from hi-

855

erarchical approaches to MT. In our case, one possi-
ble explanation is that Arabic-English translation is
benefiting from the fact that orientation predictions
of the hierarchical model are consistent across train-
ing and testing, which is not the case for the other
ordering models discussed in this paper (see Sec-
tion 4). Overall, hierarchical models are the most
effective on the two sets: their best performances on
MTO06 and MTO5 are respectively 45.64 and 56.07.
The best non-hierarchical models obtain only 45.01
and 55.52 respectively for the same sets. All these
differences (i.e., .63 and .55) are statistically signifi-
cant at the .05 level.

7 Conclusions and Future Work

In this paper, we presented a lexicalized orientation
model that enables phrase movements that are more
complex than swaps between adjacent phrases. This
model relies on a hierarchical structure that is built
as a by-product of left-to-right phrase-based decod-
ing without increase of asymptotic running time. We
show that this model provides statistically signifi-
cant improvements for five NIST evaluation sets and
for two language pairs. In future work, we plan
to extend the parameterization of our models to not
only predict phrase orientation, but also the length of
each displacement as in (Al-Onaizan and Papineni,
2006). We believe such an extension would improve
translation quality in the case of larger distortion
limits. We also plan to experiment with discrimi-
native approaches to estimating reordering probabil-
ities (Zens and Ney, 2006; Xiong et al., 2006), which
could also be applied to our work. We think the abil-
ity to condition reorderings on any arbitrary feature
functions is also very effective in the case of our hi-
erarchical model, since information encoded in the
trees would seem beneficial to the orientation pre-
diction task.
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