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Abstract lexical entries and productions. In practice, such
a grammar may lack the rules required to correctly
parse some of the new test examples.

In this paper, we develop an alternative approach

In this paper, we present an algorithm for
learning a generative model of natural lan-
guage sentences together with their for-

mal meaning representations with hierarchi-
cal structures. The model is applied to the
task of mapping sentences to hierarchical rep-
resentations of their underlying meaning. We

that learns a model which does not make use of
an explicit grammar but, instead, models the cor-
respondence between sentences and their meanings
with a generative process. This model is defined

introduce dynamic programming techniques
for efficient training and decoding. In exper-
iments, we demonstrate that the model, when
coupled with a discriminative reranking tech-
nigue, achieves state-of-the-art performance
when tested on two publicly available cor-
pora. The generative model degrades robustly
when presented with instances that are differ-
ent from those seen in training. This allows
a notable improvement in recall compared to
previous models.

over hybrid treeswhose nodes include both natu-
ral language words and meaning representation to-
kens. Inspired by the work of Collins (2003), the
generative model builds trees by recursively creating
nodes at each level according to a Markov process.
This implicit grammar representation leads to flexi-
ble learned models that generalize well. In practice,
we observe that it can correctly parse a wider range
of test examples than previous approaches.

The generative model is learned from data that
consists of sentences paired with their meaning rep-
resentations. However, there is no explicit labeling
To enable computers to understand natural huma the correspondence between words and meaning
language is one of the classic goals of research takens that is necessary for building the hybrid trees.
natural language processing. Recently, researchdrdis creates a challenging, hidden-variable learning
have developed techniques for learning to map sefroblem that we address with the use of an inside-
tences to hierarchical representations of their undeutside algorithm. Specifically, we develop a dy-
lying meaning (Wong and Mooney, 2006; Kate andiamic programming parsing algorithm that leads to
Mooney, 2006). O(n®m) time complexity for inference, whene is

One common approach is to learn some form dhe sentence length and is the size of meaning
probabilistic grammar which includes a list of lexi-structure. This approach allows for efficient train-
cal items that models the meanings of input wordig and decoding.
and also includes rules for combining lexical mean- In practice, we observe that the learned generative
ings to analyze complete sentences. This approantodels are able to assign a high score to the correct
performs well but is constrained by the use of a sinrmeaning for input sentences, but that this correct
gle, learned grammar that contains a fixed set aheaning is not always the highest scoring option.

1 Introduction
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To address this problem, we use a simple rerank- QUERY:a”fwer(NUM)
ing approach to select a parse from-hest list of NUM : count(STATE)
parses. This pipelined approach achieves state-of- |
. . STATE : exclude(STATE STATE)
the-art performance on two publicly available cor-
pora. In particular, the flexible generative model
leads to notable improvements in recall, the total STATE : state(all)  STATE : loc1 (RIVER)

percentage of sentences that are correctly parsed. RIVER ° |river (all)

2 Related Work Figure 1: An example MR structure
_ _ _structure, as shown in Figure 1.
In Section 9, we will compare performance with Fo|iowing an inorder traversal of this MR tree, we

the three existing systems that were evaluated Qin equivalently represent it with the following list

the same data sets we considerLtS(Kate et al., of meaning representation productiofiR produc-
2005) learns deterministic rules to transform eithefions):

sentences or their syntactic parse trees to meaning

) 0) QUERY : answer(NumMm)
structures. WWspP (Wong and Mooney, 2006) is a (1) NuM  : count(STATE)
system motivated by statistical machine translation (2) STATE @ exclude(STATE, STATE,)

. : . (3) State : state(all)
techniques. It acquires a set of synchronous lexical ) STATE : loc.1(RIVER)

4

entries by running the IBM alignment model (Brown (5) RIVER : river (all)
et al., 1993) and learns a log-linear modellto we.ight Each such MR production consists of three com-
parses. IRisp (Kate and Mooney, 2006) is a dis-ponents: asemantic categotya function symbol
criminative approach where meaning representatiQghich can be omitted (considered empty), and a list
structures are constructed from the natural languagg argumentsAn argument can be either a child se-
st_rings _hierarchically. Itis built on top of SVM“! - tic category or a constant. Take productibn
with string kernels. for example: it has a semantic categoryU”, a

Additionally, there is substantial related researchnction symbol tount, and a child semantic cate-
that is not directly comparable to our approachyory “STaTE” as its only argument. Production (5)
Some of this work requires different levels of superngs “RvER” as its semantic categorytiver” as the

vision, including labeled syntactic parse trees (Gfynction symbol, and “all” is a constant.
and Mooney, 2005; Ge and Mooney, 2006). Others

do not perform lexical learning (Tang and Mooney4 The Generative Model

2001). Finally, recent work has explored Ie_arnln e describe in this section our proposed generative
to map sentences to lambda-calculus meaning "Biodel, which simultaneously generates a NL sen-
resentations (Wong and Mooney, 2007; Zettlemoy% ’

and Collins, 2005; Zettlemoyer and Collins, 2007). T/f/g 32?1;2 “:Zizglich\lljie\;vord a5, & contiguous

3 Meaning Representation sequence oi NL words aw, and a complete NL
sentence aw. In the MR structure, we denote a

We restrict our meaning representation (MR) forsemantic category ad1. We denote a single MR
malism to a variable free version as presented iproduction asn,, or M, : po(My, Mc), where M,
(Wong and Mooney, 2006; Kate et al., 2005). is the semantic category for this productipp s the

A training instance consists of a natural languagfinction symbol, and\,,, M. are the child semantic
sentence (NL sentence) and its corresponding measategories. We denote, as an MR structure rooted
ing representation structure (MR structure). Conby an MR productionn,, andm, an MR structure
sider the following instance taken from theeG-  for a complete sentence rooted by an MR production
QUERY corpus (Kate et al., 2005): M.

The NL sentence Mow nany states do The model generatestg/brid treethat represents
not have rivers ?” consists of 8 words, in- a sentencé& = w;...w,... paired with an MR
cluding punctuation. The MR is a hierarchical treestructurem, rooted bym,,.

784



M. where ‘arg” refers to the position of the child se-

n, mantic category in the argument list.
/\ Motivated by Collins’ syntactic parsing models
Wi M, Wo M. (Collins, 2003), we consider the generation process

an n|1 for a hybrid sequence from an MR production as a
o~ P Markov process.
o oo Given the assumption that each MR production
Figure 2: The generation process has at most two semantic categories in its arguments

(any production can be transformed into a sequence
of productions of this form), Table 1 includes the list
of all possiblehybrid patterns

Figure 2 shows part of a hybrid tree that is gen
erated as follows. Given a semantic categdy,
we first pick an MR productiom, that has the form

M, : pa(My, M), which gives us the function sym- [ #RHS [ Hybrid Pattern | # Patterns]
i i ; 0 m— w 1
bol p, as well as the child semant!c categorikt, 1 T TWIVTW] 1
aanMC. Next, we generate tHg/brld sgquencef , o WYWIZW] 8
child nodesw; M, w, M., which consists of NL m — [W[Z[wW]Yw] 8
words and semantic categories. Table 1: A list of hybrid patterns, [] denotes optional

After that, two child MR productionsy, andm, In this table,n is an MR production,Y and Z

are generated. These two productions will in UM e yespectively the first and second child seman-
generate other hybrid sequences and productions, fg- category inm’s argument list. The symbal

cursively. This process produces a hybrid B¢ (efers to a contiguous sequence of NL words, and
whose nodes are either NL words or MR produczything inside [ can be optionally omitted. The

tions. Given this tree, we can recover a NL sentenqgq; rov contains hybrid patterns that reflect reorder-
w by recording the NL words visited in depth—flrsting of one production’s child semantic categories
traversal order and can recover an MR structure during the generation process. For example, con-

by following a tree-specific traversal order, definedijar the case that the MR productiormASE
by the hybrid-patterns we introduce below. Figure %Xclude(STATEl STATE,) generates a hybrid se-
gives a partial hybrid tree for the training examplqwencesTATE1 do not STATE,, the hybrid pattern
from Section 3. Note that the leaves of a hybrid treg, _, YwZ is associated with this generation step.
are always NL tokens. For the example hybrid tree in Figure 2, we can
| decompose the probability for generating the hybrid
STATE sequence as follows:

|
STATE : exclude (STATE STATE) P(wy My Wo Milima) = P(n — WYWZn,) X P(Wylm,)

XP(My|mg, wi) X P(Wa|m,, wi, My)

XP(MC|m[lI Wi, Mb/ WZ) X P(END|ma, Wl/Mb/ Wy, Mc) (2)
STATE do not STATE . . .
S ! I s 1R Note that unigram, bigram, or trigram assump-
: stat . B . :
" |sa @ TATE - loc 1RIVER) tions can be made here for generating NL words and
states have RIVER semantic categories. For example, under a bigram
assumption, the second to last term can be written
_ as P(Mclma, w1, My, Wa) = P(Mclmg, wk), where
rrvers

Figure 3: A partial hybrid tree w’g is the last word inw,. We call such additional

|
RIVER : river(all)

' . . information that we condition on, theontext
With several independence assumptions, theN te that i del is diff £
probability of generatingw, m, 7°) is defined as: ote that our generative modet 1s difierent from
the synchronous context free grammars (SCFG) in
P(W, M, T) = P(M,) X P(m,M,) x P(w; My Wy M|m,) a number of ways. A standard SCFG produces a
XP(my|m,, arg = 1) X P(...|my) correspondence between a pair of trees while our
XP(m.|m,,arg = 2) x P(...Im;) (1) model produces a single hybrid tree that represents
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the correspondence between a sentence and a tigledel Il We make the following assumption:
Also, SCFGs use a finite set of context-free rewrite
rules to define the model, where the rules are possi- O(tklm;j, A) = P(txlm;, tr-1) (4)

flexible Markov models at each level of the generage |eft ofty, i.e., the previous semantic category or
tive process, which allows us to potentially producey; \word.

a far wider range of possible trees. In other words, generation of the next NL word

5 Parameter Estimation depends on its direct parent MR production as well
as the previously generated NL word or semantic
There are three categories of parameters used in #&egory only. This model is also referred toBis
model. The first category of parameters modelgram Model This model may help in precision (the
the generation of new MR productions from theilumber of correct outputs over the total number of

parent MR productionse.g., P(my|m,, arg = 1);  outputs), because it conditions on a larger context.
the second models the generation of a hybrid se-

quence from an MR productione.g., P(w;|m,), Modellll We make the following assumption:
P(Mplm,, wy); the last models the selection of a hy- 1

brid pattern given an MR productioe,g.,P(m —  O(flm;j, A) = 5 % (P(fklmj) + P(txlm;, tk—1)) (5)
wMY|m,). We will estimate parameters from all cate-
gories, with the following constraints:

1. Y p(m'|mj,arg=k)=1for all jandk = 1,2.

We can view this model, called th®lixgram
Model as an interpolation between Model | and 1.

This model gives us a balanced score for both preci-
These parameters model the MR structures, arflon and recall.

can be referred to ddR model parameters

2. Y., 0(tim;, A)=1 for all j, wheret is a NL word, 5.1 Modeling Meaning Representation
the “END’” symbol, or a semantic categorA  The MR model parameters can be estimated inde-
is the context associated withy; andt. pendently from the other two. These parameters can

These parameters model the emission of NPe viewed as the “language model” parameters for
words, the END’ symbol, and child semantic the MR structure, and can be estimated directly from

categories from an MR production. We callthe corpus by simply reading off the counts of occur-
thememission parameters rences of MR productions in MR structures over the
training corpus. To resolve data sparseness problem,
a variant of the bigram Katz Back-Off Model (Katz,

_ 1987) is employed here for smoothing.
These parameters model the selection of hybrid

patterns. We name thepattern parameters 5.2 Learning the Generative Parameters

With dif_fer_ent context assumptions_, we reach dify garning the remaining two categories of parameters
ferent variations of the model. In particular, we conig more challenging. In a conventional PCFG pars-
sider three assumptions, as follows: ing task, during the training phase, the correct cor-

3. Y, ¢(rlm;) = 1 for all j, wherer is a hybrid
pattern listed in Table 1.

Model | We make the following assumption: respondence between NL words and syntactic struc-
tures is fully accessible. In other words, there is a

O(txlm;, A) = P(tlm;) (3) single deterministic derivation associated with each

wheret, is a semantic category or a NL word, andraining instance. Therefore model parameters can
m;is an MR production. be directly estimated from the training corpus by

In other words, generation of the next NL wordcounting. However, in our task, the correct corre-
depends on its direct parent MR production onlyspondence between NL words and MR structures is
Such aJnigram Modelmay help in recall (the num- unknown. Many possible derivations could reach
ber of correct outputs over the total number of inthe same NL-MR pair, where each such derivation
puts), because it requires the least data to estimatdéorms a hybrid tree.
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The hybrid tree is constructed using hidden varil he inside (8) probabilities are defined as
ables and estimated from the training set. An effi-® If n, = (my, w,) is leaf
cient inside-outside style algorithm can be used for B(ny) = P(w,|m,) (6)
model estimation, similar to that used in (Yamada
and Knight, 2001), as discussed next.

5.2.1 The Inside-Outside Algorithm with EM pir) thhﬂ;mmv) (Petim.) nv,eall_ﬂ[d,m(mﬁ(n”)) ")
In this section, we discuss how to estimate the _ o _
emission and pattern parameters with the Expect&€ outside ) probabilities are defined as
tion Maximization (EM) algorithm (Dempster et al., ® !f No = (M, Wy) is root
1977), by using an inside-outside (Baker, 1979) dy- a(ny) =1 (8)
namic programming approach.
Denoten’ = (m’,w') as thei-th training instance,

e If n, = (m,, W,) is not leaf

e If n, = (m,, W,) is not root

wherem’ andw’ are the MR structure and the NL am) = Y (a(Parent(h))
sentence of thé-th instance respectively. We also heparent(fe)

denoten, = (m,,W,) as an aligned pair of MR xP(hIParent(h))x H ﬁ(nv/)) )
substructure and contiguous NL substring, where My <Childreni),o'#v

the MR substructure rooted by MR production  parameter Update
will correspond toi¢e., hierarchically generate) the
NL substringw,. The symbolh is used to de-
note a hybrid sequence, and the functiRarenth)
gives the uniqgue MR substructure-NL subsequence

e Update the emission parameter

The countci(t, m,, Ax), wheret is a NL word
or a semantic category, for an instance pai
(mi, wi):

pair which can be decomposed/asParentn,) re- , 1 _
turns the set of all possible hybrid sequences un- €t k) = 22 X Z (“(”v)

. . .. ﬁ( ) (t,my,Ay) in heChildren(my)
der which the pain, can be generated. Similarly, e ,
Children(h) gives the NL-MR pairs that appear di- XP(h|m,) X H ﬁ(niﬂ))
rectly below the hybrid sequenéein a hybrid tree, o M, eChildren(l) _
andChildren(n) returns the set of all possible hybrid "€ eémission parameter is re-estimated as:
sequences that can be decomposed as. Figure 4 Y it my, A

O (tmo, M) = 77— (10)

gives a packed tree structure representing the rela- C Y Yici(t, my, Ax)

tions between the entities.
e Update the pattern parameter

The countci(r, my), wherer is a hybrid pattern,
for an instance pam’ = (m', w'):

hp, € Parenfny)| ... hy,, € Paren(n,)

Hybrid Sequence Contains

c(r,m,) = L X Z (05(”;)

i
Can be Decomposed As ﬁ(n ) (r,myp) in heChildren(my)

he, € Children(n,)|  -----. he, € Children(n,)

1

xp(im)x ] pein)

Figure 4: A pa_lcked tree structure represen_ting the relation N, eChildren(i)
between hybrid sequences and NL-MR pairs _ The pattern parameter is re-estimated as:
The formulas for computing inside and outside ,_
probabilities as well as the equations for updating o (1) = <2 C ) 11)
. - Yo Lic(r,my)
parameters are given in Figure 5. We use a CKY-
style parse chart for tracking the probabilities. Figure 5: The inside/outside formulas as well as update

equations for EM

5.2.2 Smoothing

It is reasonable to believe that different MR pro-RIVER : largest(RIVER) and QTY : largest(CITY)
ductions that share identical function symbols ar@re both likely to generate the worli“ggest ”.
likely to generate NL words with similar distribu- In view of this, a smoothing technique is de-
tion, regardless of semantic categories. For examplgloyed. We assume half of the time words can
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be generated from the production’s function symbol Relations betweep, andb, can also be estab-
alone if it is not empty. Mathematically, assumindished. For example, ifi, has one child semantic
m, with function symbolp,, for a NL word or se- category, we have:

mantic category, we have: By [Mo, Wo = by [Mo, W, 1] (13)

_ Oc(tlma, A) If pa is empty For the case whem, has two child semantic cat-
O(tima, A) = (0(tima, A) + Ou(tlpa, A))/2 otherwise i
e(t|My, e\tlPa, egories as arguments, we have, for example:

where 0, models the generation dffrom an MR g, .- [m,, w1 = Z by [0, Wi, 1]
production or its function symbol, together with the i+2<k<j—2
contextA. Xby s ywli, Wik, j), 2] (14)

Inside-Outside Computation terms for more efficient computation, for example:

Though the inside-outside approach already em- Dy [Meo, Wi, €] = O(wilno)

ploys packed representations for dynamic program-x(b,, .y [ms, W1, 1 + By [Ma, Wi, ].),C]) (15)
ming, a naive implementation of the inference algo-
rithm will still require O(n®m) time for 1 EM iter-  Analogous but more complex formulas are used

ation, wheren andm are the length of the NL sen- for computing the outside probabilities. Updating of
tence and the size of the MR structure respectivelparameters can be incorporated into the computation
This is not very practical as in one of the corpora wéf outside probabilities efficiently.
look at,n andm can be up to 45 and 20 respectively, .

In this section, we develop an efficient dynamic7 Decoding

programming algorithm that enables the inferencg, ine decoding phase, we want to find the optimal
to run in O(n®m) time. The idea is as follows. In- MR structurem” given a new NL sentendg:

stead of treating each possible hybrid sequence as

a separate rule, we efficiently aggregate the already M = argmmaxP(ﬁlm =arg m,n%XZP(fﬁ, Tiw)  (16)
computed probability scores for hybrid sequences, here7 is a possible hybrid (trree associated with
that share identical hybrid patterns. Such aggregat \ge i-w pair. However, it is expensive to compute
Scores can _then _be used for supsequen_t compu{ﬁ-e summation over all possible hybrid trees. We
tions. By doing this, we can effef:tlvely avoid a Ia.rgetherefore find the most likely hybrid tree instead:
amount of redundant computations. The algorithm
supports both unigram and bigram context assumgy'=arg max max P(M, 7 [W) = arg max max P(W, m, 7") (17)
tions. For clarity and ease of presentation, we pri- m. 7 m 7

marily make the unigram assumption throughout our Ve have implemented an exact topecoding al-
discussion. gorithm for this task. Dynamic programming tech-

We usep (M, W,) to denote the inside probabil- niques similar to those discussed in Section 6 can
ity for m,-w,, pair, b,[My, W, c] to denote the aggre- also be applied when retrieving the top candidates.
gated probabilities for the MR sub-structure, to ~ We also find the Viterbi hybrid tree given a NL-
generate all possible hybrid sequences basea,on MR pair, which can be done in an analogous way.
with patternr that covers its-th child only. In addi- This tree will be useful for reranking.
tion, we usev; ;) to denote a subsequencemfvith
start index: (inclusive) and end index (exclusive).

We also usg,[m., w,] to denote the aggregated in-pe 1o the various independence assumptions we
side probability for the paim., ws), if the hybrid 46 made, the model lacks the ability to express
pattern is restricted toonly. By definition we have: ¢yme long range dependencies. We therefore post-

B (Mo, we) :2¢(r|mv)xﬁ,ﬂmv,wz,]]xG(END|mv) (12) process the best candidate predictions with a dis-

8 Reranking and Filtering of Predictions

criminative reranking algorithm.
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Feature Type | Description | Example |

1. Hybrid Rule A MR production and its child hybrid form fi : STATE : loc_1(RIVER) — have RIVER

2. Expanded Hybrid Rulg A MR production and its child hybrid form expanded fo : STATE : loc_1(RIVER) — (have, RIVER : river(all))
3. Long-range Unigram | A MR production and a NL word appearing below in tree fa : STATE : exclude(STATE STATE) — ri vers

4. Grandchild Unigram A MR production and its grandchild NL word f4 - STATE : loc_1(RIVER) — ri vers

5. Two Level Unigram A MR production, its parent production, and its child NL woid fs : (RIVER : river(all), STATE : loc_1(RIVER)) — ri ver s
6. Model Log-Probability | Logarithm of base model’s joint probability log (Pw, m, 7).

Table 2: All the features used. There is one feature for easBiple combination, under feature type 1-5. It takes valife
the combination is present, and 0 otherwise. Feature 6 takésalues.

8.1 The Averaged Perceptron Algorithm with 3. Some of the them are adapted from (Collins and
Separating Plane Koo, 2005) for a natural language parsing task. Fea-

The averaged perceptron algorithm (Collins, 2002f'r€S 1-5 are indicator functionsd,, it takes value
has previously been applied to various NLP task _n‘acertaln comblna_tlon as the ones Ilstgd in Table
(Collins, 2002; Collins, 2001) for discriminative 2 is present, 0 otherwise), while feature 6 is real vaI-_
reranking. The detailed algorithm can be found ified. Eegtures that d'o not appear more than once in
(Collins, 2002). In this section, we extend the conth€ training set are discarded.
ventional averaged perceptron by introducing an ex-
plicit separating plane on the feature space. 9 Evaluation

Our reranking approach requires three compo- _
nents during training: &EN function that defines Our evaluations were performed on two corpora,
for each NL sentence a set of candidate hybrid treeSEOQUERY and FOBOCUR. The GEOQUERY cor-
a single correct reference hybrid tree for each traifUS contains MR defined by a Prolog-based lan-
ing instance; and a feature functidnthat defines a 9uage used in querying a database on U.S. geogra-
mapping from a hybrid tree to a feature vector. Th@hY- The RoBOCUPcorpus contains MR defined by
algorithm learns a weight vecter that associates a & c0aching language used in a robot coaching com-
weight to each feature, such that a saoré(7") can petition. There are in tot'al 880 and 300 instances for
be assigned to each candidate hybrid feeGiven the_ twq corpora respectively. Standard_ 10-fold cross
a new instance, the hybrid tree with the highest scor@idations were performed and the micro-averaged
is then picked by the algorithm as the output. results are presented in this section. To make our

In this task, theGEN function is defined as the SYSt€M di_rectly comparable to previqus systems, all
output hybrid trees of the top{k is set to 50 in our our experiments were based on identical training and

experiments) decoding algorithm, given the learnelfSt data splits of both corpora as reported in the ex-
model parameters. The correct reference hybrid gr@griments of Wong and Mooney (2006).

is determined by running the Viterbi algorithm on o

each training NL-MR pair. The feature function is9-1 Training Methodology

discussed in section 8.2. Given a training set, we first run a variant of IBM

While conventional perceptron algorithms usuallyi“gnment model 1 (Brown et al., 1993) for 100 iter-
optimize the accuracy measure, we extend it to allowtions, and then initialize Model | with the learned
optimization of the=-measure by introducing an ex- parameter values. This IBM model is a word-to-
plicit separating plane on the feature space that rg;oq alignment model that does not model word
jects certain predictions even when they score highyder, so we do not have to linearize the hierarchi-
est. The idea is to find a thresholdafter w is  ¢g| MR structure. Given this initialization, we train
learned, such that a prediction with score below \jodel | for 100 EM iterations and use the learned
gets rejected. We pick the threshold that leads to theyrameters to initialize Model Il which is trained for
optimal F-measure when applied to the training setgnother 100 EM iterations. Model IIl is simply an
interpolation of the above two models. As for the
reranking phase, we initialize the weight vector with
We list in Table 2 the set of features we used. Exthe zero vectoB, and run the averaged perceptron
amples are given based on the hybrid tree in Figuragorithm for 10 iterations.

8.2 Features
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9.2 Evaluation Methodology dictions than Model | or Model Il. This indicates
Following Wong (2007) and other previous work,the possibility of enhancing the performance with

we report performance in terms &fecision(per- reranking. ) ) )
centage of answered NL sentences that are correct),| € reranking approach is shown to be quite ef-
Recall (percentage of correctly answered NL senf€Ctive. We observe a consistent improvement in
tences, out of all NL sentences) aRescore (har- both precision and-measure after employing the
monic mean oPrecisionandRecal). reranking phase for each model.

Again following Wong (2007), we define the cor-
rect output MR structure as follows. For theeG )
QUERY corpus, an MR structure is considered cor®Mmong all the previous models, IS, WAsP, and
rect if and only if it retrieves identical results asKRISPare directly comparable to our model. They
the reference MR structure when both are issued 58duired the same amount of supervision as our sys-
queries to the underlying Prolog database. For tH§M and were evaluated on the same corpora.
ROBOCUP corpus, an MR structure is considered YV& compare our model with these models in Ta-
correct if and only if it has the same string represeri?/€ 4, where the performance scores for the previous
tation as the reference MR structure, up to reordefYStems are taken from (Wong, 2007). FoEd@
ing of children of MR productions whose function QUERY corpus, our model performs substantially

9.4 Comparison with Other Models

symbols are commutative, sucharsd, or, etc. better than all the three previous models, with a no-
table improvement in the recall score. In fact, if we
9.3 Comparison over Three Models look at the recall scores alone, our best-performing
model achieves a 6.7% and 9.8% absolute improve-
Model I__GEOQUERY(880) RoOBOCUP(300) ment over two other state-of-the-art models &%
Prec.| Rec.| F [/ Prec. | Rec.| F and Krisp respectively. This indicates that over-
! 81.3 | 771|791 71.1]640)67.4 all, our model is able to handle over 25% of the
I 89.0 | 76.0 | 82.0| 824 | 57.7| 67.8 . :
T 862 8181 8401 704 | 6331 66.7 inputs that could not be handled by previous sys-
+R 875805 838 79.1]67.0] 72.6 tems. On the other hand, in terms Bfmeasure,
+R || 93.2 | 736 | 82.3 | 88.4 | 56.0 | 63.6 we gain a 4.1% absolute improvement overi&Pp,
N+R || 893 [ 81.5] 852 825 | b7.7 | 744 which leads to an error reduction rate of 22%. On

Table 3: Performance comparison over three models the RoBOCUP corpus, our model’'s performance is
(Prec:precisionRec:recall, +R: with reranking) o
also ranked the highést

We evaluated the three models, with and with-
out reranking. The results are presented in Table 8.
; ; System Prec. [ Rec.] F Prec. [ Rec.] F
Comparing Model | and Model 1l, we noticed that
. . SiLT 89.0 | 54.1] 67.3| 83.9 | 50.7 | 63.2
for both corpora, Model | m_general achleve_s pet- WASP 872 [ 748 8051 889 [ 619 73.0
ter recall while Model Il achieves better precision.| Krisp 933 [ 71.7| 81.11| 852 | 61.9| 71.7
This observation conforms to our earlier expectaf moden+r || 89.3 | 81.5] 852 825 | 67.7] 744
tions. Model I, as an interpolation of the above tWo Taple 4: Performance comparison with other directly com-
models, achieves a much betfemeasure on &o- parable systems
QUERY corpus. However, it is shown to be less ef-9 5 Perf Other L
fective on RoBocupcorpus. We noticed that com- ~* erformance on Other Languages
pared to the GOQUERY corpus, RBOCUPcorpus As a generic model that requires minimal assump-
contains longer sentences, larger MR structures, atidns on the natural language, our model is natural
a significant amount of non-compositionality. Theséanguage independent and is able to handle various
factors combine to present a challenging problem fasther natural languages than English. To validate
parsing with the generative model. Interestingly, althis point, we evaluated our system on a subset of
though Model Il fails to produce better best pre——— o o
We are unable to perform statistical significance tests be-

dICtIOf]S for this _corpus, we found that its tapist cause the detailed performance for each fold of previously p
contains a relatively larger number of correct prelished research work is not available.

GEOQUERY(880) RoBocuP(300)
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the GEOQUERYcorpus consisting of 250 instancesments on this paper. The research is partially sup-
with four different NL annotations. ported by ARF grant R-252-000-240-112.

As we can see from Table 5, our model is able
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