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Abstract

In this paper, we present an algorithm for
learning a generative model of natural lan-
guage sentences together with their for-
mal meaning representations with hierarchi-
cal structures. The model is applied to the
task of mapping sentences to hierarchical rep-
resentations of their underlying meaning. We
introduce dynamic programming techniques
for efficient training and decoding. In exper-
iments, we demonstrate that the model, when
coupled with a discriminative reranking tech-
nique, achieves state-of-the-art performance
when tested on two publicly available cor-
pora. The generative model degrades robustly
when presented with instances that are differ-
ent from those seen in training. This allows
a notable improvement in recall compared to
previous models.

1 Introduction

To enable computers to understand natural human
language is one of the classic goals of research in
natural language processing. Recently, researchers
have developed techniques for learning to map sen-
tences to hierarchical representations of their under-
lying meaning (Wong and Mooney, 2006; Kate and
Mooney, 2006).

One common approach is to learn some form of
probabilistic grammar which includes a list of lexi-
cal items that models the meanings of input words
and also includes rules for combining lexical mean-
ings to analyze complete sentences. This approach
performs well but is constrained by the use of a sin-
gle, learned grammar that contains a fixed set of

lexical entries and productions. In practice, such
a grammar may lack the rules required to correctly
parse some of the new test examples.

In this paper, we develop an alternative approach
that learns a model which does not make use of
an explicit grammar but, instead, models the cor-
respondence between sentences and their meanings
with a generative process. This model is defined
over hybrid treeswhose nodes include both natu-
ral language words and meaning representation to-
kens. Inspired by the work of Collins (2003), the
generative model builds trees by recursively creating
nodes at each level according to a Markov process.
This implicit grammar representation leads to flexi-
ble learned models that generalize well. In practice,
we observe that it can correctly parse a wider range
of test examples than previous approaches.

The generative model is learned from data that
consists of sentences paired with their meaning rep-
resentations. However, there is no explicit labeling
of the correspondence between words and meaning
tokens that is necessary for building the hybrid trees.
This creates a challenging, hidden-variable learning
problem that we address with the use of an inside-
outside algorithm. Specifically, we develop a dy-
namic programming parsing algorithm that leads to
O(n3m) time complexity for inference, wheren is
the sentence length andm is the size of meaning
structure. This approach allows for efficient train-
ing and decoding.

In practice, we observe that the learned generative
models are able to assign a high score to the correct
meaning for input sentences, but that this correct
meaning is not always the highest scoring option.

783



To address this problem, we use a simple rerank-
ing approach to select a parse from ak-best list of
parses. This pipelined approach achieves state-of-
the-art performance on two publicly available cor-
pora. In particular, the flexible generative model
leads to notable improvements in recall, the total
percentage of sentences that are correctly parsed.

2 Related Work

In Section 9, we will compare performance with
the three existing systems that were evaluated on
the same data sets we consider. SILT (Kate et al.,
2005) learns deterministic rules to transform either
sentences or their syntactic parse trees to meaning
structures. WASP (Wong and Mooney, 2006) is a
system motivated by statistical machine translation
techniques. It acquires a set of synchronous lexical
entries by running the IBM alignment model (Brown
et al., 1993) and learns a log-linear model to weight
parses. KRISP (Kate and Mooney, 2006) is a dis-
criminative approach where meaning representation
structures are constructed from the natural language
strings hierarchically. It is built on top of SVMstruct

with string kernels.
Additionally, there is substantial related research

that is not directly comparable to our approach.
Some of this work requires different levels of super-
vision, including labeled syntactic parse trees (Ge
and Mooney, 2005; Ge and Mooney, 2006). Others
do not perform lexical learning (Tang and Mooney,
2001). Finally, recent work has explored learning
to map sentences to lambda-calculus meaning rep-
resentations (Wong and Mooney, 2007; Zettlemoyer
and Collins, 2005; Zettlemoyer and Collins, 2007).

3 Meaning Representation

We restrict our meaning representation (MR) for-
malism to a variable free version as presented in
(Wong and Mooney, 2006; Kate et al., 2005).

A training instance consists of a natural language
sentence (NL sentence) and its corresponding mean-
ing representation structure (MR structure). Con-
sider the following instance taken from the GEO-
QUERY corpus (Kate et al., 2005):

The NL sentence “How many states do
not have rivers ?” consists of 8 words, in-
cluding punctuation. The MR is a hierarchical tree

QUERY : answer(NUM)

NUM : count(STATE)

STATE : exclude(STATE STATE)

STATE : state(all) STATE : loc 1 (RIVER)

RIVER : river (all)

Figure 1: An example MR structure

structure, as shown in Figure 1.
Following an inorder traversal of this MR tree, we

can equivalently represent it with the following list
of meaning representation productions(MR produc-
tions):

(0) QUERY : answer(NUM)
(1) NUM : count(STATE)
(2) STATE : exclude(STATE1 STATE2)
(3) STATE : state(all)
(4) STATE : loc 1 (RIVER)
(5) RIVER : river (all)

Each such MR production consists of three com-
ponents: asemantic category, a function symbol
which can be omitted (considered empty), and a list
of arguments. An argument can be either a child se-
mantic category or a constant. Take production(1)
for example: it has a semantic category “NUM”, a
function symbol “count”, and a child semantic cate-
gory “STATE” as its only argument. Production (5)
has “RIVER” as its semantic category, “river” as the
function symbol, and “all” is a constant.

4 The Generative Model

We describe in this section our proposed generative
model, which simultaneously generates a NL sen-
tence and an MR structure.

We denote a single NL word asw, a contiguous
sequence of NL words asw, and a complete NL
sentence aŝw. In the MR structure, we denote a
semantic category asM. We denote a single MR
production asma, orMa : pα(Mb,Mc), whereMa

is the semantic category for this production,pα is the
function symbol, andMb,Mc are the child semantic
categories. We denotema as an MR structure rooted
by an MR productionma, andm̂a an MR structure
for a complete sentence rooted by an MR production
ma.

The model generates ahybrid treethat represents
a sentencêw = w1 . . .w2 . . . paired with an MR
structurêma rooted byma.
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w2 Mc
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Figure 2: The generation process

Figure 2 shows part of a hybrid tree that is gen-
erated as follows. Given a semantic categoryMa,
we first pick an MR productionma that has the form
Ma : pα(Mb,Mc), which gives us the function sym-
bol pα as well as the child semantic categoriesMb

andMc. Next, we generate thehybrid sequenceof
child nodesw1Mb w2Mc, which consists of NL
words and semantic categories.

After that, two child MR productionsmb andmc

are generated. These two productions will in turn
generate other hybrid sequences and productions, re-
cursively. This process produces a hybrid treeT ,
whose nodes are either NL words or MR produc-
tions. Given this tree, we can recover a NL sentence
w by recording the NL words visited in depth-first
traversal order and can recover an MR structurem
by following a tree-specific traversal order, defined
by the hybrid-patterns we introduce below. Figure 3
gives a partial hybrid tree for the training example
from Section 3. Note that the leaves of a hybrid tree
are always NL tokens.

. . .

STATE

STATE : exclude (STATE STATE)

STATE

STATE : state(all)

states

do not STATE

STATE : loc 1(RIVER)

have RIVER

RIVER : river(all)

rivers
Figure 3: A partial hybrid tree

With several independence assumptions, the
probability of generating

〈
ŵ, m̂,T

〉
is defined as:

P(ŵ, m̂,T ) = P(Ma) × P(ma|Ma) × P(w1 Mb w2 Mc|ma)

×P(mb|ma, arg = 1) × P(. . . |mb)

×P(mc|ma, arg = 2) × P(. . . |mc) (1)

where “arg” refers to the position of the child se-
mantic category in the argument list.

Motivated by Collins’ syntactic parsing models
(Collins, 2003), we consider the generation process
for a hybrid sequence from an MR production as a
Markov process.

Given the assumption that each MR production
has at most two semantic categories in its arguments
(any production can be transformed into a sequence
of productions of this form), Table 1 includes the list
of all possiblehybrid patterns.

# RHS Hybrid Pattern # Patterns
0 m→ w 1
1 m→ [w]Y[w] 4

2 m→ [w]Y[w]Z[w] 8
m→ [w]Z[w]Y[w] 8

Table 1: A list of hybrid patterns, [] denotes optional

In this table,m is an MR production,Y andZ
are respectively the first and second child seman-
tic category inm’s argument list. The symbolw
refers to a contiguous sequence of NL words, and
anything inside [] can be optionally omitted. The
last row contains hybrid patterns that reflect reorder-
ing of one production’s child semantic categories
during the generation process. For example, con-
sider the case that the MR production STATE :
exclude(STATE1 STATE2) generates a hybrid se-
quenceSTATE1 do not STATE2, the hybrid pattern
m→ YwZ is associated with this generation step.

For the example hybrid tree in Figure 2, we can
decompose the probability for generating the hybrid
sequence as follows:

P(w1 Mb w2 Mc|ma) = P(m→ wYwZ|ma) × P(w1|ma)

×P(Mb|ma,w1) × P(w2|ma,w1,Mb)

×P(Mc|ma,w1,Mb,w2) × P(END|ma,w1,Mb,w2,Mc) (2)

Note that unigram, bigram, or trigram assump-
tions can be made here for generating NL words and
semantic categories. For example, under a bigram
assumption, the second to last term can be written
as P(Mc|ma,w1,Mb,w2) ≡ P(Mc|ma,w

k
2
), where

wk
2

is the last word inw2. We call such additional
information that we condition on, thecontext.

Note that our generative model is different from
the synchronous context free grammars (SCFG) in
a number of ways. A standard SCFG produces a
correspondence between a pair of trees while our
model produces a single hybrid tree that represents
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the correspondence between a sentence and a tree.
Also, SCFGs use a finite set of context-free rewrite
rules to define the model, where the rules are possi-
bly weighted. In contrast, we make use of the more
flexible Markov models at each level of the genera-
tive process, which allows us to potentially produce
a far wider range of possible trees.

5 Parameter Estimation

There are three categories of parameters used in the
model. The first category of parameters models
the generation of new MR productions from their
parent MR productions:e.g., P(mb|ma, arg = 1);
the second models the generation of a hybrid se-
quence from an MR production:e.g., P(w1|ma),
P(Mb|ma,w1); the last models the selection of a hy-
brid pattern given an MR production,e.g.,P(m →
wY|ma). We will estimate parameters from all cate-
gories, with the following constraints:

1.
∑

m′ ρ(m′|m j, arg=k)=1 for all j andk = 1, 2.

These parameters model the MR structures, and
can be referred to asMR model parameters.

2.
∑

t θ(t|m j,Λ)=1 for all j, wheret is a NL word,
the “END” symbol, or a semantic category.Λ
is the context associated withm j andt.

These parameters model the emission of NL
words, the “END” symbol, and child semantic
categories from an MR production. We call
thememission parameters.

3.
∑

r φ(r|m j) = 1 for all j, wherer is a hybrid
pattern listed in Table 1.

These parameters model the selection of hybrid
patterns. We name thempattern parameters.

With different context assumptions, we reach dif-
ferent variations of the model. In particular, we con-
sider three assumptions, as follows:

Model I We make the following assumption:

θ(tk|m j,Λ) = P(tk|m j) (3)

wheretk is a semantic category or a NL word, and
m j is an MR production.

In other words, generation of the next NL word
depends on its direct parent MR production only.
Such aUnigram Modelmay help in recall (the num-
ber of correct outputs over the total number of in-
puts), because it requires the least data to estimate.

Model II We make the following assumption:

θ(tk|m j,Λ) = P(tk|m j, tk−1) (4)

wheretk−1 is the semantic category or NL word to
the left of tk, i.e., the previous semantic category or
NL word.

In other words, generation of the next NL word
depends on its direct parent MR production as well
as the previously generated NL word or semantic
category only. This model is also referred to asBi-
gram Model. This model may help in precision (the
number of correct outputs over the total number of
outputs), because it conditions on a larger context.

Model III We make the following assumption:

θ(tk|m j,Λ) =
1

2
×
(
P(tk|m j) + P(tk|m j, tk−1)

)
(5)

We can view this model, called theMixgram
Model, as an interpolation between Model I and II.
This model gives us a balanced score for both preci-
sion and recall.

5.1 Modeling Meaning Representation

The MR model parameters can be estimated inde-
pendently from the other two. These parameters can
be viewed as the “language model” parameters for
the MR structure, and can be estimated directly from
the corpus by simply reading off the counts of occur-
rences of MR productions in MR structures over the
training corpus. To resolve data sparseness problem,
a variant of the bigram Katz Back-Off Model (Katz,
1987) is employed here for smoothing.

5.2 Learning the Generative Parameters

Learning the remaining two categories of parameters
is more challenging. In a conventional PCFG pars-
ing task, during the training phase, the correct cor-
respondence between NL words and syntactic struc-
tures is fully accessible. In other words, there is a
single deterministic derivation associated with each
training instance. Therefore model parameters can
be directly estimated from the training corpus by
counting. However, in our task, the correct corre-
spondence between NL words and MR structures is
unknown. Many possible derivations could reach
the same NL-MR pair, where each such derivation
forms a hybrid tree.
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The hybrid tree is constructed using hidden vari-
ables and estimated from the training set. An effi-
cient inside-outside style algorithm can be used for
model estimation, similar to that used in (Yamada
and Knight, 2001), as discussed next.

5.2.1 The Inside-Outside Algorithm with EM

In this section, we discuss how to estimate the
emission and pattern parameters with the Expecta-
tion Maximization (EM) algorithm (Dempster et al.,
1977), by using an inside-outside (Baker, 1979) dy-
namic programming approach.

Denoteni ≡ 〈mi,wi〉 as thei-th training instance,
wheremi andwi are the MR structure and the NL
sentence of thei-th instance respectively. We also
denotenv ≡ 〈mv,wv〉 as an aligned pair of MR
substructure and contiguous NL substring, where
the MR substructure rooted by MR productionmv

will correspond to (i.e., hierarchically generate) the
NL substringwv. The symbolh is used to de-
note a hybrid sequence, and the functionParent(h)
gives the unique MR substructure-NL subsequence
pair which can be decomposed ash. Parent(nv) re-
turns the set of all possible hybrid sequences un-
der which the pairnv can be generated. Similarly,
Children(h) gives the NL-MR pairs that appear di-
rectly below the hybrid sequenceh in a hybrid tree,
andChildren(n) returns the set of all possible hybrid
sequences thatn can be decomposed as. Figure 4
gives a packed tree structure representing the rela-
tions between the entities.

hp1
∈ Parent(nv) . . . . . . hpm ∈ Parent(nv)

nv′ ≡ 〈mv′ ,wv′ 〉 nv ≡ 〈mv,wv〉

hc1
∈ Children(nv) . . . . . . hcn ∈ Children(nv)

Hybrid Sequence Contains

Can be Decomposed As

Figure 4: A packed tree structure representing the relations
between hybrid sequences and NL-MR pairs

The formulas for computing inside and outside
probabilities as well as the equations for updating
parameters are given in Figure 5. We use a CKY-
style parse chart for tracking the probabilities.

5.2.2 Smoothing

It is reasonable to believe that different MR pro-
ductions that share identical function symbols are
likely to generate NL words with similar distribu-
tion, regardless of semantic categories. For example,

The inside (β) probabilities are defined as
• If nv ≡ 〈mv,wv〉 is leaf

β(nv) = P(wv|mv) (6)

• If nv ≡ 〈mv,wv〉 is not leaf

β(nv) =
∑

h∈Children(nv)

(
P(h|mv) ×

∏

nv′∈Children(h)

β(nv′ )
)

(7)

The outside (α) probabilities are defined as
• If nv ≡ 〈mv,wv〉 is root

α(nv) = 1 (8)

• If nv ≡ 〈mv,wv〉 is not root

α(nv) =
∑

h∈Parent(nv)

(
α
(
Parent(h)

)

×P
(
h|Parent(h)

)
×

∏

nv′∈Children(h),v′,v

β(nv′ )
)

(9)

Parameter Update
• Update the emission parameter

The countci(t,mv,Λk), wheret is a NL word
or a semantic category, for an instance pairni ≡

〈mi,wi〉:

ci(t,mv,Λk) =
1

β(ni)
×

∑

(t,mv ,Λk) in h∈Children(mv)

(
α(ni

v)

×P(h|mv) ×
∏

ni
v′
∈Children(h)

β(ni
v′ )
)

The emission parameter is re-estimated as:

θ′(t|mv,Λk) =

∑
i ci(t,mv,Λk)∑

t′
∑

i ci(t′,mv,Λk)
(10)

• Update the pattern parameter
The countci(r,mv), wherer is a hybrid pattern,
for an instance pairni ≡ 〈mi,wi〉:

ci(r,mv) =
1

β(ni)
×

∑

(r,mv) in h∈Children(mv)

(
α(ni

v)

×P(h|mv) ×
∏

ni
v′
∈Children(h)

β(ni
v′ )
)

The pattern parameter is re-estimated as:

φ′(r|mv) =

∑
i ci(r,mv)∑

r′
∑

i ci(r′,mv)
(11)

Figure 5: The inside/outside formulas as well as update
equations for EM

RIVER : largest(RIVER) and CITY : largest(CITY)
are both likely to generate the word “biggest”.

In view of this, a smoothing technique is de-
ployed. We assume half of the time words can
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be generated from the production’s function symbol
alone if it is not empty. Mathematically, assuming
ma with function symbolpa, for a NL word or se-
mantic categoryt, we have:

θ(t|ma,Λ) =

{
θe(t|ma,Λ) If pa is empty(

θe(t|ma,Λ) + θe(t|pa,Λ)
)
/2 otherwise

whereθe models the generation oft from an MR
production or its function symbol, together with the
contextΛ.

6 A Dynamic Programming Algorithm for
Inside-Outside Computation

Though the inside-outside approach already em-
ploys packed representations for dynamic program-
ming, a naive implementation of the inference algo-
rithm will still require O(n6m) time for 1 EM iter-
ation, wheren andm are the length of the NL sen-
tence and the size of the MR structure respectively.
This is not very practical as in one of the corpora we
look at,n andm can be up to 45 and 20 respectively.

In this section, we develop an efficient dynamic
programming algorithm that enables the inference
to run in O(n3m) time. The idea is as follows. In-
stead of treating each possible hybrid sequence as
a separate rule, we efficiently aggregate the already
computed probability scores for hybrid sequences
that share identical hybrid patterns. Such aggregated
scores can then be used for subsequent computa-
tions. By doing this, we can effectively avoid a large
amount of redundant computations. The algorithm
supports both unigram and bigram context assump-
tions. For clarity and ease of presentation, we pri-
marily make the unigram assumption throughout our
discussion.

We useβ (mv,wv) to denote the inside probabil-
ity for mv-wv pair,br[mv,wv, c] to denote the aggre-
gated probabilities for the MR sub-structuremv to
generate all possible hybrid sequences based onwv

with patternr that covers itsc-th child only. In addi-
tion, we usew(i, j) to denote a subsequence ofw with
start indexi (inclusive) and end indexj (exclusive).
We also useβr~mv,wv� to denote the aggregated in-
side probability for the pair〈mv,wv〉, if the hybrid
pattern is restricted tor only. By definition we have:

β (mv,wv) =
∑

r

φ(r|mv)×βr~mv,wv�×θ(END|mv) (12)

Relations betweenβr and br can also be estab-
lished. For example, ifmv has one child semantic
category, we have:

βm→wY~mv,wv� = bm→wY[mv,wv, 1] (13)

For the case whenmv has two child semantic cat-
egories as arguments, we have, for example:

βm→wYZw~mv,w(i, j)� =
∑

i+2≤k≤ j−2

bm→wY[mv,w(i,k), 1]

×bm→Yw[mv,w(k, j), 2] (14)

Note that there also exist relations amongstb
terms for more efficient computation, for example:

bm→wY[mv,w(i, j), c] = θ(wi|mv)

×

(
bm→wY[mv,w(i+1, j), c] + bm→Y[mv,w(i+1, j), c]

)
(15)

Analogous but more complex formulas are used
for computing the outside probabilities. Updating of
parameters can be incorporated into the computation
of outside probabilities efficiently.

7 Decoding

In the decoding phase, we want to find the optimal
MR structurêm∗ given a new NL sentencêw:

m̂∗ = arg max
m̂

P(m̂|ŵ) = arg max
m̂

∑

T

P(m̂,T |ŵ) (16)

whereT is a possible hybrid tree associated with
the m̂-ŵ pair. However, it is expensive to compute
the summation over all possible hybrid trees. We
therefore find the most likely hybrid tree instead:

m̂∗=arg max
m̂

max
T

P(m̂,T |ŵ)=arg max
m̂

max
T

P(ŵ, m̂,T ) (17)

We have implemented an exact top-k decoding al-
gorithm for this task. Dynamic programming tech-
niques similar to those discussed in Section 6 can
also be applied when retrieving the top candidates.

We also find the Viterbi hybrid tree given a NL-
MR pair, which can be done in an analogous way.
This tree will be useful for reranking.

8 Reranking and Filtering of Predictions

Due to the various independence assumptions we
have made, the model lacks the ability to express
some long range dependencies. We therefore post-
process the best candidate predictions with a dis-
criminative reranking algorithm.
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Feature Type Description Example
1. Hybrid Rule A MR production and its child hybrid form f1 : STATE : loc 1(RIVER)→ have RIVER

2. Expanded Hybrid Rule A MR production and its child hybrid form expanded f2 : STATE : loc 1(RIVER)→ 〈have,RIVER : river(all)〉

3. Long-range Unigram A MR production and a NL word appearing below in tree f3 : STATE : exclude(STATE STATE)→ rivers

4. Grandchild Unigram A MR production and its grandchild NL word f4 : STATE : loc 1(RIVER)→ rivers

5. Two Level Unigram A MR production, its parent production, and its child NL word f5 : 〈RIVER : river(all),STATE : loc 1(RIVER)〉 → rivers

6. Model Log-Probability Logarithm of base model’s joint probability log
(
P̂(w,m,T )

)
.

Table 2: All the features used. There is one feature for each possible combination, under feature type 1-5. It takes value1 if
the combination is present, and 0 otherwise. Feature 6 takesreal values.

8.1 The Averaged Perceptron Algorithm with
Separating Plane

The averaged perceptron algorithm (Collins, 2002)
has previously been applied to various NLP tasks
(Collins, 2002; Collins, 2001) for discriminative
reranking. The detailed algorithm can be found in
(Collins, 2002). In this section, we extend the con-
ventional averaged perceptron by introducing an ex-
plicit separating plane on the feature space.

Our reranking approach requires three compo-
nents during training: aGEN function that defines
for each NL sentence a set of candidate hybrid trees;
a single correct reference hybrid tree for each train-
ing instance; and a feature functionΦ that defines a
mapping from a hybrid tree to a feature vector. The
algorithm learns a weight vectorw that associates a
weight to each feature, such that a scorew·Φ(T ) can
be assigned to each candidate hybrid treeT . Given
a new instance, the hybrid tree with the highest score
is then picked by the algorithm as the output.

In this task, theGEN function is defined as the
output hybrid trees of the top-k (k is set to 50 in our
experiments) decoding algorithm, given the learned
model parameters. The correct reference hybrid tree
is determined by running the Viterbi algorithm on
each training NL-MR pair. The feature function is
discussed in section 8.2.

While conventional perceptron algorithms usually
optimize the accuracy measure, we extend it to allow
optimization of theF-measure by introducing an ex-
plicit separating plane on the feature space that re-
jects certain predictions even when they score high-
est. The idea is to find a thresholdb after w is
learned, such that a prediction with score belowb
gets rejected. We pick the threshold that leads to the
optimalF-measure when applied to the training set.

8.2 Features

We list in Table 2 the set of features we used. Ex-
amples are given based on the hybrid tree in Figure

3. Some of the them are adapted from (Collins and
Koo, 2005) for a natural language parsing task. Fea-
tures 1-5 are indicator functions (i.e., it takes value
1 if a certain combination as the ones listed in Table
2 is present, 0 otherwise), while feature 6 is real val-
ued. Features that do not appear more than once in
the training set are discarded.

9 Evaluation

Our evaluations were performed on two corpora,
GEOQUERY and ROBOCUP. The GEOQUERY cor-
pus contains MR defined by a Prolog-based lan-
guage used in querying a database on U.S. geogra-
phy. The ROBOCUPcorpus contains MR defined by
a coaching language used in a robot coaching com-
petition. There are in total 880 and 300 instances for
the two corpora respectively. Standard 10-fold cross
validations were performed and the micro-averaged
results are presented in this section. To make our
system directly comparable to previous systems, all
our experiments were based on identical training and
test data splits of both corpora as reported in the ex-
periments of Wong and Mooney (2006).

9.1 Training Methodology

Given a training set, we first run a variant of IBM
alignment model 1 (Brown et al., 1993) for 100 iter-
ations, and then initialize Model I with the learned
parameter values. This IBM model is a word-to-
word alignment model that does not model word
order, so we do not have to linearize the hierarchi-
cal MR structure. Given this initialization, we train
Model I for 100 EM iterations and use the learned
parameters to initialize Model II which is trained for
another 100 EM iterations. Model III is simply an
interpolation of the above two models. As for the
reranking phase, we initialize the weight vector with
the zero vector0, and run the averaged perceptron
algorithm for 10 iterations.
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9.2 Evaluation Methodology

Following Wong (2007) and other previous work,
we report performance in terms ofPrecision(per-
centage of answered NL sentences that are correct),
Recall (percentage of correctly answered NL sen-
tences, out of all NL sentences) andF-score (har-
monic mean ofPrecisionandRecall).

Again following Wong (2007), we define the cor-
rect output MR structure as follows. For the GEO-
QUERY corpus, an MR structure is considered cor-
rect if and only if it retrieves identical results as
the reference MR structure when both are issued as
queries to the underlying Prolog database. For the
ROBOCUP corpus, an MR structure is considered
correct if and only if it has the same string represen-
tation as the reference MR structure, up to reorder-
ing of children of MR productions whose function
symbols are commutative, such asand, or, etc.

9.3 Comparison over Three Models

Model GEOQUERY(880) ROBOCUP(300)
Prec. Rec. F Prec. Rec. F

I 81.3 77.1 79.1 71.1 64.0 67.4
II 89.0 76.0 82.0 82.4 57.7 67.8
III 86.2 81.8 84.0 70.4 63.3 66.7

I+R 87.5 80.5 83.8 79.1 67.0 72.6
II+R 93.2 73.6 82.3 88.4 56.0 68.6
III+R 89.3 81.5 85.2 82.5 67.7 74.4

Table 3: Performance comparison over three models
(Prec.:precision,Rec.:recall, +R: with reranking)

We evaluated the three models, with and with-
out reranking. The results are presented in Table 3.
Comparing Model I and Model II, we noticed that
for both corpora, Model I in general achieves bet-
ter recall while Model II achieves better precision.
This observation conforms to our earlier expecta-
tions. Model III, as an interpolation of the above two
models, achieves a much betterF-measure on GEO-
QUERY corpus. However, it is shown to be less ef-
fective on ROBOCUPcorpus. We noticed that com-
pared to the GEOQUERYcorpus, ROBOCUPcorpus
contains longer sentences, larger MR structures, and
a significant amount of non-compositionality. These
factors combine to present a challenging problem for
parsing with the generative model. Interestingly, al-
though Model III fails to produce better best pre-
dictions for this corpus, we found that its top-k list
contains a relatively larger number of correct pre-

dictions than Model I or Model II. This indicates
the possibility of enhancing the performance with
reranking.

The reranking approach is shown to be quite ef-
fective. We observe a consistent improvement in
both precision andF-measure after employing the
reranking phase for each model.

9.4 Comparison with Other Models

Among all the previous models, SILT , WASP, and
KRISP are directly comparable to our model. They
required the same amount of supervision as our sys-
tem and were evaluated on the same corpora.

We compare our model with these models in Ta-
ble 4, where the performance scores for the previous
systems are taken from (Wong, 2007). For GEO-
QUERY corpus, our model performs substantially
better than all the three previous models, with a no-
table improvement in the recall score. In fact, if we
look at the recall scores alone, our best-performing
model achieves a 6.7% and 9.8% absolute improve-
ment over two other state-of-the-art models WASP

and KRISP respectively. This indicates that over-
all, our model is able to handle over 25% of the
inputs that could not be handled by previous sys-
tems. On the other hand, in terms ofF-measure,
we gain a 4.1% absolute improvement over KRISP,
which leads to an error reduction rate of 22%. On
the ROBOCUP corpus, our model’s performance is
also ranked the highest1.

System GEOQUERY(880) ROBOCUP(300)
Prec. Rec. F Prec. Rec. F

SILT 89.0 54.1 67.3 83.9 50.7 63.2
WASP 87.2 74.8 80.5 88.9 61.9 73.0
KRISP 93.3 71.7 81.1 85.2 61.9 71.7
Model III+R 89.3 81.5 85.2 82.5 67.7 74.4

Table 4: Performance comparison with other directly com-
parable systems

9.5 Performance on Other Languages

As a generic model that requires minimal assump-
tions on the natural language, our model is natural
language independent and is able to handle various
other natural languages than English. To validate
this point, we evaluated our system on a subset of

1We are unable to perform statistical significance tests be-
cause the detailed performance for each fold of previously pub-
lished research work is not available.
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the GEOQUERYcorpus consisting of 250 instances,
with four different NL annotations.

As we can see from Table 5, our model is able
to achieve performance comparable to WASP as re-
ported by Wong (2007).

System English Spanish
Prec. Rec. F Prec. Rec. F

WASP 95.42 70.00 80.76 91.99 72.40 81.03
Model III+R 91.46 72.80 81.07 95.19 79.20 86.46

System Japanese Turkish
Prec. Rec. F Prec. Rec. F

WASP 91.98 74.40 82.86 96.96 62.40 75.93
Model III+R 87.56 76.00 81.37 93.82 66.80 78.04

Table 5: Performance on different natural languages for
GEOQUERY-250 corpus

Our model is generic, which requires no domain-
dependent knowledge and should be applicable to
a wide range of different domains. Like all re-
search in this area, the ultimate goal is to scale to
more complex, open-domain language understand-
ing problems. In future, we would like to create a
larger corpus in another domain with multiple natu-
ral language annotations to further evaluate the scal-
ability and portability of our approach.

10 Conclusions

We presented a new generative model that simulta-
neously produces both NL sentences and their cor-
responding MR structures. The model can be effec-
tively applied to the task of transforming NL sen-
tences to their MR structures. We also developed
a new dynamic programming algorithm for efficient
training and decoding. We demonstrated that this
approach, augmented with a discriminative rerank-
ing technique, achieves state-of-the-art performance
when tested on standard benchmark corpora.

In future, we would like to extend the current
model to have a wider range of support of MR for-
malisms, such as the one with lambda-calculus sup-
port. We are also interested in investigating ways to
apply the generative model to the inverse task: gen-
eration of a NL sentence that explains a given MR
structure.
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