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Abstract

The performance of machine translation sys-
tems varies greatly depending on the source
and target languages involved. Determining
the contribution of different characteristics of
language pairs on system performance is key
to knowing what aspects of machine transla-
tion to improve and which are irrelevant. This
paper investigates the effect of different ex-
planatory variables on the performance of a
phrase-based system for 110 European lan-
guage pairs. We show that three factors are
strong predictors of performance in isolation:
the amount of reordering, the morphological
complexity of the target language and the his-
torical relatedness of the two languages. To-
gether, these factors contribute 75% to the
variability of the performance of the system.

1 Introduction

Statistical machine translation (SMT) has improved
over the last decade of intensive research, but for
some language pairs, translation quality is still low.
Certain systematic differences between languages
can be used to predict this. Many researchers have
speculated on the reasons why machine translation is
hard. However, there has never been, to our knowl-
edge, an analysis of what the actual contribution of
different aspects of language pairs is to translation
performance. This understanding of where the diffi-
culties lie will allow researchers to know where to
most gainfully direct their efforts to improving the
current models of machine translation.

Many of the challenges of SMT were first out-
lined by Brown et al. (1993). The original IBM
Models were broken down into separate translation

and distortion models, recognizing the importance
of word order differences in modeling translation.
Brown et al. also highlighted the importance of mod-
eling morphology, both for reducing sparse counts
and improving parameter estimation and for the cor-
rect production of translated forms. We see these two
factors, reordering and morphology, as fundamental
to the quality of machine translation output, and we
would like to quantify their impact on system per-
formance.

It is not sufficient, however, to analyze the mor-
phological complexity of the source and target lan-
guages. It is also very important to know how sim-
ilar the morphology is between the two languages,
as two languages which are morphologically com-
plex in very similar ways, could be relatively easy
to translate. Therefore, we also include a measure of
the family relatedness of languages in our analysis.

The impact of these factors on translation is mea-
sured by using linear regression models. We perform
the analysis with data from 110 different language
pairs drawn from the Europarl project (Koehn,
2005). This contains parallel data for the 11 official
language pairs of the European Union, providing a
rich variety of different language characteristics for
our experiments. Many research papers report re-
sults on only one or two languages pairs. By analyz-
ing so many language pairs, we are able to provide
a much wider perspective on the challenges facing
machine translation. This analysis is important as it
provides very strong motivation for further research.

The findings of this paper are as follows: (1) each
of the main effects, reordering, target language com-
plexity and language relatedness, is a highly signif-
icant predictor of translation performance, (2) indi-
vidually these effects account for just over a third of
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the variation of the BLEU score, (3) taken together,
they account for 75% of the variation of the BLEU

score, (4) when removing Finnish results as out-
liers, reordering explains the most variation, and fi-
nally (4) the morphological complexity of the source
language is uncorrelated with performance, which
suggests that any difficulties that arise with sparse
counts are insignificant under the experimental con-
ditions outlined in this paper.

2 Europarl

In order to analyze the influence of different lan-
guage pair characteristics on translation perfor-
mance, we need access to a large variety of compa-
rable parallel corpora. A good data source for this is
the Europarl Corpus (Koehn, 2005). It is a collection
of the proceedings of the European Parliament, dat-
ing back to 1996. Version 3 of the corpus consists of
up to 44 million words for each of the 11 official lan-
guages of the European Union: Danish (da), German
(de), Greek (el), English (en), Spanish (es), Finnish
(fi), French (fr), Italian (it), Dutch (nl), Portuguese
(pt), and Swedish (sv).

In trying to determine the effect of properties of
the languages involved in translation performance,
it is very important that other variables be kept con-
stant. Using Europarl, the size of the training data
for the different language pairs is very similar, and
there are no domain differences as all sentences are
roughly trained on translations of the same data.

3 Morphological Complexity

The morphological complexity of the language pairs
involved in translation is widely recognized as one
of the factors influencing translation performance.
However, most statistical translation systems treat
different inflected forms of the same lemma as com-
pletely independent of one another. This can result in
sparse statistics and poorly estimated models. Fur-
thermore, different variations of the lemma may re-
sult in crucial differences in meaning that affect the
quality of the translation.

Work on improving MT systems’ treatment of
morphology has focussed on either reducing word
forms to lemmas to reduce sparsity (Goldwater
and McClosky, 2005; Talbot and Osborne, 2006)
or including morphological information in decod-
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Figure 1. Average vocabulary size for each language.

ing (Dyer, 2007).
Although there is a significant amount of research

into improving the treatment of morphology, in this
paper we aim to discover the effect that different lev-
els of morphology have on translation. We measure
the amount of morphological complexity that exists
in both languages and then relate this to translation
performance.

Some languages seem to be intuitively more com-
plex than others, for instance Finnish appears more
complex than English. There is, however, no obvi-
ous way of measuring this complexity. One method
of measuring complexity is by choosing a number
of hand-picked, intuitive properties called complex-
ity indicators (Bickel and Nichols, 2005) and then
to count their occurrences. Examples of morpholog-
ical complexity indicators could be the number of in-
flectional categories or morpheme types in a typical
sentence. This method suffers from the major draw-
back of finding a principled way of choosing which
of the many possible linguistic properties should be
included in the list of indicators.

A simple alternative employed by Koehn (2005)
is to use vocabulary size as a measure of morpho-
logical complexity. Vocabulary size is strongly in-
fluenced by the number of word forms affected by
number, case, tense etc. and it is also affected by the
number of agglutinations in the language. The com-
plexity of the morphology of languages can there-
fore be approached by looking at vocabulary size.
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Figure 1 shows the vocabulary size for all rele-
vant languages. Each language pair has a slightly
different parallel corpus, and so the size of the vo-
cabularies for each language needs to be averaged.
You can see that the size of the Finnish vocabulary is
about six times larger (510,632 words) than the En-
glish vocabulary size (88,880 words). The reason for
the large vocabulary size is that Finnish is character-
ized by a rich inflectional morphology, and it is typo-
logically classified as an agglutinative-fusional lan-
guage. As a result, words are often polymorphemic,
and become remarkably long.

4 Language Relatedness

The morphological complexity of each language in
isolation could be misleading. Large differences in
morphology between two languages could be more
relevant to translation performance than a complex
morphology that is very similar in both languages.
Languages which are closely related could share
morphological forms which might be captured rea-
sonably well in translation models. We include a
measure of language relatedness in our analyses to
take this into account.

Comparative linguistics is a field of linguistics
which aims to determine the historical relatedness
of languages. Lexicostatistics, developed by Morris
Swadesh in the 1950s (Swadesh, 1955), is an ap-
proach to comparative linguistics that is appropriate
for our purposes because it results in a quantitative
measure of relatedness by comparing lists of lexical
cognates.

The lexicostatistic percentages are extracted as
follows. First, a list of universal culture-free mean-
ings are generated. Words are then collected for
these meanings for each language under consider-
ation. Lists for particular purposes have been gen-
erated. For example, we use the data from Dyen et
al. (1992) who developed a list of 200 meanings for
84 Indo-European languages. Cognacy decisions are
then made by a trained linguist. For each pair of lists
the cognacy of a form can be positive, negative or in-
determinate. Finally, the lexicostatistic percentage is
calculated. This percentage is related to the propor-
tion of meanings for a particular language pair that
are cognates, i.e. relative to the total without inde-
terminacy. Factors such as borrowing, tradition and

Language “animal” “black”
French animal noir
Italian animale nero

Spanish animal negro
English animal black
German tier schwarz
Swedish djur svart
Danish dyr sort
Dutch dier zwart

Table 1. An example from the (Dyen et al., 1992) cognate
list.

taboo can skew the results.
A portion of the Dyen et al. (1992) data set is

shown in Table 1 as an example. From this data a
trained linguist would calculate the relatedness of
French, Italian and Spanish as 100% because their
words for “animal” and “black” are cognates. The
Romance languages share one cognate with English,
“animal” but not “black”, which means that the lex-
icostatistic percentage here would be 50%, and no
cognates with the rest of the languages, 0%.

We use the Dyen lexicostatistic percentages as our
measure of language relatedness or similarity for all
bidirectional language pairs except for Finnish, for
which there is not data. Finnish is a Finno-Ugric
language and is not part of the Indo-European lan-
guage family and is therefore not included in the
Dyen results. We were not able to recreate the con-
ditions of this study to generate the data for Finnish
- expert linguists with knowledge of all the lan-
guages would be required. Excluding Finnish would
have been a shame as it is an interesting language
to look at, however we took care to confirm which
effects found in this paper still held when exclud-
ing Finnish. Not being part of the Indo-European
languages means that its historical similarity with
our other languages is very low. For example, En-
glish would be more closely related to Hindu than to
Finnish. We therefore assume that Finnish has zero
similarity with the other languages in the set.

Figure 2 shows the symmetric matrix of language
relatedness, where the width of the square is pro-
portional to the value of relatedness. Finnish is the
language which is least related to the other lan-
guages and has a relatedness score of 0%. Spanish-
Portuguese is the most related language pair with a
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score of 0.87%.
A measure of family relatedness should improve

our understanding of the relationship between mor-
phological complexity and translation performance.

5 Reordering

Reordering refers to differences in word order that
occur in a parallel corpus and the amount of reorder-
ing affects the performance of a machine translation
system. In order to determine how much it affects
performance, we first need to measure it.

5.1 Extracting Reorderings

Reordering is largely driven by syntactic differences
between languages and can involve complex rear-
rangements between nodes in synchronous trees.
Modeling reordering exactly would require a syn-
chronous tree-substitution grammar. This represen-
tation would be sparse and heterogeneous, limiting
its usefulness as a basis for analysis. We make an
important simplifying assumption in order for the
detection and extraction of reordering data to be
tractable and useful. We assume that reordering is
a binary process occurring between two blocks that
are adjacent in the source. This is similar to the
ITG constraint (Wu, 1997), however our reorder-
ings are not dependent on a synchronous grammar
or a derivation which covers the sentences. There are
also similarities with the Human-Targeted Transla-

tion Edit Rate metric (HTER) (Snover et al., 2006)
which attempts to find the minimum number of hu-
man edits to correct a hypothesis, and admits mov-
ing blocks of words, however our algorithm is auto-
matic and does not consider inserts or deletes.

Before describing the extraction of reorderings we
need to define some concepts. We define a block A
as consisting of a source span, As, which contains
the positions from Asmin to Asmax and is aligned to
a set of target words. The minimum and maximum
positions (Atmin and Atmax) of the aligned target
words mark the block’s target span, At.

A reordering r consists of the two blocks rA and
rB , which are adjacent in the source and where the
relative order of the blocks in the source is reversed
in the target. More formally:

rAs < rBs , rAt
> rBt

, rAsmax = rBsmin − 1

A consistent block means that between Atmin and
Atmax there are no target word positions aligned
to source words outside of the block’s source span
As. A reordering is consistent if the block projected
from rAsmin to rBsmax is consistent.

The following algorithm detects reorderings and
determines the dimensions of the blocks involved.
We step through all the source words, and if a word
is reordered in the target with respect to the previ-
ous source word, then a reordering is said to have
occurred. These two words are initially defined as
the blocks A and B. Then the algorithm attempts
to grow block A from this point towards the source
starting position, while the target span of A is greater
than that of block B, and the new block A is consis-
tent. Finally it attempts to grow block B towards the
source end position, while the target span of B is
less than that of A and the new reordering is incon-
sistent.

See Figure 3 for an example of a sentence pair
with two reorderings. Initially a reordering is de-
tected between the Chinese words aligned to “from”
and “late”. The block A is grown from “late” to in-
clude the whole phrase pair “late last night”. Then
the block B is grown from “from” to include “Bei-
jing” and stops because the reordering is then con-
sistent. The next reordering is detected between “ar-
rived in” and “Beijing”. We can see that block A at-
tempts to grow as large a block as possible and block
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Figure 3. A sentence pair from the test corpus, with its
alignment. Two reorderings are shown with two different
dash styles.

B attempts to grow the smallest block possible. The
reorderings thus extracted would be comparable to
those of a right-branching ITG with inversions. This
allows for syntactically plausible embedded reorder-
ings. This algorithm has the worst case complexity
of O(n2

2 ) when the words in the target occur in the
reverse order to the words in the source.

5.2 Measuring Reordering

Our reordering extraction technique allows us to an-
alyze reorderings in corpora according to the dis-
tribution of reordering widths. In order to facilitate
the comparison of different corpora, we combine
statistics about individual reorderings into a sen-
tence level metric which is then averaged over a cor-
pus.

RQuantity =
∑

r∈R |rAs | + |rBs |
I

where R is the set of reorderings for a sentence, I
is the source sentence length, A and B are the two
blocks involved in the reordering, and |rAs | is the
size or span of block A on the source side. RQuan-
tity is thus the sum of the spans of all the reordering
blocks on the source side, normalized by the length
of the source sentence.

RQuantity
Europarl, auto align 0.620

WMT06 test, auto align 0.647
WMT06 test, manual align 0.668

Table 2. The reordering quantity for the different reorder-
ing corpora for DE-EN.

5.3 Automatic Alignments

Reorderings extracted from manually aligned data
can be reliably assumed to be correct. The only
exception to this is that embedded reorderings are
always right branching and these might contradict
syntactic structure. In this paper, however, we use
alignments that are automatically extracted from the
training corpus using GIZA++. Automatic align-
ments could give very different reordering results.
In order to justify using reordering data extracted
from automatic alignments, we must show that they
are similar enough to gold standard alignments to be
useful as a measure of reordering.

5.3.1 Experimental Design
We select the German-English language pair be-

cause it has a reasonably high level of reordering. A
manually aligned German-English corpus was pro-
vided by Chris Callison-Burch and consists of the
first 220 sentences of test data from the 2006 ACL
Workshop on Machine Translation (WMT06) test
set. This test set is from a held out portion of the
Europarl corpus.

The automatic alignments were extracted by ap-
pending the manually aligned sentences on to the
respective Europarl v3 corpora and aligning them
using GIZA++ (Och and Ney, 2003) and the grow-
final-diag algorithm (Koehn et al., 2003).

5.3.2 Results
In order to use automatic alignments to extract re-

ordering statistics, we need to show that reorderings
from automatic alignments are comparable to those
from manual alignments.

We first look at global reordering statistics and
then we look in more detail at the reordering dis-
tribution of the corpora. Table 2 shows the amount
of reordering in the WMT06 test corpora, with both
manual and automatic alignments, and in the auto-
matically aligned Europarl DE-EN parallel corpus.
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Figure 4. Average number of reorderings per sentence
mapped against the total width of the reorderings for DE-
EN.

We can see that all three corpora show a similar
amount of reordering.

Figure 4 shows that the distribution of reorder-
ings between the three corpora is also very similar.
These results provide evidence to support our use of
automatic reorderings in lieu of manually annotated
alignments. Firstly, they show that our WMT06 test
corpus is very similar to the Europarl data, which
means that any conclusions that we reach using the
WMT06 test corpus will be valid for the Europarl
data. Secondly, they show that the reordering behav-
ior of this corpus is very similar when looking at
automatic vs. manual alignments.

Although differences between the reorderings de-
tected in the manually and automatically aligned
German-English corpora are minor, there we accept
that there could be a language pair whose real re-
ordering amount is very different to the expected
amount given by the automatic alignments. A par-
ticular language pair could have alignments that are
very unsuited to the stochastic assumptions of the
IBM or HMM alignment models. However, manu-
ally aligning 110 language pairs is impractical.

5.4 Amount of reordering for the matrix

Extracting the amount of reordering for each of the
110 language pairs in the matrix required a sam-
pling approach. We randomly extracted a subset of
2000 sentences from each of the parallel training
corpora. From this subset we then extracted the av-
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erage RQuantity.
In Figure 5 the amount of reordering for each

of the language pairs is proportional to the width
of the relevant square. Note that the matrix is not
quite symmetrical - reordering results differ de-
pending on which language is chosen to measure
the reordering span. The lowest reordering scores
are generally for languages in the same language
group (like Portuguese-Spanish, 0.20, and Danish-
Swedish, 0.24) and the highest for languages from
different groups (like German-French, 0.64, and
Finnish-Spanish, 0.61).

5.5 Language similarity and reordering

In this paper we use linear regression models to de-
termine the correlation and significance of various
explanatory variables with the dependent variable,
the BLEU score. Ideally the explanatory variables
involved should be independent of each other, how-
ever the amount of reordering in a parallel corpus
could easily be influenced by family relatedness. We
investigate the correlation between these variables.

Figure 6 shows the plot of the reordering amount
against language similarity. The regression is highly
significant and has an R2 of 0.2347. This means that
reordering is correlated with language similarity and
that 23% of reordering can be explained by language
similarity.
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Figure 6. Reordering compared to language similarity
with regression.

6 Experimental Design

We used the phrase-based model Moses (Koehn et
al., 2007) for the experiments with all the standard
settings, including a lexicalized reordering model,
and a 5-gram language model. Tests were run on
the ACL WSMT 2008 test set (Callison-Burch et al.,
2008).

6.1 Evaluation of Translation Performance

We use the BLEU score (Papineni et al., 2002) to
evaluate our systems. While the role of BLEU in
machine translation evaluation is a much discussed
topic, it is generally assumed to be a adequate metric
for comparing systems of the same type.

Figure 7 shows the BLEU score results for the ma-
trix. Comparing this figure to Figure 5 there seems
to be a clear negative correlation between reordering
amount and translation performance.

6.2 Regression Analysis

We perform multiple linear regression analyses us-
ing measures of morphological complexity, lan-
guage relatedness and reordering amount as our in-
dependent variables. The dependent variable is the
translation performance metric, the BLEU score.

We then use a t-test to determine whether the co-
efficients for the independent variables are reliably
different from zero. We also test how well the model
explains the data using an R2 test. The two-tailed
significance levels of coefficients and R2 are also
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Figure 7. System performance - the width of the squares
indicates the system performance in terms of the BLEU
score.

Explanatory Variable Coefficient
Target Vocab. Size -3.885 ***
Language Similarity 3.274 ***
Reordering Amount -1.883 ***
Target Vocab. Size2 1.017 ***
Language Similarity2 -1.858 **
Interaction: Reord/Sim -1.4536 ***

Table 3. The impact of the various explanatory features
on the BLEU score via their coefficients in the minimal ad-
equate model.

given where * means p < 0.05, ** means p < 0.01,
and *** means p < 0.001.

7 Results

7.1 Combined Model
The first question we are interested in answering is
which factors contribute most and how they interact.
We fit a multiple regression model to the data. The
source vocabulary size has no significant effect on
the outcome. All explanatory variable vectors were
normalized to be more comparable.

In Table 3 we can see the relative contribution of
the different features to the model. Source vocabu-
lary size did not contribute significantly to the ex-
planatory power of this multiple regression model
and was therefore not included. The fraction of the
variance explained by the model, or its goodness of
fit, the R2, is 0.750 which means that 75% of the
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variation in BLEU can be explained by these three
factors. The interaction of reordering amount and
language relatedness is the product of the values of
these two features, and in itself it is an important ex-
planatory feature.

To make sure that our regression is valid, we need
to consider the special case of Finnish. Data points
where Finnish is the target language are outliers.
Finnish has the lowest language similarity with all
other languages, and the largest vocabulary size. It
also has very high amounts of reordering, and the
lowest BLEU scores when it is the target language.
The multiple regression of Table 3 where Finnish as
the source and target language is excluded, shows
that all the effects are still very significant, with the
model’s R2 dropping only slightly to 0.68.

The coefficients of the variables in the multiple
regression model have only limited usefulness as a
measure of the impact of the explanatory variables
in the model. One important factor to consider is that
if the explanatory variables are highly correlated,
then the values of the coefficients are unstable. The
model could attribute more importance to one or the
other variable without changing the overall fit of the
model. This is the problem of multicollinearity. Our
explanatory variables are all correlated, but a large
amount of this correlation can be explained by look-
ing at language pairs with Finnish as the target lan-
guage. Excluding these data points, only language
relatedness and reordering amount are still corre-
lated, see Section 5.5 for more details.

7.2 Contribution in isolation
In order to establish the relative contribution of vari-
ables, we isolate their impact on the BLEU score by
modeling them in separate linear regression models.

Figure 8 shows a simple regression model over
the plot of BLEU scores against target vocabulary
size. This figure shows groups of data points with the
same target language in almost vertical lines. Each
language pair has a separate parallel training corpus,
but the target vocabulary size for one language will
be very similar in all of them. The variance in BLEU

amongst the group with the same target language is
then largely explained by the other factors, similarity
and reordering.

Figure 9 shows a simple regression model over the
plot of BLEU scores against source vocabulary size.

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●
●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●

●

●

●
●

●

●●
●

● ●

●

●
●
●

●

●

●

●
●

● ●

●

●

●

●
●

●

●
●

●●●●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

Target Vocabulary Size

B
LE

U

| | | | |
100k 200k 300k 400k 500k

Figure 8. BLEU score of experiments compared to target
vocabulary size showing regression

This regression model shows that in isolation source
vocabulary size is significant (p < 0.05), but that this
is due to the distorting effect of Finnish. Excluding
results that include Finnish, there is no longer any
significant correlation with BLEU. The source mor-
phology might be significant for models trained on
smaller data sets, where model parameters are more
sensitive to sparse counts.

Figure 10 shows the simple regression model over
the plot of BLEU scores against the amount of re-
ordering. This graph shows that with more reorder-
ing, the performance of the translation model re-
duces. Data points with low levels of reordering and
high BLEU scores tend to be language pairs where
both languages are Romance languages. High BLEU

scores with high levels of reordering tend to have
German as the source language and a Romance lan-
guage as the target.

Figure 11 shows the simple regression model over
the plot of BLEU scores against the amount of lan-
guage relatedness. The left hand line of points are
the results involving Finnish. The vertical group of
points just to the right, are results where Greek
is involved. The next set of points are the results
where the translation is between Germanic and Ro-
mance languages. The final cloud to the right are re-
sults where languages are in the same family, either
within the Romance or the Germanic languages.

Table 4 shows the amount of the variance of
BLEU explained by the different models. As these
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Figure 9. BLEU score of experiments compared to source
vocabulary size highlighting the Finnish source vocabu-
lary data points. The regression includes Finnish in the
model.

Explanatory Variable R2

Target Vocab. Size 0.388 ***
Reordering Amount 0.384 ***
Language Similarity 0.366 ***
Source Vocab. Size 0.045 *
Excluding Finnish
Target Vocab. Size 0.219 ***
Reordering Amount 0.332 ***
Language Similarity 0.188 ***
Source Vocab. Size 0.007

Table 4. Goodness of fit of different simple linear regres-
sion models which use just one explanatory variable. The
significance level represents the level of probability that
the regression is appropriate. The second set of results
excludes Finnish in the source and target language.

are simple regression models, with just one explana-
tory variable, multicolinearity is avoided. This table
shows that each of the main effects explains about a
third of the variance of BLEU, which means that they
can be considered to be of equal importance. When
Finnish examples are removed, only reordering re-
tains its power, and target vocabulary and language
similarity reduce in importance and source vocabu-
lary size no longer correlates with performance.

8 Conclusion

We have broken down the relative impact of the
characteristics of different language pairs on trans-
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Figure 10. BLEU score of experiments compared to
amount of reordering.
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Figure 11. BLEU score of experiments compared to lan-
guage relatedness.

lation performance. The analysis done is able to ac-
count for a large percentage (75%) of the variabil-
ity of the performance of the system, which shows
that we have captured the core challenges for the
phrase-based model. We have shown that their im-
pact is about the same, with reordering and target
vocabulary size each contributing about 0.38%.

These conclusions are only strictly relevant to the
model for which this analysis has been performed,
the phrase-based model. However, we suspect that
the conclusions would be similar for most statisti-
cal machine translation models because of their de-
pendence on automatic alignments. This will be the
topic of future work.
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