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Abstract

Minimum Error Rate Training (MERT) is an
effective means to estimate the feature func-
tion weights of a linear model such that an
automated evaluation criterion for measuring
system performance can directly be optimized
in training. To accomplish this, the training
procedure determines for each feature func-
tion its exact error surface on a given set of
candidate translations. The feature function
weights are then adjusted by traversing the
error surface combined over all sentences and
picking those values for which the resulting
error count reaches a minimum. Typically,
candidates in MERT are represented /sis
best lists which contain th& most probable

translation hypotheses produced by a decoder.

In this paper, we present a novel algorithm that
allows for efficiently constructing and repre-
senting the exact error surface afl trans-
lations that are encoded in a phrase lattice.
Compared toN-best MERT, the number of
candidate translations thus taken into account
increases by several orders of magnitudes.
The proposed method is used to train the
feature function weights of a phrase-based
statistical machine translation system. Experi-
ments conducted on the NIST 2008 translation
tasks show significant runtime improvements
and moderate BLEU score gains ov€rbest
MERT.
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for ranked retrieval, the F-measure for parsing, and
the BLEU score forstatistical machine transla-
tion (SMT). A class of training criteria that provides
a tighter connection between the decision rule and
the final error metric is known alinimum Error
Rate Training(MERT) and has been suggested for
SMT in (Och, 2003).

MERT aims at estimating the model parameters
such that the decision under the zero-one loss func-
tion maximizes some end-to-end performance mea-
sure on a development corpus. In combination with
log-linear models, the training procedure allows for
a direct optimization of the unsmoothed error count.
The criterion can be derived from Bayes’ decision
rule as follows: Leff = f1,..., f; denote a source
sentence ('French’) which is to be translated into a
target sentence (Englishg = eq,...,e;. Under
the zero-one loss function, the translation which
maximizes the posterioriprobability is chosen:

é= argméix{Pr(e\f)} 1)

Since the true posterior distribution is unknown,
Pr(e|f) is modeled via a log-linear translation model
which combines some feature functloh%(e f)
with feature function weightg,,,, m =1, ..., M:

Pr(elf) = pyyi(elf)

_ €xp [Z%:l Ambm (e7 f)] )
Soexp [ SN Ak (e, )]

Many statistical methods in natural language pro-

cessing aim at minimizing the probability of sen-The feature function weights are the parameters of
In practice, however, system qualitthe model, and the objective of the MERT criterion
is often measured based on error metrics that assigto find a parameter saf/ that minimizes the error
non-uniform costs to classification errors and thusount on a representative set of training sentences.
go far beyond counting the number of wrong deMore precisely, leff denote the source sentences
cisions. Examples are the mean average precisiofia training corpus with given reference translations
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rf, and letC, = {es1,...,e5 x} denote a set o introduces some basic concepts that are used in
candidate translations. Assuming that the corpustder to develop the line optimization algorithm for

based error count for some translatiassis addi- phrase lattices in Section 3. Section 4 presents an
tively decomposable into the error counts of the indiupper bound on the complexity of the unsmoothed

vidual sentences, i.eE(r{,ef) = 312 | E(r,,e,), error surface for the translation hypotheses repre-
the MERT criterion is given as: sented in a phrase lattice. This upper bound is

s used to prove the space and runtime efficiency of
M _ . Are M the suggested algorithm. Section 5 lists some best
Al =arg Tﬁl{ ;1 E(rs; e(f; Ay ))} 3) practices for MERT. Section 6 discusses related

work. Section 7 reports on experiments conducted

K .
Z Z E(I‘S7es7k)(5(é(f5;)\{w),es,k)} on the NIST 2008 translation tasks. The paper

= arg min . . )
& AM { concludes with a summary in Section 8.

s=1k=1
with 2 Minimum Error Rate Training on
M N-best Lists
A(F - \MY _
e(fsi ) = argmgx{ Zl )‘mhm(e’fS)} (4) The goal of MERT is to find a weights set that

] ] minimizes the unsmoothed error count on a rep-

ing a special line optimization algorithm. This lineminimizations along some vector directiofig)}.

optimization determines for each feature functior\a;‘.[amng from an initial point\M, computing the
hm and sentencé; the exact error surface on a Sefy st probable sentence hypothesis out of a sét of
of candidate translation€,. The feature function

. ) , candidate translation€; = {ey, ...,ex} along the
weights are then adjusted by traversing the errgy, AM 4~ . dM results in the following optimiza-

surface combined over all sentences in the training, problem (Och, 2003):
corpus and moving the weights to a point where the ’ '

resulting error reaches a minimum. é(fy; ) = arg max {(){” +y-dMT (e, fs)}
Candidate translations in MERT are typically rep- eeCs

resented asV-best lists which contain th&/ most

probable translation hypotheses. A downside of this ' © e, {2 Ambim(€,£:) + 7 dmhin e, fs)}

approach is, however, tha¥-best lists can only NG Z y

capture a very small fraction of the search space. =a(e,fs) =b(e,fs)

As a consequence, the line optimization algorithm= arg max {a(e’fs) 4y b(e,fs)} (5)

needs to repeatedly translate the development corpus ~ €€Cs "~ ~- g

and enlarge the candidate repositories with newly ()

found hypotheses in order to avoid overfitting@n  Hence, the total scoréx) for any candidate trans-
and preventing the optimization procedure fromation corresponds to a line in the plane withas
stopping in a poor local optimum. the independent variable. For any particular choice
In this paper, we present a novel algorithm thadf ~, the decoder seeks that translation which yields
allows for efficiently constructing and representinghe largest score and therefore corresponds to the
the unsmoothed error surface fatl translations topmost line segment.
that are encoded in a phrase lattice. The number Overall, the candidate repositolg, definesk
of candidate translations thus taken into accourihes where each line may be divided into at most
increases by several orders of magnitudes comparédline segments due to possible intersections with
to N-best MERT. Lattice MERT is shown to yield the otherK — 1 lines. The sequence of the topmost
significantly faster convergence rates while it extine segments constitute thgpper envelopeavhich
plores a much larger space of candidate translatioftsthe pointwise maximum over all lines induced by
which is exponential in the lattice size. DespiteC,. The upper envelope is a convex hull and can
this vast search space, we show that the suggesteel inscribed with a convex polygon whose edges
algorithm is always efficient in both running timeare the segments of a piecewise linear function in
and memory. (Papineni, 1999; Och, 2003):
The remainder of this paper is organized as fol- )
lows. Section 2 briefly review#&/-best MERT and Env(f) = e {a(e’ £) +7-ble.f): v € ]R} (6)

726



Algorithm 1 SweepLine
input: arraya[ 0. . K- 1] containing lines
output: upper envelope ol

Score

sort(a:m);
j =0; K=size(a);
for (i =0; i <K ++i) {
=alil;
lax = -
P i ] if (0<j){
count L ey | if (a[j-1]1.m== tm) {
E_l_ : if (ly <= a[j-1].y) continue;
81 ‘ = : "j;

€

\}Nhile (0 <j) {
Lx = (Ly - a[j-1]1.y)/
(a[j-1]1. m- £Lm);
a[j-1].x < L.x) break;

; 1 v
i 1

Figure 1: The upper envelope (bold, red curve) for a set
of lines is the convex hull which consists of the topmost
line segments. Each line corresponds to a candidate
translation and is thus related to a certain error count.

J

}
if (0==j) ta =
afj++] = 4

- 00;

Envelopes can efficiently be computed with Algorithm 1. boelse a[j+] =4

a.resize(j);
The importance of the upper envelope is that it pro- return a;
vides a compact encoding of all possible outcomes

that a rescoring oC, may yield if the parameter segment define the interval boundaries at which the

J‘/] . . .
fheé)\d 'Sermgr\(ve;:oalgnﬁa?ebgg2332,[3:;?&;?' V%n%%ecision made by the decoder will change. Hence,
bp b f ~ increases from-oo to +o0, we will see that

project its constituent I|ne_ segments onto the €qhe most probable translation hypothesis will change
counts of the corresponding candidate translatlo%henevery passes an intersection point

(cf. Figure 1). This projection is independent of
howthe envelope is generated and can therefore beLet " < 4% <... < 4% denote the sequence of

applied to any set of line segmehts interval boundaries and leAE™ AES: .. AR

An effective means to compute the upper envegenote the corresponding sequence of changes in the
lope is asweep linealgorithm which is often used in error count where\ Ef: is the amount by which the
computational geometry to determine the intersegyror count will change if; is moved from a point in

tion points of a sequence of lines or line segmenffyfs 1,75 to a point in[,YfS’,YTf;H). Both sequences

(Bentley and Ottmann, 1979). The idea is to shiffogeiher provide an exhaustive representation of the

(*sweep”) a vertical ray from-ao to +oo over the nsmoothed error surface for the senteficalong
plane while keeping track of those points where tWgq |ine AM 4y @M. The error surface for the
or more Ime_s_ intersect. Since tht_a upper envelogﬁhme training corpus is obtained by merging the
is fully specified by the topmost line segments, itnterval boundaries (and their corresponding error
suffices to store the following components for eackoynts) over all sentences in the training corpus.
line object (- the z-intercept (.v with the left- e gptimaly can then be found by traversing the
adjacent line, the slopem, and they-interceptt.y; — merged error surface and choosing a point from the

a fourth component., is used to store the candi-interya| where the total error reaches its minimum.
date translation. Algorithm 1 shows the pseudo code

for a sweep line algorithm which reduces an input After the parameter update]’ = A} +~opr-df”,
arrayal 0. . K- 1] consisting of theX line objects the decoder may find new translation hypotheses
of the candidate repositol; to its upper envelope. Which are merged into the candidate repositories if
By construction, the upper envelope consists of dhey are ranked among the tdp candidates. The

most K line segments. The endpoints of each lingelation K = N holds therefore only in the first
iteration. From the second iteration dk,is usually

1 For lattice MERT, it will therefore suffice to find an
efficient way to compute the upper envelope over all traiwsiat
that are encoded in a phrase graph.
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larger thanN. The sequence of line optimizations
and decodings is repeated until (1) the candidate
repositories remain unchanged and+gy = 0.



3 Minimum Error Rate Training on Algorithm 2 Lattice Envelope
L attices input: a phrase latticge = (Vr, &)

. . . . output: upper envelope ofs
In this section, the algorithm for computing the .
upper envelope oV-best lists is extended to phrase f _ g
lattices. For a description on how to generate TopSort (G);
lattices, see (Ueffing et al., 2002). for v = s to t do {
Formally, a phrase lattice for a source sentefice a = SweepLine( |J L[e]);

e€in(v)

is defined as a connected, directed acyclic graph ¢ oreach (¢ e in(v)

Gr = (Vr, &) with vertice sedk, unique source and L. del ete(e);
sink nodess, t € V¢, and a set of arc§ < V¢ x V. foreach (ee€out(v)) {
Each arc is labeled with a phrage; = e;, ,...,¢;, Lle] =a . o

. , for (i =0; i < a.size(); ++i) {
and the (local) feature function valué§[(90¢j,f). Llel[i]l.m=a[i].m+ Y  dunhn(e, f);
A pathm = (vg,€0,01,E1, s En—1,Vn) IN Gg (With Llel[i].y =a[i].y + 2o Amhin (e, £);
g; € & andw;,vi11 € Vr as the tail and head of Llel[i].p = ali].popynead():

€, 0 < i < n) defines a partial translatios, of f

which is the concatenation of all phrases along this }

path. The corresponding feature function values arereturn a;
obtained by summing over the arc-specific feature
function values:

%0,1 #1,2 é,

i e € out(v). Each such arc defines another line
T W m e oo e denoted by(e). If we add the slope angkintercept
o 2 notn of g(¢) to each line in the seftf, ..., fv}, then the

upper envelope will be constituted by segments of

or O 8= %1% %usin fi + g(e), ..., fv + g(e). This operation neither
wiijen changes the number of line segments nor their rela-
(e, £ 2 Y (o tive order in the envelope, and therefore it preserves
viLiyien the structure of the convex hull. As a consequence,

we can propagate the resulting envelope over an
In the following, we use the notatiom(v) andout(v)  outgoing arcs to a successor nod€ = head(e).
to refer to the set of incoming and outgoing arcs foOther incoming arcs for’ may be associated with
anodev € V. Similarly, head(s) andtail(c) denote different upper envelopes, and all that remains is
the head and tail of € &. to merge these envelopes into a single combined
To develop the algorithm for computing the up-envelope. This is, however, easy to accomplish
per envelope ofll translation hypotheses that aresince the combined envelope is simply the convex
encoded in a phrase lattice, we first consider a nodeuill of the union over the line sets which constitute
v € Vg with some incoming and outgoing arcs: the individual envelopes. Thus, by merging the
. arrays that store the line segments for the incoming
H AL arcs and applying Algorithm 1 to the resulting array
\\ "\ﬂjf;‘ we obtain the combined upper envelope faf
partial translation candidates that are associated with
paths starting at the source nodeand ending in

v'. The correctness of this procedure is based on
/\/ the following two observations:
(1) A single translation hypothesis cannot consti-

tute multiple line segments of the same envelope.
v defines a partial translation hypothesis which ca his is because translations associated with different

be represented as a line (cf. Eq. (5)). We now assun{B€ Segments are path-disjoint.

that the upper envelope for these partial translation (2) Once a partial translation has been discarded
hypotheses is known. The lines that constitute thisom an envelope because its associated inis
envelope shall be denoted k., ..., fy. Next we completely covered by the topmost line segments
consider continuations of these partial translationf the convex hull, there is no path continuation
candidates by following one of the outgoing arcshat could bring backf into the upper envelope

Each path that starts at the source nedad ends in
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again. Proof: Suppose that such a continuatioshown in Section 4, the size of the upper envelope
exists, then this continuation can be represented &w G can never exceed the size of the arc&ethe

a line g, and sincef has been discarded from thesame holds for any subgrag, ,; of G which is
envelope, the path associated wjtimust also be a induced by the paths that connect the source node
valid continuation for the line segmenys, ..., fx s With v € V. Since the envelopes propagated from
that constitute the envelope. Thus it follows thathe source to the sink node can only increase linearly
max(fi + g,..., fv +g) = max(fi,..., fy) + g < inthe number of previously processed arcs, the total
f + g for somey € R. This, however, is in contra- running time amounts to a worst case complexity of

diction with the premise thaf < max(fi, ..., fx) O([V] - €] log [£]).
forall v € R. ;

To keep track of the phrase expansions wheﬁ Upper Bound for Size of Envelopes
propagating an envelope over an outgoing @are The memory efficiency of the suggested algorithm
tail(v), the phrase labeb,, ..q(-) has to be appended results from the following theorem which provides
from the right to all partial translation hypotheses ira novel upper bound for the number of cost mini-
the envelope. The complete algorithm then worksizing paths in a directed acyclic graph with arc-
as follows: First, all nodes in the phrase latticespecific affine cost functions. The bound is not only
are sorted in topological order. Starting with themeaningful for proving the space efficiency of lattice
source node, we combine for each nadiée upper MERT, but it also provides deeper insight into the
envelopes that are associated withincoming arcs structure and complexity of the unsmoothed error
by merging their respective line arrays and reducingurface induced by log-linear models. Since we are
the merged array into a combined upper envelopgxamining a special class of shortest paths problems,
using Algorithm 1. The combined envelope is themwe will invert the sign of each local feature function
propagated over the outgoing arcs by associatingalue in order to turn the feature scores into cor-
eache € out(v) with a copy of the combined responding costs. Hence, the objective of finding
envelope. This copy is modified by adding thehe best translation hypotheses in a phrase lattice
parameters (slope angintercept) of the lingg(¢) becomes the problem of finding all cost-minimizing
to the envelope’s constituent line segments. Thgaths in a graph with affine cost functions.
envelopes of the incoming arcs are no longer needdcheorem: LetG = (V, &) be a connected directed
and can be deleted in order to release memory. Tleyclic graph with vertex sé¢, unique source and
envelope computed at the sink node is by construsink nodess,t € 1, and an arc se€ < V x V in
tion the convex hull over all translation hypothesesvhich each arc= € £ is associated with an affine
represented in the lattice, and it compactly encodest functionc.(y) = a. - v + b, ac,b: € R.
those candidates which maximize the decision rul€ounting ties only once, the cardinality of the union
Eq. (1) for any point along the ling}’ 4+ - @M. over the sets of all cost-minimizing paths for all
Algorithm 2 shows the pseudo code. Note that € R is then upper-bounded B¥|:
the component.z does not change and therefore

requires no update. {r : m =n(G;~) is a cost-minimizing
It remains to verify that the suggested algorithm ' ,cr _ .
is efficient in both running time and memory. For path inG glVen’Y}‘ < €] (7)

this purpose, we first analyze the complexity of ) "
Algorithm 1 and derive from it the running time of PY00f: The proposition holds for the empty graph
Algorithm 2. as well as for the case that = {s,t} with all

After sorting, each line object in Algorithm 1 is &7CS€ € £ joining the source and sink node. Let

visited at most three times. The first time is whery therefore be a larger graph. Then we perform

it is picked by the outer loop. The second time i€n st cut and splitg into two subgraphgj, (left
when it either gets discarded or when it terminateS§UP9raph) and (right subgraph). Arcs spanning

the inner loop. Whenever a line object is visited € Section boundary are duplicated (with the costs

for the third time, it is irrevocably removed from ©f the copied arcs irG, being set to zero) and .
the envelope. The runtime complexity is therefor&onnected with a newly added head or tail node:

dominated by the initial sorting and amounts to S 4 . Sl /:° ‘ G; o= .
O(K log K) H.C ‘ j<% S % .
Topological sort on a phrase lattice = (V,€) / j . / " j v :

| Gy | C

can be performed in tim®(|V| + |£]). As will be ‘

4
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The zero-cost arcs i, that emerged from the of using a log-linear model which constrains how
duplication process are contracted, which can beosts (or scores, respectively) can evolve due to
done without loss of generality because zero-cos$typothesis expansion. If instead quadratic cost
arcs do not affect the total costs of paths in théunctions were used, the size of the envelopes could
lattice. The contraction essentially amounts to aot be limited in the same way. The above theorem
removal of arcs and is required in order to ensurdoes not, however, provide any additional guidance
that the sum of edges in both subgraphs does nttat would help to choose more promising directions
exceed the number of edges ¢h All nodes in inthe line optimization algorithm to find better local
G1 with out-degree zero are then combined into aptima. To alleviate this problem, the following
single sink node;. Similarly, nodes inG, whose section lists some best practices that we found to be
in-degree is zero are combined into a single souragseful in the context of MERT.

node s5. Let Ny and N, denote the number of .

arcs inG; and G, respectively. By construction, > Practical Aspects

N1 + Np = [£]. Both subgraphs are smalleryyiq gection addresses some techniques that we

than g and thus, due to the induction hypothesisi,,nq to he beneficial in order to improve the
their lower envelopes consist of at mdgt and N, erformance of MERT.

line segments, respectively. We further notice th ) Random Starting Points: To prevent the line

either envelope is a convex hull whose constituenyiimi;ation algorithm from stopping in a poor local
line segments inscribe a convex polygon, in theimm MERT explores additional starting points
following denoted byP; and,. Now, we combine  pa+ are randomly chosen by sampling the parameter
both subgraphs into a single grapgh by merging space.

the sink nodet; in G, with the source node, (2) Constrained Optimization: This technique

in G». The merged node is aarticulation point  i5ys for limiting the range of some or all feature
Function weights by definingveights restrictions

R/
and hence, all paths i’ that start at the Source tyq \eight restriction for a feature functidn, is

nodes and stop in the sink nodelead through this specified as an interveR,,, = [lm, 7], s 7m €
articulation point. The grapff’ has at least asmany g , {—o0, +00} which defines the admissible region
cost minimizing paths ag, although these paths g,y \yhich the feature function weight,, can be

as well as their associated costs might be differepy, e if the line optimization is performed under
from those inG. The additivity of the cost function the presence of weights restrictionsneeds to be

and the articulation point allow us to split the costgpgen sych that the following constraint holds:
for any path froms to ¢ into two portions: the first

portion can be attributed tg; and must be a line IM <A 4y dgM <M (8)

inside P;; the remainder can be attributed ¢

and must therefore be a line insi. Hence, the (3) Weight Priors: Weight priors give a small (pos-

total costs for any path iy’ can be bounded by itive or negative) boost on the objective function

the convex hull of the superposition &f andP,. if the new weight is chosen such that it matches a

This convex hull is again a convex polygon whichcertain target valug :

consists of at moslv; + N> edges, and therefore,

the number of cost minimizing paths ¢ (and thus — : { 5(F -

also inG) is upper bounded by¥; + N;. O Topt = ATE T ZS:E(rS’ e(ts; 7))

Corollary: The upper envelope for a phrase lattice .

Gr = (Vr, &) consists of at mosE;| line segments. + 25()‘771 + - dm, Ap) "*’} 9)

This bound can even be refined and one obtains m

(proof omitted) €| — [V| + 2. Both bounds are tight. A zero-weights prio(\*, = 0) provides a means of
This result may seem somewhat surprising as @oing feature selection since the weight of a feature

states that, independent of the choice of the directidnnction which is not discriminative will be set to

along which the line optimization is performed, thezero. Aninitial-weights prior (A}, = \;,) can

structure of the error surface is far less compleke used to confine changes in the parameter update

than one might expect based on the huge numbeiith the consequence that the new parameter may

of alternative translation candidates that are refse closer to the initial weights set. Initial weights

resented in the lattice and thus contribute to thpriors are useful in cases where the starting weights

error surface. In fact, this result is a consequencaready yield a decent baseline.
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P ; T
(4) Interval Merging: The interval[y;*, ;3,) of Table 1: Corpus statistics for three text translation sets:

f"‘ translatifon h%/pOthe_SiS can b_e merged With thﬁrabic-to-Eninsh (aren), Chinese-to-English (zhen),
interval [;*,,7,°) of its left-adjacent translation and English-to-Chinese (enzh). Development and test

hypothesis if the corresponding change in the erratata are compiled from evaluation data used in past
countAEZ.fS = 0. The resulting interVahfS_prh) NIST Machine Translation Evaluations.

has a larger range, and the choiceygfi may be
more reliable.

(5) Random Directions: If the directions chosen in
the line optimization algorithm are the coordinate
axes of theM-dimensional parameter space, each
iteration will result in the update of a single feature
function only. While this update scheme provides
a ranking of the feature functions according to theirV-best re-ranking tasks. The incorporation of a
discriminative power (each iteration picks the featarge number of sparse feature functions is described
ture function for which changing the correspondingn (Watanabe et al., 2007). The paper investigates a
weight yields the highest gain), it does not takeperceptron-like online large-margin training for sta-
possible correlations between the feature functionsstical machine translation. The described approach
into account. As a consequence, the optimizatiois reported to yield significant improvements on top
procedure may stop in a poor local optimum. Orof a baseline system which employs a small number
the other hand, it is difficult to compute a directionof feature functions whose weights are optimized
that decorrelates two or more correlated featurender the MERT criterion. A study which is comple-
functions. This problem can be alleviated by exmentary to the upper bound on the size of envelopes
ploring a large number of random directions whiclderived in Section 4 is provided in (Elizalde and
update many feature weights simultaneously. Thé/oods, 2006) which shows that the number of
random directions are chosen as the lines whidnference functions of any graphical model as, for
connect some randomly distributed points on thtnstance, Bayesian networks and Markov random
surface of an\/-dimensional hypersphere with thefields is polynomial in the size of the model if the
hypersphere’s center. The center of the hypersphemember of parameters is fixed.

is defined as the initial parameter set.

data set| collection # of sentences

aren| zhen| enzh
devl nist02 1043| 878 -
dev2 nist04 1353| 1788 -
blind nist08 1360 | 1357 | 1859

7 Experiments

6 Related Work Experiments were conducted on the NIST 2008
translation tasks under the conditions of the con-

NI Strained data track for the language pairs Arabic-
for the optimization of the unsmoothed error Count'?o-Eninsh (aren), English-to-Chinese (enzh), and

Powell’'s algorithm combined with a grid-based ”neChinese to-Enali
A -to-English (zhen). The development cor-
optimization (Press et al., 2007, p. 509). In (Zenf)ora were compiled from test data used in the

et al., 2007), the MERT criterion is optimized onyq0; an4 2004 NIST evaluations. Each corpus set
N-best lists using the Downhill Simplex algorithm \ijes 4 reference translations per source sen-

(Press etal., 2007, p. 503). The optimization Procggce -~ Taple 1 summarizes some corpus statistics.
dure allows for optimizing other objective function

as, e.g., the expected BLEU score. A weakness
of the Downhill Simplex algorithm is, however, itS Table 2: BLEU score results on the NIST-08 test set
decreasing robustness for optimization problems iobtained after 25 iterations using/-best MERT or 5
more than 10 dimensions. A different approaclierations using lattice MERT, respectively.

to minimize the expected BLEU score is suggested :

in (Smith and Eisner, 2006) who use deterministi¢ dev1+dev_2 blind .
annealing to gradually turn the objective function task | loss | N-best| lattice | N-best| lattice
from a convex entropy surface into the more com-a€" | MBR | 56.6 1 57.4 | 42.9 | 43.9
plex risk surface. A large variety of different search 0-1 56.7 | 574 | 42.8 43.7
strategies for MERT are investigated in (Cer et al|,&Nzh| MBR | 39.7 1 39.6 | 365 | 38.8
2008), which provides many fruitful insights into 0-1 404 1405 | 351 37.6
the optimization process. In (Duh and Kirchhoff| ZN€n| MBR | 39.5 139.7 | 27.5 | 28.2
2008), MERT is used to boost the BLEU score on 0-1 39.6 39.6 27.0 27.6

D
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Figure 2: BLEU scores forN-best MERT and lattice Figure 4: BLEU scores on the zhen-devl corpus for

MERT after each decoding step on the zhen-dev1 corpuattice MERT with additional directions.

The grey shaded subfigure shows the complete graph

including the bottom part folV-best MERT. Figure 2 shows the evolution of the BLEU score
in the course of the iteration index on the zhen-

Translation results were evaluated using the mixedlevl corpus for either method. In each iteration,

case BLEU score metric in the implementation aghe training procedure translates the development

suggested by (Papineni et al., 2001). corpus using the most recent weights set and merges

Translation results were produced with a state-othe top ranked candidate translations (either repre-
the-art phrase-based SMT system which uses ENeNnted as phrase lattices di-best lists) into the
trained word alignment models (IBM1, HMM) and candidate repositories before the line optimization
a 5-gram language model built from the Web-1Ts performed. ForV-best MERT, we usedV = 50
collectiorf. Translation hypotheses produced on thavhich yielded the best results. In contrast to lattice
blind test data were reranked using tkénimum- MERT, N-best MERT optimizesll dimensions in
Bayes RiskMBR) decision rule (Kumar and Byrne, €ach iteration and, in addition, it also explores a
2004; Tromble et al., 2008). Each system uses a logprge number of random starting points before it
linear combination of 20 to 30 feature functions. ~re-decodes and expands the hypothesis set. As is

In a first experiment, we investigated the convertypical for N-best MERT, the first iteration causes

gence speed of lattice MERT amdi-best MERT. a dramatic performance loss caused by overadapting
the candidate repositories, which amounts to more

than27.3 BLEU points. Although this performance

loss is recouped after the 5th iteration, the initial

decline makes the line optimization undai-best

37 MERT more fragile since the optimum found at the
) M q end of the training procedure is affected by the initial

2http://www.ldc.upenn.edu, catalog entry: LDC2006T13

1l 1

“\v\ ) Jf ﬁﬂ% H performance drop rather than by the choice of the
36.6 ity ) JU TS initial start wei_ght_s_. Lattice MERT on the other hand
w64 W\\ T results in a s_lgnlflc;antly faster convergence sp_eed
' FJ%WWWﬁ and reaches its optimum already in the 5th iteration.
36.2 For lattice MERT, we used a graph density of 40

T A \ Jatice arcs per phrase which corresponds ta\abest size

I \f’\”\ of more than two octillion(2 - 10?7) entries. This
35.8 A\ huge number of alternative candidate translations
—] \4\ makes updating the weights under lattice MERT

— more reliable and robust and, comparedMebest
MERT, it becomes less likely that the same feature
weight needs to be picked again and adjusted in
Figure 3:Error surface of the phrase penalty feature aftersubsequent iterations. Figure 4 shows the evolution
the first iteration on the zhen-dev1 corpus. of the BLEU score on the zhen-devl corpus using
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Table 3: BLEU score results on the NIST-08 tests se§ Summary

o_btained after 5 iterations u_sing_ Iatti.ce MERT withwe presented a novel algorithm that allows for
different numbers of random directions in addition to theefficiently constructing and representing the un-
optimization along the coordinate axes. smoothed error surface over all sentence hypotheses
#random! devi+dev? blind that are represented in a phrase lattice. The proposed
task | directions! 0-1 | MBR | 0-1 | MBR algorithm was used to train the feature function
aren 15741574 | 43.7]| 439 weights of a log-linear model for a statistical ma-
1000| 57.61 57.7 | 43.9| 445 chine translation system under ténimum Error
zhen — 13961397 | 276 280 Rate Training(MERT) criterion. Lattice MERT was
500! 395|399 | 27.9| 28.3 shown analytically and experimentally to be supe-
rior over N-best MERT, resulting in significantly
faster convergence speed and a reduced number of
decoding steps. While the approach was used to

-9 . - ; ‘optimize the model parameters of a single machine
The perfo_rmance drop_ in iteration 11s also attrlbu_te anslation system, there are many other applications
to overfitting the candidate repository. The declln‘T=n which this fram1ework can be useful. too. One
of less tham:5% in terms of BLEU s, however, ossible usecase is the computation of consensus
almost negligible compared to the performance drop. .\ tions from the outputs of multiple machine
of more than27% in case ofV -best_MERT. The translation systems where this framework allows us
vast number of alternative translation hypothes

. : . estimate the system prior weights directly on con-
represented in a lattice also increases the numb';arSion networks (Rosti et al., 2007; Macherey and
of phase transitions in the error surface, and th W ' y

revents MERT from selecting a low oerformin “Sch, 2007). It is also straightforward to extend the
]P i iahts set at early st ga th P timi t.gsuggested method to hypergraphs and forests as they
eature weigh's set at early stages in the optimizatiog}, o used, e.g., in hierarchical and syntax-augmented

procedure. This is illustrated in Figure 3, WhereS - i
: ; : ystems (Chiang, 2005; Zollmann and Venugopal,
lattice MERT andnv-best MERT find different op- 2006). Our future work will therefore focus on how

$nuch system combination and syntax-augmented

function after the first iteration. Table 2 shows th . . . .
) achine translation can benefit from lattice MERT
BLEU score results on the NIST 2008 blind te:@nd to what extent feature function weights can

using the combined devl+dev2 corpus as trainin . :
data. While only the aren task shows improvementlgjbus'[Iy be estimated using the suggested method.
on the development data, lattice MERT provides
consistent gains oveN-best MERT on all three References
blind test sets. The reduced performanceNobest ,

i L Bentley and T. A. Ottmann. 1979. Algorithms for

MERT is a consequence of the performance drop | reporting and counting geometric intersectiotSEE
he first iteration which he final weigh
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