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Abstract

The conditional phrase translation probabil-
ities constitute the principal components of

phrase-based machine translation systems.

These probabilities are estimated using a
heuristic method that does not seem to opti-
mize any reasonable objective function of the
word-aligned, parallel training corpus. Ear-
lier efforts on devising a better understood
estimator either do not scale to reasonably
sized training data, or lead to deteriorating
performance. In this paper we explore a new
approach based on three ingredients (1) A
generative model with a prior over latent
segmentations derived from Inversion Trans-
duction Grammar (ITG), (2) A phrase ta-
ble containing all phrase pairs without length
limit, and (3) Smoothing as learning ob-
jective using a novel Maximum-A-Posteriori
version of Deleted Estimation working with
Expectation-Maximization.  Where others
conclude that latent segmentations lead to
overfitting and deteriorating performance,
we show here that these three ingredients
give performance equivalent to the heuristic
methodon reasonably sized training data
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2003). While this heuristic estimator gives good em-
pirical results, it does not seem to optimize any intu-
itively reasonable objective function of the (word-
aligned) parallel corpus (see e.g., (DeNero et al.,
2006)) The mounting number of efforts attacking
this problem over the last few years (DeNero et al.,
2006; Marcu and Wong, 2002; Birch et al., 2006;
Moore and Quirk, 2007; Zhang et al., 2008) exhibits
its difficulty. So far, none has lead to an alternative
method that performs as well as the heuristices
sonably sized data (approx. 1000k sentence pair)

Given a parallel corpus, an estimator for phrase-
tables in PBSMT involves two interacting decisions
(1) which phrase pairs to extract, and (2) how to as-
sign probabilities to the extracted pairs. The heuris-
tic estimator employs word-alignment (Giza++)
(Och and Ney, 2003) and a few thumb rules for
defining phrase pairs, and then extracts a multi-set
of phrase pairs and estimates their conditional prob-
abilities based on the counts in the multi-set. Us-
ing this method for extracting a set of phrase pairs,
(DeNero et al., 2006; Moore and Quirk, 2007) aim
at defining a better estimator for the probabilities.
Generally speaking, both efforts report deteriorating
translation performance relative to the heuristic.

Instead of employing word-alignment to guide

A major component in phrase-based statistical Mghrase pair extraction, it is theoretically more ap-
chine translation (PBSMT) (Zens et al., 2002pealing to aim at phrase alignment as part of the esti-
Koehn et al., 2003) is the table of conditional probmation process (Marcu and Wong, 2002; Birch et al.,
abilities of phrase translation pairs. The pervadin@006). This way, phrase pair extraction goes hand-
method for estimating these probabilities is a simin-hand with estimating the probabilities.
ple heuristic based on the relative frequency of thever, in practice, due to the huge number of possi-
phrase paiin the multi-set of the phrase pairs ex-ble phrase pairs, this task is rather challenging, both
tracted from the word-aligned corpy&oehn et al.,

How-

computationally and statistically. It is hard to define
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both a manageable phrase pair translation model aptbys Bayesian priors over the estimates (Zhang et
a well-founded training regime that would scale ugl., 2008).
to reasonably sized parallel corpora (see e.g., (Birch
et al., 2006)). It remains to be seen whether this th@ Related work
oretically interesting approach will lead to improved
phrase probability estimates. Marcu and Wong (Marcu and Wong, 2002) realize
In this paper we also start out from a Stan.that the prOblem of eXtraCting phrase pairS should
dard phrase extraction procedure based on Worae intertwined with the method of probability esti-
alignment and aim solely at estimating the condimation. They formulate a joint phrase-based model
tional probabilities for the phrase pairs and theith Which a source-target sentence pair is generated
reverse translation probabilities. Unlike precedindPintly. However, the huge number of possible
work, we extracill phrase pairsfrom the training Phrase-alignmentprohibits scaling up the estima-
corpus and estimate their probabilities, i.e., withouion by Expectation-Maximization (EM) (Dempster
limit on length. We present a novel formulation ofét al., 1977) to large corpora. Birch et al (Birch et
a conditional translation model that works with a@l-, 2006) provide soft measures for including word-
prior over Segmenta‘[ionand a bag of conditional alignments in the estimation process and obtain im-
phrase pairs. We use binary Synchronous Contex@roved results only on small data sets.
Free Grammar (bSCFG), based on Inversion Trans- Coming up-to-date, (Blunsom et al., 2008) at-
duction Grammar (ITG) (Wu, 1997; Chiang, 2005a)tempt a related estimation problem to (Marcu and
to define the set of eligible segmentations for adVong, 2002), using the expanded phrase pair set
aligned sentence pair. We also show how the nunef (Chiang, 2005a), working with an exponential
ber of spurious derivations per segmentation in thigodel and concentrating on marginalizing out the
bSCFG can be used for devising a prior probabillatent segmentation variable. Also most up-to-date,
ity over the space of segmentations, capturing thgZhang et al., 2008) report on a multi-stage model,
biasin the datatowards monotone translation. Thewithout a latent segmentation variable, but with a
heart of the estimation process is a newoothing Strong prior preferring sparse estimates embedded in
estimator a penalized version of Deleted Estima-<a Variational Bayes (VB) estimator and concentrat-
tion, which averages the temporgpyobability es- ing the efforts on pruning both the space of phrase
timates of multiple parallel EM processes at eachpairs and the space of (ITG) analyses. The latter two
joint iteration. efforts report improved performance, albeit again on
For evaluation we use a state-of-the-art baselinglimited training set (approx. 140k sentences up to
system (Moses) (Hoang and Koehn, 2008) which certain length).
works with a log-linear interpolation of feature func- DeNero et al (2006) have explored estimation us-
tions optimized by MERT (Och, 2003). We sim-ing EM of phrase pair probabilities under a con-
ply substitute our own estimates for the heuristiditional translation model based on the original
phrase translation estimates (both directions and tiseurce-channel formulation. This model involves a
phrase penalty score) and compare the two withinidden segmentation variable that is set uniformly
the Moses decoder. While our estimates differ sulfor to prefer shorter phrases over longer ones). Fur-
stantially from the heuristic, their performance is orthermore, the model involves a reordering compo-
par with the heuristic estimates. This is remarknent akin to the one used in IBM model 3. De-
able given the fact that comparable previous workpite this, the heuristic estimator remains superior
(DeNero et al., 2006; Moore and Quirk, 2007) didbecause "EM learns overly determinized segmen-
not match the performance of the heuristic estimaations and translation parameters, overfitting the
tor using large training sets. We find that smoothtraining data and failing to generalize”. More re-
ing is crucial for achieving good estimates. Thisently, (Moore and Quirk, 2007) devise a estimator
is in line with earlier work on consistent estimationworking with a model that does not include a hid-
for similar models (Zollmann and Sima’an, 2006),den segmentation variable but works with a heuris-
and agrees with the most up-to-date work that eniic iterative procedure (rather than MLE or EM). The
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translation results remain inferior to the heuristic butal biases that might emerge due to length cut-off

the authors note an interesting trade-off between dg?_-he Generative Mode: Given a word-aligned

coding speed and the various settings of this estima- .
tor source-target sentence péfi, e, a), the generative

story underlying our model goes as follows:
Our work expands on the general approach taken

by (DeNero et al., 2006; Moore and Quirk, 2007) 1. Abiding by the word-alignments ia, segment
but arrives at insights similar to those of the most  the source-target sentence pdire) into a se-
recent work (Zhang et al., 2006), albeit in a com-  quence of/ containerscs{, and a bag ofl
pletely different manner. The present work differs  phrase pairsri(f,e) = {(fj,e;) §:1. Each
from all preceding work in that it employs the set containero; = (lf,r¢,lc,re) consists of the
of all phrase pairsduring training. It differs from start/; and endr/ positiong for a phrase in
(Zhang et al., 2008) in that it does postulate a la- f and the starl. and endr. positions for an
tent segmentation variable and puts the prior di- aligned phrase ie.
rectly over that variable rather than over the ITG
synchronous rule estimates. Our method neitherz'
excludes phrase pairs before estimation nor does it
prune the space of possible segmentations/analyses
during training/estimation. As well as smoothing,
we find (in the same vein as (Zhang et al., 2008)tpjs |eads to the following probabilistic model:
that setting effective priors/smoothing is crucial for
EM to arrive at better estimates. P(fle;a)=> P(of) [] Pfile) )
oiex(a) (fi.ej)€0] (f.e)

For a given segmentation!, for every con-
tainero; (1 < j < I) generate the phrase-pair
(fj,ej), independently from all other phrase-
pairs.

3 TheTransation Model Where (a) is the set ofbinarizable segmenta-

tions (defined next) that are eligible according to the
Given a word-aligned parallel corpus of sourceyord-alignmentsa betweerf ande. These segmen-
target sentences, It Is common practice to extraCligtions into bilingual containers (where segmenta-
set of phrase pairs using extraction heuristics (Cfions are taken inside the containers) are different
(Koehn et al., 2003; Och and Ney, 2004)). Thesgom the monolingual segmentations used in earlier
heuristics define a phrase pair to consist of a SOUr¢®mparable conditional models (e.g., (DeNero et al.,
and target ngrams of a word-aligned source-targelpoe)) which must generate the alignment on top of
sentence pair such that if one end of an alignmeffe segmentations. Note how the different phrase
is in the one ngram, the other end is in the othepairs(f;, ¢,) are generated from their bilingual con-
ngram (and there is at least one such alignmen@iners in the given segmentatiord. We will dis-
(Och and Ney, 2004; Koehn et al., 2003). For eftyss our choice of prior probability over segmenta-

ficiency and sparseness, the practitioners of PBSMions p(51) after we discuss the definition of the bi-
constrain the length of the source phrase to a certaiyrizable segmentation(a)

maximum number of words.

3.1 Binarizable segmentations X(a)

An All Phrase PairsModel:  In this work we train  Following (Zhang et al., 2006; Huang et al., 2008),
a phrase-translation table that consistalbphrase- every sequence grase alignmentsan be viewed

i -ali d 10 - . .
pal_rs_ that can be ex_traCted from the word-aligne 1For example, if the cut-off on phrase pairs is ten words, all
training data according to the standard phrase eXentence pairs smaller than ten words in the training data wi

traction heuristic. After training, we can still limit be included as phrase pairs as well. These sentences degitrea

the set of phrase pairs to those selected by a cut-@#fferently from longer sentences, which are not allowethé¢o
on phrase length. The reason for using all phraspehrase pairs.
) 2The NULL alignments (word-to-NULL) in the training

pairs during training is that iF gives_ a C_le_ar poi.nt Ofgata can also be marked with actual positions on both sides in
reference for an estimator, without implicit, acciden-erder to allow for this definition of containers.
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as a sequence of integets. .. together with a Transduction Grammar (Wu, 1997). This SCFG

permuted version of this sequengé€l),...,n(I), (Chiang, 2005b) has two binary synchronous rules
where the two copies of an integer in the two sethat correspond resp. to the contiguous monotone
guences are assumed aligned/paired together. Faord inverted alignments:

example, possible permutations 6f,2,3,4} are

{2,1,3,4} and {2,4,1,3}. Because a segmenta- XP — Xp ij Xp Xp 2)

tion o of a sentence pair is also a sequence of

aligneé phrases, it also constitutes a permuted se- XP — XP XP? XP XP

guence. A binarizable permutaticn is either of _ _ _
length one, or can byar operly split into two binariz- The boxed integers in the superscripts on the non-

able sub-sequencesandz such that eithérz < y terminal X P denote synchronized rewritings. In
ory < z. For example, one way to binarize thethiS work, we employ a binary SCFG (bSCFG)
permutation{2, 1, 3,4} is to introduce a proper split WOrking with these two synchronous rules to-
into {2, 1; 3, 4}, then recursively another proper split9ether with a set of lexical rulefXr —
of {2,1} into {2;1} and{3,4} into {3;4}. Incon- [» €| (f,€) is aphrase pair}.

trast, the permutatiofi2, 4, 1, 3} is non-binarizable. !N this bSCFG, every derivation corresponds to a
binarization of a segmentation of the input. Note
<> I that the bSCFG defined in equation 2 generates all
P PN possible binarizations for every segmentation of the
<> [ 4 input. It is possible to constrain this bSCFG such
2/\1 3/\4 <>/\3 that it generates a single, canonical derivation per
segmentation. However, in section 3.2 we show that
2/\1 the number of such derivations is a good measure of
phrase pair productivity.
Figure 1: Multiple ways to binarize a permutation It is well known that there are alignments and

_ _ _ o segmentations that this bSCFG does not cover (see

_Grgphlcally speak|_ng, the recurswe_deflnltlon Of(Huang et al., 2008)). Recently, strong evidence
binarizable permutations can be depicted as a tlé‘merged (e.g., (Huang et al., 2008)) showing that
nary tree structure where the nodes correspond fRost word-alignments of actual parallel corpora can
recursive proper splits pf the permutation, and thge covered by a binarized SCFG of the ITG type.
leaves are decorated with the naturals. Figure 1 ekyrthermore, because our model employs the set of
hibits two possible binarizations of the same permuy)| phrase-pairsthat can be extracted from a given
tation where<> and(] denote inverted and mono- yraining set, it will always find segmentations that
tone proper splits respectively. Note that the numbesy,er every sentence pair in the training dafBhis
of possible binarizations of a binarizable Permutaymplies that while our model might discard non-
tion is a recursive function of the number of possipinarizable segmentations for certain complex word
ble proper splits and reaches its maximum for fullyignments, we do manage to train the model on the
monotone permutations (all binary trees, which is ginarizable segementations of all sentence pairs.
factorial function of the length of the permutation). Up to the prior over segmentations (see next), we

By definition (cf. (Zhang et al., 2006; Huang etimplement the above model using a weighted ver-
al., 2008)), a binarizable segmentation/permutatiogion of the binary SCFG as follows:

can be recognized by a binarized Synchronous

Context-Free Grammar (SCFG), i.e., an SCFG in ¢ The weight for lexical rules is given by
which the right hand sides of all non-lexical rules P(XP — f,e) := P(f | e), where(f,e) is
constitute binarizable permutations. In particular, a phrase-pair. These are the trainable parame-
this holds for the SCFG implementing Inversion ters of our model.

3For two sequences of numbers, the notaor: = stands “In the worst case the whole sentence pair is a phrase pair
forVyey,Vzez:y<z. with a trivial segmentation.
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tion of {3,4,2}. Hence, while the first segmen-
/ tation involves shorter containers than the second
./<.\. b one, these shorter containers arepasductive as

e ‘® ] X

1 ‘%@ 5 113 a4 2] [s the large containef3, 4,2}, i.e., they combine with

‘ ‘.:)s' ‘ ‘ % ‘ surrounding containers in the same number of ways

1 é‘&x 5 111273 alls as the large container. In such and similar cases,
there are no grounds for the bias towards shorter

. _ . . phrases/containers.
Figure 2: Two segmentations of an align- . . -
ment/permutation. Both segmentations have the The notion ofcontainer productivity(the num-

same number of binarizations despite differences iR€r of ways in which it combines with surrounding
container sizes. containers during training) seems to correlate with
the expected number of ways a container can be
used during decoding, which should be correlated
r\g{ith expected coverage. During training, contain-
ers that are often surrounded by other, monotoni-
cally aligned containers are expected to be more pro-
Where we use the notatiof(.) for the weight of a ductive than alternative containers that are often sur-
synchronous rule. rounded by crossing alignments. Hence, the num-
ber of binarizations that a segmentation has under
the bSCFG is a direct function of the ways in which
As it has been found out by (DeNero et al., 2006)the containers combine among themselves (mono-
it is not easy to come up with a simple, effectone vs. inverted/crossing) within segmentations,
tive prior distribution over segmentations that aland provides a more accurate measure of container
lows for improved phrase pair estimates. Within groductivity than container length. Hence, the final
Maximum-Likelihood estimator, preference for segmodel we employ is the following:

mentations>! consisting of longer containers could

lead to overfitting as we will explain in section 4. P(f|e;a) =
Alternatively, it is tempting to have preference for N(o!)
segmentationsr! that consist of shorter contain- Z Z(3(a))
ers, because (generally speaking) shorter contain-  °1€%()
ers have higher expected coverage of new sentence

I . . .
pairs. However, mere bias for shorter container{/neré N(o1) is the number of binary deriva-

will not give better estimates as observed by (DeNtions/trees that{ has in the bm;ary_SCFC_; (bSCFG),
ero et al., 2006). One case where this bias clearfNdZ(3(2)) = Xo7ex@ N(ot), i.e., this prior is
fails is the case of a contiguous sequence of cotbe ratio of number of derivations off to the to-
tainers with a complex alignment structure (crosstal number of derivations thdf, e, a) has under the
ing alignments). For example (see figure 2), foPSCFG.

the alignment{1, 3,4, 2,5} there is a segmentation
into five containers(1; 3;4;2;5}, and another into
three{1; 3,4, 2;5}. The first segmentation involves In contrast with the model of (DeNero et al., 2006),
shorter containers that have crossing brackets amongpo define the segmentations over the source sen-
them, while the second one consists of three cotencef alone, our model employs bilingual con-
tainers including a longer containdB,4,2}. In tainers thereby segmenting both source and target
the first segmentation, due to their crossing alignsides simultaneously. Therefore, unlike (DeNero
ments, each of the containef3}, {4} and{2} will et al., 2006), our model does not need to gener-
not combine with the surrounding contexXil{ and ate the word-alignments explicitly, as these are em-
{5}) on its own, i.e., without the other two contain-bedded in the segmentations. Similarly, our model
ers. Furthermore, there is only a single binarizadoes not includexplicit penalty terms for reorder-

e The weights for the two non-lexical rules in
equation 2 are fixed at 1.0. These weights al
not trained at all.

3.2 Prior over segmentations

I[I Plfile) B

(fj7ej>60{ (fve)

3.3 Contrast with ssimilar models:
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ing/inversion but includes a related bias in the priot
probabilities over segmentatiodyo{). INPUT: Word-aligned parallel training daté
In a way, the segmentations and bilingual contain@UTPUT: Estimatesr for all P(f | e)
ers we use can be viewed as similar to the concepts
used in the Joint Model of Marcu and Wong (MarcuSplittraining datal’ into equal partdy, ... ., Hio.
and Wong, 2002). Unlike (Marcu and Wong, 2002)For 1 <i <10 do
however, our model works with conditional proba- Extractfrom E; = U;.;H; all phrase pairs;
bilities and starts out from the word-alignments. Initialize 77 to uniform conditional probs
The novel aspects of our model are three (1) It dd-€tj =0
fines the set of segmentations using a bSCFG, (2) fepeat
includes a novel, refined prior probability over seg- Letj=j+1  //EMiteration counter
mentations, and (3) It employs all phrase pairs that For 1 < <10 do

can be extracted from a word-aligned training par- E-step: calculate expected counts for pairs

allel corpus. For these novel elements to produce in 7/ on H; using counts frong/ .

reasonable estimates, we devise our own estimator. M-step: calculate probabilities for pairs in
7 from the expected counts

4 Estimation by Smoothing For 1 <i<10 do 7/ i= & 310, f

i (] ~J
In principle, we are dealing here with a translatior"ti! 7 := {71, ..., 71y} has converged

model that employs all phrase pairs (of unbounde
size), extracted from a word-aligned parallel cor-
pus. Under this model, where a phrase pair and

its sub-phrase pairs are included in the model, the Figure 3: Penalized Deleted Estimation
MLE can be expected to overfit the datanless a

suitable prior probability over segmentations is eMgjag

ployed. Indeed, the prior over segmentations defined For a latent variable model, it is usually common

in the precedmg_ §ect|on pre_:v_ents the MLE frorr}o employ Expectation-Maximization (EM) (Demp-
completely overfitting the training data. Howeverg . ot al., 1977) as a search method for a (local)
we find empirical evidence that this prior is insum'maximum—likelihood estimate (MLE) of the train-
cient for avoiding overfltt.lng. ing data. Instead of mere EM we opt fosaoothed
Our model behaves like memory-based model o jon: we present a new method, that combines
because it memorizes all extractable phrase PalfSeleted Estimation (Jelinek and Mercer, 1980) with

found in the training data including the training seny o j35ckknife (Duda et al., 2001) as the core estima-
tence pairs themselves. Such memory-based mog;

els are related to nonparametric models such aSFigure 3 shows the pseudo-code for our estima-

K-NN and kernel methods (Hastie et al., 2001)tor. Like in Deleted Estimation, we split the training

For mc_amory-based models, consistent t_astimgtion_fgrata into ten equal portions. This way we create ten
novel instances proceeds by local density eSt'mat'Od]fferent splits ofextraction/heldout setsf respec-

from the surroundings of the instance, which is akirfively 90%/10% of the training set. For every split
to smoothing for parametric models. Hence, next WE " < 10. we extract a set of phrase pairsfrom
describe our own version ofsmootheMaximum- the extractionset £; and train it (under our model)

Likelihood estimator for phrase translation probabll-On theheldout seff7;. Naturally, the phrase pair sets

5One trivial MLE solution would give the longest container, ™ (1 < @ < 10) are subsets of (or equal to) the set
consisting of the longest phrase pairs, a probability of, @te of phrase pairsr = U;m; extracted from the total
the cost of all shorter alternatives. A similar problemesitn  training data (i.e.r is the set of model parameters).

Data-Oriented Parsing, see (Sima’an and Buratto, 2003; Zo L . S . )
mann and Sima’an, 2006). Note that models that employ anhe training of the different;’s, each on its corre

upperbound on phrase pair length will still risk overfittingin-  SPonding heldout sef;, is done by ten separate EM
ing sentences of lengths that fall within this upperbound. processes, which are synchronized in their initializa-
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tion, their iterations as well as stop condition. Thdenalized Deleted Estimation: In contrast with
EM processes start out from uniform conditional eseur method, Deleted Estimation sums #pected
timates of the phrase pairs in all. After every EM counts (rather than probabilities) obtained from
iteration j, when the M-step has finished, the estithe different splits before applying the M-step
mates in allwf (1 < i < 10) are set to the average (normalization). While the rationale behind Deleted
(overl < i < 10) of the estimates imljf leading to Estimation comes from MLE over the original
7/ (following the Jackknife method). The resultingtraining data, our method has a smoothing objective
averaged probabilities i/ are then used as the cur-(inspired by the Jackknife ): generally speaking, the
rent phrase pair estimates, which feed into the neverages over different heldout sets (under different
iteration j + 1 of the different EM processes (eachSubsets of the model) give less sharp estimates than
working on a different heldout sé; with a differ- MLE. By averaging the different heldout estimates,

ent set of phrase pairs). this estimator employs a penalty term that depends
There are two special boundary cases which d&n the _marglnal count ot in _the heldout sét
mand special attention during estimation: Interestingly, when the phraseis very frequertt,

it will approximately occur almost as often in the
Sparsedistributions: For a phrase that does oc- (ifferent heldout sets. In this case, our method
cur both inH; and E;, there could be a phrase reduces to Deleted Estimation, where it effectively
pair (f,e) that does occur irf; but doesnot  sums the counfs Yet, when the target phrase
occur in7;. To prevent EM from giving the does occur only very few times, it is likely that its
extra probability mass to all other paif§,e’)  count in some splits will be zero. In our method, at
unjustifiably, we apply smoothing. We add theeyery EM iteration, during the Maximization step,
missing pair(f, e) to m; and set its probability \ve set such cases back to uniform. By averaging the
to a fixed numben0~>*/", wherelen is the probabilities from the different splits over many EM
length of the phrase pair. In effect, we backoffterations, setting these cases to uniform constitutes
our model (equation 1) to a word-level modely kind of prior that prevents the final estimates
with fixed word translation probabilityl0~°).  from falling too far from uniform. In contrast, in
Zero distributions: When a phrase does not oc- Deleted Int_erpolation the zero co_unts are simply
cur in H;, all its pairs (f,e) in , will have summed with tht_a othgr corresponding counts of t_r_le
zero counts. During each EM iteration, wherame phrase pair, which _Ieads to sharper probability
the M-step is applied, the distributiaf(- | ) distributions. In aI_I experiments that_ we conducted,
is undefined by MLE, since it is irrelevant for our. me_thod (which we callPenahzed_ Deleted
the likelihood of H;. In this case any choice Estimation) gave more successful estimates than

of proper distributionP(- | e) will constitute an mere Deleted Estimation.
MLE solution. We choose to set this case to a

uniform distribution every time again. On the theoretical side, the choice for a fixed

. . . “Def
Since our model and estimator are implemented Define county(z) to be the count of eventz

L L in data y. The Deleted Estimation (DE) estimate is
within the bSCFG framework, we use a blllnguaIZH count 1 (f,e)/countr(e), which can be written as
CYK parser (Younger, 1967) under the grammas’ [counts (f,e)/counts (e)][counts (e)/countr(e)] =
in equation 2. This parser builds for every input_ mu (fle)lcountsu (e)/countr(e)] wheremy(fle) is the
<f,a,e> all binarizations/derivations for every S(_:,(‘:]_estlm{ﬂte from heldout s€i. Hence, DE linearly !nterpolated

tation in%(a). For implementing EM, we em- wy With factors count g (e)/countr(e). Our estimator em-

menta ) a). ) P ) g T ploys uniform interpolation factors instead, thereby pieirey
ploy the Inside-Outside algorithm (Lari and Young,the DI counts (hence Penalized DI).
1990; Goodman, 1998). During estimation, because ’Theoretically speaking, when the training data is unbound-
the input, output and word-alignment are knowrgdly large, our esti_rnatc_)r will converge to thz_e same estimate
in advance. the time and sbace requirements ra§ the Deleted Estimation. When the data is still sparse, our

; ! i P a _gstimator is biased, unlike the MLE which will overfit.
main manageable despite the worst-case complexity syhen calculating the conditional probabilities, the derom

O(n®) in target sentence length inators used are approximately equal to one another.
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prior over segmentations (ITG prior) implies that ourPhrases| System BLEU

model cannot be estimated to converge (in proba<7 | Baseline PBSMT 33.03
bility) to the relative frequency estimates (RFE) of < 10 | Baseline PBSMT 33.03
source-target sentence pairs in the limit of the train-All Baseline PBSMT 33.00
ing data (a sufficiently large parallel corpus). Aprior <7 [ EM + ITG Prior 32.50
probability over segmentations that would allow our < 7 | EM + Del. Est. 32.67
estimator to converge in the limit to the RFE must < 7 | EM + Del. Est. + ITG Prior 32.73

gradually prefer segmentations consisting of Iarger; 7 | EM + Pen. Del. Est. + ITG Priot 33.02
containers as the data grows large. We set the dex 1) | EM + Pen. Del. Est. + ITG Priot 33.14

sign and estimation of such a prior aside for future p|| EM + Pen. Del. Est. + ITG Priot 32.98
work.

. . Table 1: Results: data from ACL@7*Y Wkshp on SMT
5 Empirical experiments

Decoding and Baseline Model: In this work Workshop on Statistical Machine Translatith Af-
we employ an existing decoder, Moses (Hoanger pruning sentence pairs with word length more
and Koehn, 2008), which defines a log-lineathan 40 on either side, we are left with 949K sen-
model interpolating feature functions, with interpo-tence pairs for training. The development and test
lation scores\; e* = argmaxe y_rcq A\pHy(f,e). data are composed of 2K sentence pairs each. All
The Ay are optimized by Minimum-Error Training data sets are lower-cased.
(MERT) (Och, 2003). The se® consists of the  For both the baseline system and our method,
following feature functions (see (Hoang and Koehnwe produce word-level alignments for the parallel
2008)): a 5-gram target language model, the stamraining corpus using GIZA++. We use 5 iterations
dard reordering scores, the word and phrase penaly each IBM Model 1 and HMM alignment mod-
scores, the conditional lexical estimates obtainedls, followed by 3 iterations of each Model 3 and
from the word-alignment in both directions, and theModel 4. From this aligned training corpus, we ex-
conditional phrase translation estimates in both diract the phrase pairs according to the heuristics in
rectionsP(f | e) and P(e | f). Keeping the other (Koehn et al., 2003). The baseline system extracts
five feature functions fixed, we compare our estiall phrase-pairs upto a certain maximum length on
mates of P(f | ) and P(e | f) (and the phrase both sides and employs the heuristic estimator. The
penalty) to the commonly used heuristic estimatesjanguage model used in all systems is a 5-gram lan-
Because our model employs a latent segmentguage model trained on the English side of the paral-
tion variable, this variable should be marginalizedel corpus. Minimum-Error Rate Training (MERT)
out during decoding to allow selecting the highesis applied on the development set to obtain opti-
probability translation given the input. This turnsmal log-linear interpolation weights for all systems.
out crucial for improved results (cf. (Blunsom et al.,Performance is measured by computing the BLEU
2008)). However, such a marginalization can be NPscores (Papineni et al., 2002) of the system'’s trans-
Complete, in analogy to a similar problem in Datalations, when compared against a single reference
Oriented Parsing (Sima’an, 2082We do not have translation per sentence.
a decoder yet that can approximate this marginaliza-

tion efficiently and we employ the standard Mose&eUIts:  We compare different versions of our
decoder for this work. system against the baseline system using the heuris-

tic estimator. We observe the effects of the ITG prior
Experimental Setup: The training, development in the translation model as well as the method of es-

and test data all come from the French_Engnsﬁmaﬂon (Deleted Estimation vs. Penalized Deleted

translation shared task of the ACL 2007 Secon&sStimation).

- Table 1 exhibits the BLEU scores for the sys-
°A reduction of simple instances of the first problem to in-
stances of the latter problem should be possible. Phttp://www.statmt.org/wmt07
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tems. Our own system (with ITG prior and Pe-n the generative translation model lead to overfit-
nalized Deleted Estimation and maximum phraseing while attaining higher likelihood of the train-
length ten words) scores (33.14), slightly outpering data than the heuristic estimator. Based on this
forming the best baseline system (33.03). When usdvise (Moore and Quirk, 2007) exclude the latent
ing straight Deleted Estimation over EM, this leadsegmentation variables and opt for a heuristic train-
to deterioration (32.73). When also the ITG prior igng procedure. In this work we also start out from a
excluded (by having a single derivation per segmergenerative model with latent segmentation variables.
tation) this leads to further deterioration (32.67). ByHowever, we find out that concentrating the learning
using mere EM with an ITG prior, performance goegffort on smoothing is crucial for good performance.
down to 32.50, exhibiting the crucial role of the es+or this, we devise ITG-based priors over segmenta-
timation by smoothing. Clearly, Penalized Deletedions and employ a penalized version of Deleted Es-
Estimation and the ITG prior are important for thetimation working with EM at its core. The fact that
improved phrase translation estimates. our results (at least) match the heuristic estimates on
As table 1 shows we also varied the phrase length reasonably sized data set (947k parallel sentence
cutoff (seven, ten or none=all phrase pairs). Thpairs) is rather encouraging.
length cutoff pertains to both sides of a phrase-pair. The work in (Zhang et al., 2008) has a simi-
For our estimator, we always train all phrase pairdar flavor to our work, yet the two differ substan-
applying the length cutoff only after training (no re-tially. Both depart from Maximum-Likelihood to-
normalization is applied at that point). wards non-overfitting estimators. Where Zhang et al
Interestingly, we find out that the heuristic estimachoose for sparse priors (leading to sharp phrase dis-
tor cannot benefit performance by including longetributions) and put the smoothing burden on the ITG
phrase pairs. Our estimator does benefit perfofule parameters and a pruning strategy, we choose
mance by including phrase pairs of length upto tefor a prior over segmentations determined by the
words, but then it degrades again when includingTG derivation space and smooth the MLE directly
all phrase pairs. We take the latter finding to sigwith a penalized version of Deleted Estimation. It
nal remaining overfitting that proved resistant to théemains to be seen how the two biases compare to
smoothing applied by our estimator. The heuristi©ne another on the same task.
estimator exhibits a similar degradation. There are various strands of future research.
We also tried to vary the treatment of Sparse DisEirstly, we plan to explore our estimator on other
tributions (section 4, page 7) during heldout estimadanguage pairs in order to obtain more evidence on
tion from fixed word-translation probabilities to theits behavior. Secondly, as (Blunsom et al., 2008)
lexical model probabilities. This lead to slight dete-show, marginalizing out the different segmentations
rioration of results (32.94). Itis unclear whether thigluring decoding leads to improved performance. We
deterioration is meaningful or not. We did not exJlan to build our own decoder (based on ITG) where
plore mere EM without any smoothing or ITG prior, different ideas can be tested including tractable ways
as we expect it will directly overfit the training datafor achieving a marginalization effect. Apart from a
as reported by (DeNero et al., 2006). new decoder, it will be worthwhile adapting the prior
We note that for French-English translation it igProbability in our model to allow for consistent es-
hard to outperform the heuristic within the PBSMTiIMation. Finally, it would be interesting to study
framework, since it already performs very wellProperties of the penalized Deleted Estimation used
Preliminary, most recent experiments on Germar0 this paper.

tor outperforms the heuristic. by a VIDI grant (nr. 639.022.604) from The Nether-
lands Organization for Scientific Research (NWO).
6 Discussion and Future Research David Chiang and Andy Way are acknowledged for

stimulating discussions on machine translation and
The most similar efforts to ours, mainly (DeNeroparsing.
et al., 2006), conclude that segmentation variables
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