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Abstract

The conditional phrase translation probabil-
ities constitute the principal components of
phrase-based machine translation systems.
These probabilities are estimated using a
heuristic method that does not seem to opti-
mize any reasonable objective function of the
word-aligned, parallel training corpus. Ear-
lier efforts on devising a better understood
estimator either do not scale to reasonably
sized training data, or lead to deteriorating
performance. In this paper we explore a new
approach based on three ingredients (1) A
generative model with a prior over latent
segmentations derived from Inversion Trans-
duction Grammar (ITG), (2) A phrase ta-
ble containing all phrase pairs without length
limit, and (3) Smoothing as learning ob-
jective using a novel Maximum-A-Posteriori
version of Deleted Estimation working with
Expectation-Maximization. Where others
conclude that latent segmentations lead to
overfitting and deteriorating performance,
we show here that these three ingredients
give performance equivalent to the heuristic
methodon reasonably sized training data.

1 Motivation

A major component in phrase-based statistical Ma-
chine translation (PBSMT) (Zens et al., 2002;
Koehn et al., 2003) is the table of conditional prob-
abilities of phrase translation pairs. The pervading
method for estimating these probabilities is a sim-
ple heuristic based on the relative frequency of the
phrase pairin the multi-set of the phrase pairs ex-
tracted from the word-aligned corpus(Koehn et al.,

2003). While this heuristic estimator gives good em-
pirical results, it does not seem to optimize any intu-
itively reasonable objective function of the (word-
aligned) parallel corpus (see e.g., (DeNero et al.,
2006)) The mounting number of efforts attacking
this problem over the last few years (DeNero et al.,
2006; Marcu and Wong, 2002; Birch et al., 2006;
Moore and Quirk, 2007; Zhang et al., 2008) exhibits
its difficulty. So far, none has lead to an alternative
method that performs as well as the heuristic onrea-
sonably sized data (approx. 1000k sentence pair).

Given a parallel corpus, an estimator for phrase-
tables in PBSMT involves two interacting decisions
(1) which phrase pairs to extract, and (2) how to as-
sign probabilities to the extracted pairs. The heuris-
tic estimator employs word-alignment (Giza++)
(Och and Ney, 2003) and a few thumb rules for
defining phrase pairs, and then extracts a multi-set
of phrase pairs and estimates their conditional prob-
abilities based on the counts in the multi-set. Us-
ing this method for extracting a set of phrase pairs,
(DeNero et al., 2006; Moore and Quirk, 2007) aim
at defining a better estimator for the probabilities.
Generally speaking, both efforts report deteriorating
translation performance relative to the heuristic.

Instead of employing word-alignment to guide
phrase pair extraction, it is theoretically more ap-
pealing to aim at phrase alignment as part of the esti-
mation process (Marcu and Wong, 2002; Birch et al.,
2006). This way, phrase pair extraction goes hand-
in-hand with estimating the probabilities. How-
ever, in practice, due to the huge number of possi-
ble phrase pairs, this task is rather challenging, both
computationally and statistically. It is hard to define
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both a manageable phrase pair translation model and
a well-founded training regime that would scale up
to reasonably sized parallel corpora (see e.g., (Birch
et al., 2006)). It remains to be seen whether this the-
oretically interesting approach will lead to improved
phrase probability estimates.

In this paper we also start out from a stan-
dard phrase extraction procedure based on word-
alignment and aim solely at estimating the condi-
tional probabilities for the phrase pairs and their
reverse translation probabilities. Unlike preceding
work, we extractall phrase pairsfrom the training
corpus and estimate their probabilities, i.e., without
limit on length. We present a novel formulation of
a conditional translation model that works with a
prior over segmentationsand a bag of conditional
phrase pairs. We use binary Synchronous Context-
Free Grammar (bSCFG), based on Inversion Trans-
duction Grammar (ITG) (Wu, 1997; Chiang, 2005a),
to define the set of eligible segmentations for an
aligned sentence pair. We also show how the num-
ber of spurious derivations per segmentation in this
bSCFG can be used for devising a prior probabil-
ity over the space of segmentations, capturing the
bias in the datatowards monotone translation. The
heart of the estimation process is a newsmoothing
estimator, a penalized version of Deleted Estima-
tion, which averages the temporaryprobability es-
timates of multiple parallel EM processes at each
joint iteration.

For evaluation we use a state-of-the-art baseline
system (Moses) (Hoang and Koehn, 2008) which
works with a log-linear interpolation of feature func-
tions optimized by MERT (Och, 2003). We sim-
ply substitute our own estimates for the heuristic
phrase translation estimates (both directions and the
phrase penalty score) and compare the two within
the Moses decoder. While our estimates differ sub-
stantially from the heuristic, their performance is on
par with the heuristic estimates. This is remark-
able given the fact that comparable previous work
(DeNero et al., 2006; Moore and Quirk, 2007) did
not match the performance of the heuristic estima-
tor using large training sets. We find that smooth-
ing is crucial for achieving good estimates. This
is in line with earlier work on consistent estimation
for similar models (Zollmann and Sima’an, 2006),
and agrees with the most up-to-date work that em-

ploys Bayesian priors over the estimates (Zhang et
al., 2008).

2 Related work

Marcu and Wong (Marcu and Wong, 2002) realize
that the problem of extracting phrase pairs should
be intertwined with the method of probability esti-
mation. They formulate a joint phrase-based model
in which a source-target sentence pair is generated
jointly. However, the huge number of possible
phrase-alignmentsprohibits scaling up the estima-
tion by Expectation-Maximization (EM) (Dempster
et al., 1977) to large corpora. Birch et al (Birch et
al., 2006) provide soft measures for including word-
alignments in the estimation process and obtain im-
proved results only on small data sets.

Coming up-to-date, (Blunsom et al., 2008) at-
tempt a related estimation problem to (Marcu and
Wong, 2002), using the expanded phrase pair set
of (Chiang, 2005a), working with an exponential
model and concentrating on marginalizing out the
latent segmentation variable. Also most up-to-date,
(Zhang et al., 2008) report on a multi-stage model,
without a latent segmentation variable, but with a
strong prior preferring sparse estimates embedded in
a Variational Bayes (VB) estimator and concentrat-
ing the efforts on pruning both the space of phrase
pairs and the space of (ITG) analyses. The latter two
efforts report improved performance, albeit again on
a limited training set (approx. 140k sentences up to
a certain length).

DeNero et al (2006) have explored estimation us-
ing EM of phrase pair probabilities under a con-
ditional translation model based on the original
source-channel formulation. This model involves a
hidden segmentation variable that is set uniformly
(or to prefer shorter phrases over longer ones). Fur-
thermore, the model involves a reordering compo-
nent akin to the one used in IBM model 3. De-
spite this, the heuristic estimator remains superior
because ”EM learns overly determinized segmen-
tations and translation parameters, overfitting the
training data and failing to generalize”. More re-
cently, (Moore and Quirk, 2007) devise a estimator
working with a model that does not include a hid-
den segmentation variable but works with a heuris-
tic iterative procedure (rather than MLE or EM). The
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translation results remain inferior to the heuristic but
the authors note an interesting trade-off between de-
coding speed and the various settings of this estima-
tor.

Our work expands on the general approach taken
by (DeNero et al., 2006; Moore and Quirk, 2007)
but arrives at insights similar to those of the most
recent work (Zhang et al., 2006), albeit in a com-
pletely different manner. The present work differs
from all preceding work in that it employs the set
of all phrase pairsduring training. It differs from
(Zhang et al., 2008) in that it does postulate a la-
tent segmentation variable and puts the prior di-
rectly over that variable rather than over the ITG
synchronous rule estimates. Our method neither
excludes phrase pairs before estimation nor does it
prune the space of possible segmentations/analyses
during training/estimation. As well as smoothing,
we find (in the same vein as (Zhang et al., 2008))
that setting effective priors/smoothing is crucial for
EM to arrive at better estimates.

3 The Translation Model

Given a word-aligned parallel corpus of source-
target sentences, it is common practice to extract a
set of phrase pairs using extraction heuristics (cf.
(Koehn et al., 2003; Och and Ney, 2004)). These
heuristics define a phrase pair to consist of a source
and target ngrams of a word-aligned source-target
sentence pair such that if one end of an alignment
is in the one ngram, the other end is in the other
ngram (and there is at least one such alignment)
(Och and Ney, 2004; Koehn et al., 2003). For ef-
ficiency and sparseness, the practitioners of PBSMT
constrain the length of the source phrase to a certain
maximum number of words.

An All Phrase Pairs Model: In this work we train
a phrase-translation table that consists ofall phrase-
pairs that can be extracted from the word-aligned
training data according to the standard phrase ex-
traction heuristic. After training, we can still limit
the set of phrase pairs to those selected by a cut-off
on phrase length. The reason for using all phrase
pairs during training is that it gives a clear point of
reference for an estimator, without implicit, acciden-

tal biases that might emerge due to length cut-off1.

The Generative Model: Given a word-aligned
source-target sentence pair〈f , e,a〉, the generative
story underlying our model goes as follows:

1. Abiding by the word-alignments ina, segment
the source-target sentence pair〈f , e〉 into a se-
quence ofI containersσI

1 , and a bag ofI
phrase pairsσI

1(f , e) = {〈fj , ej〉}
I
j=1. Each

containerσj = 〈lf , rf , le, re〉 consists of the
start lf and endrf positions2 for a phrase in
f and the startle and endre positions for an
aligned phrase ine.

2. For a given segmentationσI
1 , for every con-

tainerσj (1 ≤ j ≤ I) generate the phrase-pair
〈fj, ej〉, independently from all other phrase-
pairs.

This leads to the following probabilistic model:

P (f | e;a) =
∑

σI
1
∈Σ(a)

P (σI
1)

∏

〈fj ,ej〉∈σI
1
(f ,e)

P (fj | ej) (1)

Where Σ(a) is the set ofbinarizable segmenta-
tions (defined next) that are eligible according to the
word-alignmentsa betweenf ande. These segmen-
tations into bilingual containers (where segmenta-
tions are taken inside the containers) are different
from the monolingual segmentations used in earlier
comparable conditional models (e.g., (DeNero et al.,
2006)) which must generate the alignment on top of
the segmentations. Note how the different phrase
pairs〈fj, ej〉 are generated from their bilingual con-
tainers in the given segmentationσI

1 . We will dis-
cuss our choice of prior probability over segmenta-
tionsP (σI

1) after we discuss the definition of the bi-
narizable segmentationsΣ(a).

3.1 Binarizable segmentations Σ(a)

Following (Zhang et al., 2006; Huang et al., 2008),
every sequence ofphrase alignmentscan be viewed

1For example, if the cut-off on phrase pairs is ten words, all
sentence pairs smaller than ten words in the training data will
be included as phrase pairs as well. These sentences are treated
differently from longer sentences, which are not allowed tobe
phrase pairs.

2The NULL alignments (word-to-NULL) in the training
data can also be marked with actual positions on both sides in
order to allow for this definition of containers.
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as a sequence of integers1, . . . I together with a
permuted version of this sequenceπ(1), . . . , π(I),
where the two copies of an integer in the two se-
quences are assumed aligned/paired together. For
example, possible permutations of{1, 2, 3, 4} are
{2, 1, 3, 4} and {2, 4, 1, 3}. Because a segmenta-
tion σI

1 of a sentence pair is also a sequence of
aligned phrases, it also constitutes a permuted se-
quence. A binarizable permutationx is either of
length one, or can beproperly split into two binariz-
able sub-sequencesy andz such that either3 z < y
or y < z. For example, one way to binarize the
permutation{2, 1, 3, 4} is to introduce a proper split
into{2, 1; 3, 4}, then recursively another proper split
of {2, 1} into {2; 1} and{3, 4} into {3; 4}. In con-
trast, the permutation{2, 4, 1, 3} is non-binarizable.

<>

<>

2 1

[]

3 4

[]

[]

<>

2 1

3

4

Figure 1: Multiple ways to binarize a permutation

Graphically speaking, the recursive definition of
binarizable permutations can be depicted as a bi-
nary tree structure where the nodes correspond to
recursive proper splits of the permutation, and the
leaves are decorated with the naturals. Figure 1 ex-
hibits two possible binarizations of the same permu-
tation where<> and [] denote inverted and mono-
tone proper splits respectively. Note that the number
of possible binarizations of a binarizable permuta-
tion is a recursive function of the number of possi-
ble proper splits and reaches its maximum for fully
monotone permutations (all binary trees, which is a
factorial function of the length of the permutation).

By definition (cf. (Zhang et al., 2006; Huang et
al., 2008)), a binarizable segmentation/permutation
can be recognized by a binarized Synchronous
Context-Free Grammar (SCFG), i.e., an SCFG in
which the right hand sides of all non-lexical rules
constitute binarizable permutations. In particular,
this holds for the SCFG implementing Inversion

3For two sequences of numbers, the notationy < z stands
for ∀y ∈ y,∀z ∈ z : y < z.

Transduction Grammar (Wu, 1997). This SCFG
(Chiang, 2005b) has two binary synchronous rules
that correspond resp. to the contiguous monotone
and inverted alignments:

XP → XP 1 XP 2 , XP 1 XP 2 (2)

XP → XP 1 XP 2 , XP 2 XP 1

The boxed integers in the superscripts on the non-
terminal XP denote synchronized rewritings. In
this work, we employ a binary SCFG (bSCFG)
working with these two synchronous rules to-
gether with a set of lexical rules{XP →
f, e | 〈f, e〉 is a phrase pair}.

In this bSCFG, every derivation corresponds to a
binarization of a segmentation of the input. Note
that the bSCFG defined in equation 2 generates all
possible binarizations for every segmentation of the
input. It is possible to constrain this bSCFG such
that it generates a single, canonical derivation per
segmentation. However, in section 3.2 we show that
the number of such derivations is a good measure of
phrase pair productivity.

It is well known that there are alignments and
segmentations that this bSCFG does not cover (see
(Huang et al., 2008)). Recently, strong evidence
emerged (e.g., (Huang et al., 2008)) showing that
most word-alignments of actual parallel corpora can
be covered by a binarized SCFG of the ITG type.
Furthermore, because our model employs the set of
all phrase-pairsthat can be extracted from a given
training set, it will always find segmentations that
cover every sentence pair in the training data4. This
implies that while our model might discard non-
binarizable segmentations for certain complex word
alignments, we do manage to train the model on the
binarizable segementations of all sentence pairs.

Up to the prior over segmentations (see next), we
implement the above model using a weighted ver-
sion of the binary SCFG as follows:

• The weight for lexical rules is given by
P (XP → f, e) := P (f | e), where〈f, e〉 is
a phrase-pair. These are the trainable parame-
ters of our model.

4In the worst case the whole sentence pair is a phrase pair
with a trivial segmentation.
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Figure 2: Two segmentations of an align-
ment/permutation. Both segmentations have the
same number of binarizations despite differences in
container sizes.

• The weights for the two non-lexical rules in
equation 2 are fixed at 1.0. These weights are
not trained at all.

Where we use the notationP (.) for the weight of a
synchronous rule.

3.2 Prior over segmentations

As it has been found out by (DeNero et al., 2006),
it is not easy to come up with a simple, effec-
tive prior distribution over segmentations that al-
lows for improved phrase pair estimates. Within a
Maximum-Likelihood estimator, preference for seg-
mentationsσI

1 consisting of longer containers could
lead to overfitting as we will explain in section 4.
Alternatively, it is tempting to have preference for
segmentationsσI

1 that consist of shorter contain-
ers, because (generally speaking) shorter contain-
ers have higher expected coverage of new sentence
pairs. However, mere bias for shorter containers
will not give better estimates as observed by (DeN-
ero et al., 2006). One case where this bias clearly
fails is the case of a contiguous sequence of con-
tainers with a complex alignment structure (cross-
ing alignments). For example (see figure 2), for
the alignment{1, 3, 4, 2, 5} there is a segmentation
into five containers{1; 3; 4; 2; 5}, and another into
three{1; 3, 4, 2; 5}. The first segmentation involves
shorter containers that have crossing brackets among
them, while the second one consists of three con-
tainers including a longer container{3, 4, 2}. In
the first segmentation, due to their crossing align-
ments, each of the containers{3}, {4} and{2} will
not combine with the surrounding context ({1} and
{5}) on its own, i.e., without the other two contain-
ers. Furthermore, there is only a single binariza-

tion of {3, 4, 2}. Hence, while the first segmen-
tation involves shorter containers than the second
one, these shorter containers are asproductiveas
the large container{3, 4, 2}, i.e., they combine with
surrounding containers in the same number of ways
as the large container. In such and similar cases,
there are no grounds for the bias towards shorter
phrases/containers.

The notion ofcontainer productivity(the num-
ber of ways in which it combines with surrounding
containers during training) seems to correlate with
the expected number of ways a container can be
used during decoding, which should be correlated
with expected coverage. During training, contain-
ers that are often surrounded by other, monotoni-
cally aligned containers are expected to be more pro-
ductive than alternative containers that are often sur-
rounded by crossing alignments. Hence, the num-
ber of binarizations that a segmentation has under
the bSCFG is a direct function of the ways in which
the containers combine among themselves (mono-
tone vs. inverted/crossing) within segmentations,
and provides a more accurate measure of container
productivity than container length. Hence, the final
model we employ is the following:

P (f | e;a) =

∑

σI
1
∈Σ(a)

N(σI
1)

Z(Σ(a))

∏

〈fj ,ej〉∈σI
1
(f ,e)

P (fj | ej) (3)

Where N(σI
1) is the number of binary deriva-

tions/trees thatσI
1 has in the binary SCFG (bSCFG),

andZ(Σ(a)) =
∑

σJ
1
∈Σ(a) N(σJ

1 ), i.e., this prior is

the ratio of number of derivations ofσI
1 to the to-

tal number of derivations that〈f , e,a〉 has under the
bSCFG.

3.3 Contrast with similar models:

In contrast with the model of (DeNero et al., 2006),
who define the segmentations over the source sen-
tence f alone, our model employs bilingual con-
tainers thereby segmenting both source and target
sides simultaneously. Therefore, unlike (DeNero
et al., 2006), our model does not need to gener-
ate the word-alignments explicitly, as these are em-
bedded in the segmentations. Similarly, our model
does not includeexplicit penalty terms for reorder-
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ing/inversion but includes a related bias in the prior
probabilities over segmentationsP (σI

1).
In a way, the segmentations and bilingual contain-

ers we use can be viewed as similar to the concepts
used in the Joint Model of Marcu and Wong (Marcu
and Wong, 2002). Unlike (Marcu and Wong, 2002),
however, our model works with conditional proba-
bilities and starts out from the word-alignments.

The novel aspects of our model are three (1) It de-
fines the set of segmentations using a bSCFG, (2) It
includes a novel, refined prior probability over seg-
mentations, and (3) It employs all phrase pairs that
can be extracted from a word-aligned training par-
allel corpus. For these novel elements to produce
reasonable estimates, we devise our own estimator.

4 Estimation by Smoothing

In principle, we are dealing here with a translation
model that employs all phrase pairs (of unbounded
size), extracted from a word-aligned parallel cor-
pus. Under this model, where a phrase pair and
its sub-phrase pairs are included in the model, the
MLE can be expected to overfit the data5 unless a
suitable prior probability over segmentations is em-
ployed. Indeed, the prior over segmentations defined
in the preceding section prevents the MLE from
completely overfitting the training data. However,
we find empirical evidence that this prior is insuffi-
cient for avoiding overfitting.

Our model behaves like amemory-based model
because it memorizes all extractable phrase pairs
found in the training data including the training sen-
tence pairs themselves. Such memory-based mod-
els are related to nonparametric models such as
K-NN and kernel methods (Hastie et al., 2001).
For memory-based models, consistent estimation for
novel instances proceeds by local density estimation
from the surroundings of the instance, which is akin
to smoothing for parametric models. Hence, next we
describe our own version of asmoothedMaximum-
Likelihood estimator for phrase translation probabil-

5One trivial MLE solution would give the longest container,
consisting of the longest phrase pairs, a probability of one, at
the cost of all shorter alternatives. A similar problem arises in
Data-Oriented Parsing, see (Sima’an and Buratto, 2003; Zoll-
mann and Sima’an, 2006). Note that models that employ an
upperbound on phrase pair length will still risk overfittingtrain-
ing sentences of lengths that fall within this upperbound.

———————————————————-
INPUT: Word-aligned parallel training dataT
OUTPUT: Estimatesπ for all P (f | e)
{
Split training dataT into equal partsH1, . . . ,H10.
For 1 ≤ i ≤ 10 do

Extract from Ei = ∪j 6=iHj all phrase pairsπi

Initialize π̂0
i to uniform conditional probs

Let j = 0
Repeat

Let j = j + 1 // EM iteration counter
For 1 ≤ i ≤ 10 do

E-step: calculate expected counts for pairs
in πj

i onHi using counts from̂πj−1
i .

M-step: calculate probabilities for pairs in
πj

i from the expected counts
For 1 ≤ i ≤ 10 do π̂j

i := 1
10

∑10
i=1 πj

i

Until π := {π̂j
1, . . . , π̂

j
10} has converged

}
———————————————————-

Figure 3: Penalized Deleted Estimation

ities.
For a latent variable model, it is usually common

to employ Expectation-Maximization (EM) (Demp-
ster et al., 1977) as a search method for a (local)
maximum-likelihood estimate (MLE) of the train-
ing data. Instead of mere EM we opt for asmoothed
version: we present a new method, that combines
Deleted Estimation (Jelinek and Mercer, 1980) with
the Jackknife (Duda et al., 2001) as the core estima-
tor.

Figure 3 shows the pseudo-code for our estima-
tor. Like in Deleted Estimation, we split the training
data into ten equal portions. This way we create ten
different splits ofextraction/heldout setsof respec-
tively 90%/10% of the training set. For every split
1 ≤ i ≤ 10, we extract a set of phrase pairsπi from
the extractionsetEi and train it (under our model)
on theheldout setHi. Naturally, the phrase pair sets
πi (1 ≤ i ≤ 10) are subsets of (or equal to) the set
of phrase pairsπ = ∪iπi extracted from the total
training data (i.e.,π is the set of model parameters).
The training of the differentπi’s, each on its corre-
sponding heldout setHi, is done by ten separate EM
processes, which are synchronized in their initializa-
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tion, their iterations as well as stop condition. The
EM processes start out from uniform conditional es-
timates of the phrase pairs in allπi. After every EM
iteration j, when the M-step has finished, the esti-
mates in allπj

i (1 ≤ i ≤ 10) are set to the average
(over1 ≤ i ≤ 10) of the estimates inπj

i leading to
π̂j

i (following the Jackknife method). The resulting
averaged probabilities in̂πj

i are then used as the cur-
rent phrase pair estimates, which feed into the next
iterationj + 1 of the different EM processes (each
working on a different heldout setHi with a differ-
ent set of phrase pairsπi).

There are two special boundary cases which de-
mand special attention during estimation:

Sparse distributions: For a phrasee that does oc-
cur both inHi andEi, there could be a phrase
pair 〈f, e〉 that does occur inHi but doesnot
occur in πi. To prevent EM from giving the
extra probability mass to all other pairs〈f, e

′

〉
unjustifiably, we apply smoothing. We add the
missing pair〈f, e〉 to πi and set its probability
to a fixed number10−5∗len, wherelen is the
length of the phrase pair. In effect, we backoff
our model (equation 1) to a word-level model
with fixed word translation probability (10−5).

Zero distributions: When a phrasee does not oc-
cur in Hi, all its pairs 〈f, e〉 in πi will have
zero counts. During each EM iteration, when
the M-step is applied, the distributionP (· | e)
is undefined by MLE, since it is irrelevant for
the likelihood ofHi. In this case any choice
of proper distributionP (· | e) will constitute an
MLE solution. We choose to set this case to a
uniform distribution every time again.

Since our model and estimator are implemented
within the bSCFG framework, we use a bilingual
CYK parser (Younger, 1967) under the grammar
in equation 2. This parser builds for every input
〈f ,a, e〉 all binarizations/derivations for every seg-
mentation inΣ(a). For implementing EM, we em-
ploy the Inside-Outside algorithm (Lari and Young,
1990; Goodman, 1998). During estimation, because
the input, output and word-alignment are known
in advance, the time and space requirements re-
main manageable despite the worst-case complexity
O(n6) in target sentence lengthn.

Penalized Deleted Estimation: In contrast with
our method, Deleted Estimation sums theexpected
counts (rather than probabilities) obtained from
the different splits before applying the M-step
(normalization). While the rationale behind Deleted
Estimation comes from MLE over the original
training data, our method has a smoothing objective
(inspired by the Jackknife ): generally speaking, the
averages over different heldout sets (under different
subsets of the model) give less sharp estimates than
MLE. By averaging the different heldout estimates,
this estimator employs a penalty term that depends
on the marginal count ofe in the heldout set6.
Interestingly, when the phrasee is very frequent7,
it will approximately occur almost as often in the
different heldout sets. In this case, our method
reduces to Deleted Estimation, where it effectively
sums the counts8. Yet, when the target phrasee
does occur only very few times, it is likely that its
count in some splits will be zero. In our method, at
every EM iteration, during the Maximization step,
we set such cases back to uniform. By averaging the
probabilities from the different splits over many EM
iterations, setting these cases to uniform constitutes
a kind of prior that prevents the final estimates
from falling too far from uniform. In contrast, in
Deleted Interpolation the zero counts are simply
summed with the other corresponding counts of the
same phrase pair, which leads to sharper probability
distributions. In all experiments that we conducted,
our method (which we callPenalized Deleted
Estimation) gave more successful estimates than
mere Deleted Estimation.

On the theoretical side, the choice for a fixed

6Define county(x) to be the count of eventx
in data y. The Deleted Estimation (DE) estimate is∑

H
countH (f, e)/countT (e), which can be written as∑

H
[countH (f, e)/countH (e)][countH(e)/countT (e)] =∑

H
πH(f |e)[countH (e)/countT (e)] whereπH(f |e) is the

estimate from heldout setH . Hence, DE linearly interpolated
πH with factors countH (e)/countT (e). Our estimator em-
ploys uniform interpolation factors instead, thereby penalizing
the DI counts (hence Penalized DI).

7Theoretically speaking, when the training data is unbound-
edly large, our estimator will converge to the same estimates
as the Deleted Estimation. When the data is still sparse, our
estimator is biased, unlike the MLE which will overfit.

8When calculating the conditional probabilities, the denom-
inators used are approximately equal to one another.
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prior over segmentations (ITG prior) implies that our
model cannot be estimated to converge (in proba-
bility) to the relative frequency estimates (RFE) of
source-target sentence pairs in the limit of the train-
ing data (a sufficiently large parallel corpus). A prior
probability over segmentations that would allow our
estimator to converge in the limit to the RFE must
gradually prefer segmentations consisting of larger
containers as the data grows large. We set the de-
sign and estimation of such a prior aside for future
work.

5 Empirical experiments

Decoding and Baseline Model: In this work
we employ an existing decoder, Moses (Hoang
and Koehn, 2008), which defines a log-linear
model interpolating feature functions, with interpo-
lation scoresλf e∗ = arg maxe

∑
f∈Φ λfHf (f , e).

The λf are optimized by Minimum-Error Training
(MERT) (Och, 2003). The setΦ consists of the
following feature functions (see (Hoang and Koehn,
2008)): a 5-gram target language model, the stan-
dard reordering scores, the word and phrase penalty
scores, the conditional lexical estimates obtained
from the word-alignment in both directions, and the
conditional phrase translation estimates in both di-
rectionsP (f | e) andP (e | f). Keeping the other
five feature functions fixed, we compare our esti-
mates ofP (f | e) and P (e | f) (and the phrase
penalty) to the commonly used heuristic estimates.

Because our model employs a latent segmenta-
tion variable, this variable should be marginalized
out during decoding to allow selecting the highest
probability translation given the input. This turns
out crucial for improved results (cf. (Blunsom et al.,
2008)). However, such a marginalization can be NP-
Complete, in analogy to a similar problem in Data-
Oriented Parsing (Sima’an, 2002)9. We do not have
a decoder yet that can approximate this marginaliza-
tion efficiently and we employ the standard Moses
decoder for this work.

Experimental Setup: The training, development
and test data all come from the French-English
translation shared task of the ACL 2007 Second

9A reduction of simple instances of the first problem to in-
stances of the latter problem should be possible.

Phrases System BLEU

≤ 7 Baseline PBSMT 33.03
≤ 10 Baseline PBSMT 33.03
All Baseline PBSMT 33.00

≤ 7 EM + ITG Prior 32.50
≤ 7 EM + Del. Est. 32.67
≤ 7 EM + Del. Est. + ITG Prior 32.73
≤ 7 EM + Pen. Del. Est. + ITG Prior 33.02
≤ 10 EM + Pen. Del. Est. + ITG Prior 33.14
All EM + Pen. Del. Est. + ITG Prior 32.98

Table 1: Results: data from ACL072nd Wkshp on SMT

Workshop on Statistical Machine Translation10. Af-
ter pruning sentence pairs with word length more
than 40 on either side, we are left with 949K sen-
tence pairs for training. The development and test
data are composed of 2K sentence pairs each. All
data sets are lower-cased.

For both the baseline system and our method,
we produce word-level alignments for the parallel
training corpus using GIZA++. We use 5 iterations
of each IBM Model 1 and HMM alignment mod-
els, followed by 3 iterations of each Model 3 and
Model 4. From this aligned training corpus, we ex-
tract the phrase pairs according to the heuristics in
(Koehn et al., 2003). The baseline system extracts
all phrase-pairs upto a certain maximum length on
both sides and employs the heuristic estimator. The
language model used in all systems is a 5-gram lan-
guage model trained on the English side of the paral-
lel corpus. Minimum-Error Rate Training (MERT)
is applied on the development set to obtain opti-
mal log-linear interpolation weights for all systems.
Performance is measured by computing the BLEU
scores (Papineni et al., 2002) of the system’s trans-
lations, when compared against a single reference
translation per sentence.

Results: We compare different versions of our
system against the baseline system using the heuris-
tic estimator. We observe the effects of the ITG prior
in the translation model as well as the method of es-
timation (Deleted Estimation vs. Penalized Deleted
Estimation).

Table 1 exhibits the BLEU scores for the sys-

10http://www.statmt.org/wmt07
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tems. Our own system (with ITG prior and Pe-
nalized Deleted Estimation and maximum phrase-
length ten words) scores (33.14), slightly outper-
forming the best baseline system (33.03). When us-
ing straight Deleted Estimation over EM, this leads
to deterioration (32.73). When also the ITG prior is
excluded (by having a single derivation per segmen-
tation) this leads to further deterioration (32.67). By
using mere EM with an ITG prior, performance goes
down to 32.50, exhibiting the crucial role of the es-
timation by smoothing. Clearly, Penalized Deleted
Estimation and the ITG prior are important for the
improved phrase translation estimates.

As table 1 shows we also varied the phrase length
cutoff (seven, ten or none=all phrase pairs). The
length cutoff pertains to both sides of a phrase-pair.
For our estimator, we always train all phrase pairs,
applying the length cutoff only after training (no re-
normalization is applied at that point).

Interestingly, we find out that the heuristic estima-
tor cannot benefit performance by including longer
phrase pairs. Our estimator does benefit perfor-
mance by including phrase pairs of length upto ten
words, but then it degrades again when including
all phrase pairs. We take the latter finding to sig-
nal remaining overfitting that proved resistant to the
smoothing applied by our estimator. The heuristic
estimator exhibits a similar degradation.

We also tried to vary the treatment of Sparse Dis-
tributions (section 4, page 7) during heldout estima-
tion from fixed word-translation probabilities to the
lexical model probabilities. This lead to slight dete-
rioration of results (32.94). It is unclear whether this
deterioration is meaningful or not. We did not ex-
plore mere EM without any smoothing or ITG prior,
as we expect it will directly overfit the training data
as reported by (DeNero et al., 2006).

We note that for French-English translation it is
hard to outperform the heuristic within the PBSMT
framework, since it already performs very well.
Preliminary, most recent experiments on German-
English (also WMT07 data) exhibit that our estima-
tor outperforms the heuristic.

6 Discussion and Future Research

The most similar efforts to ours, mainly (DeNero
et al., 2006), conclude that segmentation variables

in the generative translation model lead to overfit-
ting while attaining higher likelihood of the train-
ing data than the heuristic estimator. Based on this
advise (Moore and Quirk, 2007) exclude the latent
segmentation variables and opt for a heuristic train-
ing procedure. In this work we also start out from a
generative model with latent segmentation variables.
However, we find out that concentrating the learning
effort on smoothing is crucial for good performance.
For this, we devise ITG-based priors over segmenta-
tions and employ a penalized version of Deleted Es-
timation working with EM at its core. The fact that
our results (at least) match the heuristic estimates on
a reasonably sized data set (947k parallel sentence
pairs) is rather encouraging.

The work in (Zhang et al., 2008) has a simi-
lar flavor to our work, yet the two differ substan-
tially. Both depart from Maximum-Likelihood to-
wards non-overfitting estimators. Where Zhang et al
choose for sparse priors (leading to sharp phrase dis-
tributions) and put the smoothing burden on the ITG
rule parameters and a pruning strategy, we choose
for a prior over segmentations determined by the
ITG derivation space and smooth the MLE directly
with a penalized version of Deleted Estimation. It
remains to be seen how the two biases compare to
one another on the same task.

There are various strands of future research.
Firstly, we plan to explore our estimator on other
language pairs in order to obtain more evidence on
its behavior. Secondly, as (Blunsom et al., 2008)
show, marginalizing out the different segmentations
during decoding leads to improved performance. We
plan to build our own decoder (based on ITG) where
different ideas can be tested including tractable ways
for achieving a marginalization effect. Apart from a
new decoder, it will be worthwhile adapting the prior
probability in our model to allow for consistent es-
timation. Finally, it would be interesting to study
properties of the penalized Deleted Estimation used
in this paper.
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