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Abstract 

In this paper, we present a three-step mul-
tilingual dependency parser based on a 
deterministic shift-reduce parsing algo-
rithm. Different from last year, we sepa-
rate the root-parsing strategy as sequential 
labeling task and try to link the neighbor 
word dependences via a near neighbor 
parsing. The outputs of the root and 
neighbor parsers were encoded as features 
for the shift-reduce parser. In addition, the 
learners we used for the two parsers and 
the shift-reduce parser are quite different 
(conditional random fields and the modi-
fied finite-Newton method support vector 
machines). We found that our method 
could benefit from the two-preprocessing 
stages. To speed up training, in this year, 
we employ the MFN-SVM (modified fi-
nite-Newton method support vector ma-
chines) which can be learned in linear 
time. The experimental results show that 
our method achieved the middle rank over 
the 23 teams. We expect that our method 
could be further improved via well-tuned 
parameter validations for different lan-
guages. 

1 Introduction 

The target of dependency parsing is to 
automatically recognize the head-modifier 
relationships between words in natural language 
sentences. Usually, a dependency parser can 
construct a similar grammar tree with the 
dependency graph. In this year, CoNLL-2007 
shared task (Nivre et al., 2007) focuses on 

multilingual dependency parsing based on ten 
different languages (Hajic et al., 2004; Aduriz et 
al., 2003; Martí et al., 2007; Chen et al., 2003; 
Böhmova et al., 2003; Marcus et al., 1993; 
Johansson and Nugues, 2007; Prokopidis et al., 
2005; Czendes et al., 2005; Montemagni et al., 
2003; Oflazer et al., 2003) and domain adaptation 
for English (Marcus et al., 1993; Johansson and 
Nugues, 2007; Kulick et al., 2004; MacWhinney, 
2000; Brown, 1973) without taking the language-
specific knowledge into consideration. The 
ultimate goal of them is to design ideal 
multilingual and domain portable dependency 
parsing systems. 

To accomplish the multilingual and domain ad-
aptation tasks, we present a three-pass parsing 
model based on a shift-reducing algorithm (Ya-
mada and Matsumoto, 2003; Chang et al., 2006), 
namely, neighbor parsing, root relation parsing, 
and shift-reduce parsing. Our method favors exam-
ining the “un-parsed” tokens, which incrementally 
shrink. At the beginning, the parsing direction is 
mainly determined by the amount of un-parsed 
tokens in the sentence with either forward or 
backward parse. In this step, the projective parsing 
method can be used to evaluate most of the non-
projective Treebank datasets. Once the direction is 
determined, the pseudo-projectivize transformation 
algorithm (Nivre and Nilsson, 2005) converts most 
non-projective training data into projective and 
decodes the parsed text into non-projective. Here-
after, both neighbor-parser and root-parser were 
trained to discovery additional features for the 
downstream shift-reduce parse model. We found 
that the two additional features could improve the 
performance. Subsequently, the modified shift-
reduce parsing algorithm starts to parse the final 
dependencies with two-pass processing, i.e., pre-
dict parse action and label the relations.  
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In the remainder of this paper, Section 2 de-
scribes the proposed parsing model, and Section 3 
lists the experimental settings and results. Section 
4 presents the discussion and analysis of our parser. 
In Section 5, we draw the future direction and con-
clusion. 

2 System Description 

Over the past decades, many state-of-the-art pars-
ing algorithm were proposed, such as head-word 
lexicalized PCFG (Collins, 1998), Maximum En-
tropy (Charniak, 2000), Maximum/Minimum 
spanning tree (MST) (McDonald et al., 2005), 
shift-reduce-based deterministic parsing (Yamada 
and Matsumoto, 2003; Chang et al., 2006; Nivre, 
2003). Among them, the shift-reduce methods 
were shown to be the most efficient method, which 
only costs at most 2n~3n actions to parse a sen-
tence (Chang et al., 2006; Nivre, 2003). Chang et 
al. (2006) further added the “wait-right” action to 
the words that had children and could not be re-
duced in current state. This could avoid the so-
called “too early reduce” problems.  

The overall parsing model can be found in Fig-
ure 1. Figure 2 illustrates the detail system spec of 
our parsing model. 

 

 
Figure 1: System architecture 

 

2.1 Neighbor Parser 

As shown in Figure 1, the first step is to identify 
the neighbor head-modifier relations between two 
consecutive words. Cheng et al. (2006) also re-
ported that the use of neighboring dependency at-
tachment tagger enhance the unlabeled attachment 
scores from 84.38 to 84.6 for 13 languages. Usu-
ally, it is the case that the select features are fixed 
and could not be tuned to capture the second order 
features (McDonald et al., 2006). At each location, 
there the focus and next words are always com-
pared. It may fail to link the next and next+1 word 
pair since the next word might be reduced due to 
an earlier wrong decision.   

 
Ⅰ. Parsing Algorithm:

  

1. Neighbor Parser 
2. Root Parser 
3. Shift-Reduce Algorithm (Yamada 
and Matsumoto, 2003) 

Ⅱ. Parser Characteris-
tics: 

 

1. Deterministic 
2. two-pass (Labeling separated) 
3. Pseudo-Projective en(de)-coding 
(Nivre and Nilsson, 2005) 

Ⅲ. Learner: MFN-SVM 
(1) One-versus-All 
(2) Linear Kernel 

Ⅳ. Feature Set: 

  

1. Lexical (Unigram/Bigram) 
2. Fine-grained POS (and BiPOS) 
3. Lemma/FEAT used 

Ⅴ. Post-Processing: Non-Used 

Ⅵ. Additional/External 
Resources: Non-Used 

Figure 2: System spec  
 
However, starting parsing based on the result of 

neighbor parsing is not a good idea since it could 
produce error propagation problems. Rather, we 
include the result of our neighbor parsing as fea-
tures to increase the original feature set. In the pre-
liminary study, we found that the derived features 
are very useful for most languages. 

As conventional sequential tagging problems, 
such part-of-speech tagging and phrase chunking, 
we employ the conditional random fields (CRF) as 
learners (Kudo et al., 2004). The basic idea of the 
neighbor parsing can be shown in Figure 3.  

The first and second colums in Figure 3 repre-
sents the basic word and fine-grained POS froms, 
while the third column indicates if this word has 
the LH (left-head) or RH (right-head) with associ-
ated relations or O (no neighbor head in either left 
or right neighbor word). The used features are:  
Word, fine-grained POS, bigram, and bi-POS with 
context window = 2(left) and 4(right) 
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Figure 3: Sequential tagging model for neighbor 

parse 
 

Unfortunately, for some languages, like Chi-
nese and Czech, training with CRF is because of 
the large number of features and the head relations. 
To make it practical, we focus on just three types: 
left head, right head, and out-of-neighbor. This 
effectively reduces most of the feature space for 
the CRF. The training time for the neighbor parser 
with only three categories is less than 5 minutes 
while it takes three days with taking all the relation 
tag into account. 

2.2 Root Parser 

After the neighbor parse, the tagged labels are 
good features for the root parse. In the second 
stage, the root parser identifies the root words in 
the sentence. Nevertheless, for some languages, 
such as Arabic and Czech, the roots might be sev-
eral types as against to Chinese and English in 
which the number of labels of roots is merely one. 
Similar to the neighbor parser, we also take the 
root label into account. As noted, for Chinese and 
English, the goal of the root parser can be reduced 
to determine whether the current word is root or 
not.  

 

 
Figure 4: Sequential tagging model for neighbor 

parse 
 

Similar to the neighbor parse, the root parsing 
task can also be treated as a sequential tagging 
problem. Figure 4 shows the basic concept of the 
root parser. The third column is mainly derived 
from the neighbor parser, while the fourth column 
represents whether the current word is a root with 
relation or not. 

2.3 Parsing Algorithm 

After adding the neighbor and root parser output as 
features, in the final stage, the modified Yamada’s 
shift-reduce parsing algorithm (Yamada and Ma-
tsumoto, 2003) is then run. This method is deter-
ministic and can deal with projective data only. 
There are three basic operation (action) types: Shift 
(S), Left (L), and Right (R). The operation is 
mainly determined via the classifier according to 
the selected features (see 2.4). Each time, the op-
eration is applied to two unparsed words, namely, 
focus and next. If there exists an arc between the 
two words (either left or right), then the head of 
focus or next word is found; otherwise (i.e., shift), 
next two words are considered at next stage. This 
method could be economically performed via 
maintaining two pointers, focus, and next without 
an explicit stack. The parse operation is iteratively 
run until no more relation can be found in the sen-
tence.  

In 2006, Chang et al. (2006) further reported 
that the use of “step-back” in comparison to the 
original “stay”. Furthermore, they also add the 
“wait-left” operations to prevent the “too early re-
duce” problems. In this way, the parse actions can 
be reduced to be bound in 3n where n is the num-
ber of words in a sentence. 

Now we compare the adopted parsing algorithm 
in this year to the one we employed last year (Wu 
et al., 2006a). The common characteristics are: 

 
1. the same number of parse operations (4) 
2. shift-reduce 
3. linearly scaled 
4. deterministic and projective 
 

On the contrary, their parse actions are quite dif-
ferent. Therefore these two methods have different 
run time. This gives the two methods rise to differ-
ent iterative times. The main reason is that the 
step-back might trace back to previous words, 
which can be viewed as pop the top words on the 
stack back to the unparsed strings, while the 
Nivre’s method does not trace-back any two words 
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in the stack. In other words, if a word is pushed 
into the stack, it will no longer be compared with 
the other deeper words inside the stack. Hence 
some of the non-root words in the stack remain to 
be parsed. A simple solution is to adopt an exhaus-
tive post-processing step for the unparsed words in 
the stack (details in (Wu et al., 2006a, 2006b)). 

A good advantage of the step-back is that it can 
trace back to the unparsed words in the stack. But 
theoretically, the required parse actions still more 
than the Nivre’s algorithm (2n vs. 3n). 

By adopting the projectivized en/de-coding over 
the modified Yamada’s algorithm, we can treat the 
words that do not have a parent as roots. Thus, for 
some languages (e.g. Czech and Arabic), the mul-
tiple root problem can be easily solved. In this year 
we separate the parse action and the relation label 
into two stages as opposed to having one pass last 
year. In this way, we can simply adopt a sequential 
tagger to auto-assign the relation labels after the 
whole sentence is parsed. 

2.4 Features and Learners 

Unlike last year, we did separate the action predic-
tion and the label recognition into two stages 
where the one of the learners could provide more 
information to another. The used features of the 
two learners are quite similar and listed as follows: 
 
Basic feature type (for previous 2 and next 3 words): 
Word, POS (fine-grained), Lemma, FEAT, NParse, 
RParse 
 
Enhanced feature type: 
Bigram, BiPOS for focus and next words 
previous two parse actions 
 
For label recognition: 
Label tag to its head, label tags for previous two 
words 

 
In this paper, we replicate and modify the modi-

fied finite Newton support vector machines (MFN-
SVM) (Keerthi and DeCoste, 2005) as the learner.  

The MFN-SVM is a very efficient SVM opti-
mization method which linearly scales with the 
number of training examples. Usually, the trained 
models from MFN-SVM are quite large that could 
not be processed in practice. We therefore defined 
the positive lower bound (10-10) and the negative 
upper bound (-10-10) to eliminate values that tend 
to be zero.  

However, the SVM is a binary classifier which 
only recognizes true or false. For multiclass prob-
lem, we use the so-called one-versus-all (OVA) 
method with linear kernel to combine the results of 
each individual classifier. The final class in testing 
phase is mainly determined by selecting the maxi-
mum similarity. 

For all languages, our parser uses the same set-
tings and features. For all the languages (except for 
Basque and Turkish), we use backward parsing 
direction to keep the un-parsed token rate low. 

3 Experimental Result 

3.1 Dataset and Evaluation Metrics 

The testing data is provided by the (Nivre et al., 
2007) which consists of 10 language treebanks. 
More detailed descriptions of the dataset can be 
found at the web site1. The experimental results are 
mainly evaluated by the unlabeled and labeled at-
tachment scores. CoNLL also provided a perl 
script to automatic compute these rates. 

3.2 Results 

Table 1 presents the overall parsing performance 
of the 10 languages. As shown in Table 1, we list 
two parsing results at column B and column C 
(new and old). It is worth to note that the result B 
is produced by training the neighbor parser with 
full labels instead of the three categories, 
left/right/out-of-neighbor. A is the official pro-
vided parse results. Some of the parsing results in 
A did not include the enhanced feature type and 
neighbor/root parses due to the time limitation. For 
the domain adaptation task, we directly use the 
trained English model to classify the PChemtb and 
CHILDES corpora without further adjustment. 

In addition, we also apply the Maltparser 0.4, 
which is implemented with the Nivre’s algorithm 
(Nivre et al., 2006) to be compared. The Maltpaser 
also includes the SVM and memory-based learner 
(MBL). Nevertheless, the training time complexity 
of the SVM in Maltparser is not linear time as 
MFN-SVM. Therefore we use the default MBL 
and feature model 3 (M3) in this experiment. To 
make a fair comparison, the input training data was 
also projectivized through the same pseudo-
projective encoding/decoding methods.  

                                                           
1 http://nextens.uvt.nl/depparse-wiki/SharedTaskWebsite 
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To perform the significant test, we evaluate the 
statistical difference among the three results. If the 
answer is “Yes”, it means the two systems are sig-
nificant difference under at least 95% confidence 
score (p < 0.05). 

The final column of the Table 1 lists the non-
root words unparsed rate of the modified Ya-
mada’s method and the Nivre’s parsing model 
which we employed last year. Among 10 lan-
guages, we can find that the modified Yamada’s 
method outperform our old method in five lan-
guages, while fail to win in three languages. We 
did not report the comparative study between the 
forward parsing and backward parsing directions 
here since only the two languages (Basque and 
Turkish) were better in performing forward direc-
tion. 

4 Discussion 

Now we turn to discuss the improvement of the use 
of the neighbor parse and root parse. All of the ex-
periments were conducted by additional runs 
where we removed the neighbor and root parse 
outputs from the feature set. In this experiment, we 
report four representative languages that tend to 
achieve the best and worst improvements. Table 2 
lists the comparative study of the four languages. 

As listed in Table 2, both English and Chinese 
got substantial benefit from the use of the two 
parsers. As observed by (Isozaki et al., 2004), in-
corporating both top-down (root find) and bottom-
up (base-NP) can yield better improvement over 

the Yamada’s parsing algorithm. Thus, instead of 
pre-determining the root and base-phrase structures, 
the tagging results of the neighbor and root parsers 
were included as new features to add wider infor-
mation for the shift-reduce parser. It is also inter-
esting to link neighbors and determine the root 
before parsing. We plan to compare it with out 
method in the future.  

 
Table 2: The effective of the used Neighbor/Root 

Parser in the selected four languages 
 With N/R Parser Without 
Chinese 79.29 75.51 
English 84.27 79.49 
Basque 72.26 72.32 
Turkish 75.65 76.60 

 
On the other hand, we also found that 2 out of 

the 10 languages had been negatively affected by 
the neighbor and root parsers. In Basque they made 
a marginally negative improvement, and in the 
Turkish the two parsers did decrease the original 
parsing models. We further observed that the main 
cause is that the weak performance of the neighbor 
parser. In Turkish, the recall/precision rates of the 
neighbor dependence are 92.61/93.12 with include 
neighbor parse outputs, while it achieved 
93.71/93.51 with purely run the modified Ya-
mada’s method. We can expect that the result 
could achieve higher LAS score when the neighbor 
parser is improved. As mentioned in section 2.1, 
2.2, the selected features for the two parsers are 
unified for the 10 languages. It is not surprising 

Table 1: A general statistical table of labeled attachment score, test and un-parsed rate (percentage) 
Statistic test  Un-Parsed Rate Language A 

(Official) 
B 

(Corrected)
C 

(Malt-Parser 0.4) A vs B A vs C B vs C Old New 
Arabic 66.16 70.71 56.67 Yes No Yes 1.08% 0.69%
Basque 70.71 72.26 57.79 Yes Yes Yes 3.04% 3.72%
Catalan 81.44 81.44 76.36 Yes No No 0.45% 0.27%
Chinese 74.69 79.29 68.15 Yes Yes Yes 0.00% 0.00%
Czech 66.72 70.24 56.96 Yes No Yes 4.17% 3.87%
English 79.49 84.27 75.53 Yes Yes Yes 1.66% 0.84%
Greek 70.63 77.64 58.81 No Yes Yes 2.26% 2.12%
Hungarian 69.08 71.98 59.41 Yes Yes Yes 3.88% 5.38%
Italian 78.79 78.38 74.08 Yes No Yes 0.63% 0.63%
Turkish 72.52 75.65 64.41 Yes Yes Yes 4.93% 5.54%
pchemtb_closed 55.31** 73.35 - - - - - -
*CHILDES_closed 52.89 58.29 - - - - - -
* The CHILDES data does not contain the relation tag, instead, the unlabeled attachment score is listed 
** The original submission of the pchemtb_closed task can not pass through the evaluator and hence is not the official score. After correcting 
the format problems, the actual LAS score should be 55.31. 
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that for certain data the fixed feature set might per-
form even worse than the original shift-reduce 
parser. A better way is to validate the features with 
variant settings for different languages. We left the 
feature engine task as future work. 

5 Conclusion and Future Remarks 

Multilingual dependency parsing investigates on 
proposing a general framework of dependence 
parsing algorithms. This paper presents and ana-
lyzes the impact of two preprocessing components, 
namely, neighbor parsing and root-parsing. Those 
two parsers provide very useful additional features 
for downstream shift-reduce parser. The experi-
mental results also demonstrated that the use of the 
two components did improve results for the se-
lected languages. In the error-analysis, we also ob-
served that for some languages, parameter tuning 
and feature selection is very important for system 
performance.  

In the future, we plan to report the actual per-
formance with replacing the MFN-SVM by the 
polynomial kernel SVM. In our pilot study, the use 
of approximate-polynomial kernel (Wu et al., 2007) 
outperforms the linear kernel SVM in Chinese and 
Arabic. Also, we are investigating how to convert 
the shift-reduce parser into approximate N-best 
parser efficiently. In this way, the parse reranking 
algorithm can be adopted to further improve the 
performance.  
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