
Proceedings of the CoNLL Shared Task Session of EMNLP-CoNLL 2007, pp. 1134–1138,
Prague, June 2007. c©2007 Association for Computational Linguistics

Incremental Dependency Parsing Using Online Learning

Richard Johansson and Pierre Nugues
Department of Computer Science, Lund University, Sweden

{richard, pierre}@cs.lth.se

Abstract

We describe an incremental parser that
was trained to minimize cost over sen-
tences rather than over individual parsing ac-
tions. This is an attempt to use the advan-
tages of the two top-scoring systems in the
CoNLL-X shared task.

In the evaluation, we present the perfor-
mance of the parser in the Multilingual task,
as well as an evaluation of the contribution
of bidirectional parsing and beam search to
the parsing performance.

1 Introduction

The two best-performing systems in the CoNLL-X
shared task (Buchholz and Marsi, 2006) can be clas-
sified along two lines depending on the method they
used to train the parsing models. Although the
parsers are quite different, their creators could re-
port near-tie scores. The approach of the top sys-
tem (McDonald et al., 2006) was to fit the model
to minimize cost over sentences, while the second-
best system (Nivre et al., 2006) trained the model to
maximize performance over individual decisions in
an incremental algorithm. This difference is a nat-
ural consequence of their respective parsing strate-
gies: CKY-style maximization of link score and in-
cremental parsing.
In this paper, we describe an attempt to unify the

two approaches: an incremental parsing strategy that
is trained to maximize performance over sentences
rather than over individual parsing actions.

2 Parsing Method

2.1 Nivre’s Parser

We used Nivre’s algorithm (Nivre et al., 2006),
which is a variant of the shift–reduce parser. Like
the regular shift–reduce, it uses a stack S and a list

of input words W , and builds the parse tree incre-
mentally using a set of parsing actions (see Table 1).
It can be shown that Nivre’s parser creates projec-
tive and acyclic graphs and that every projective de-
pendency graph can be produced by a sequence of
parser actions. In addition, the worst-case number of
actions is linear with respect to the number of words
in the sentence.

2.2 Handling Nonprojective Parse Trees

While the parsing algorithm produces projective
trees only, nonprojective arcs can be handled using
a preprocessing step before training the model and a
postprocessing step after parsing the sentences.
The projectivization algorithm (Nivre and Nils-

son, 2005) iteratively moves each nonprojective arc
upward in the tree until the whole tree is projective.
To be able to recover the nonprojective arcs after
parsing, the projectivization operation replaces the
labels of the arcs it modifies with traces indicating
which links should be moved and where attach to at-
tach them (the “Head+Path” encoding). The model
is trained with these new labels that makes it pos-
sible to carry out the reverse operation and produce
nonprojective structures.

2.3 Bidirectional Parsing

Shift-reduce is by construction a directional parser,
typically applied from left to right. To make bet-
ter use of the training set, we applied the algorithm
in both directions as Johansson and Nugues (2006)
and Sagae and Lavie (2006) for all languages except
Catalan and Hungarian. This, we believe, also has
the advantage of making the parser less sensitive to
whether the language is head-initial or head-final.
We trained the model on projectivized graphs

from left to right and right to left and used a vot-
ing strategy based on link scores. Each link was as-
signed a score (simply by using the score of the la
or ra actions for each link). To resolve the conflicts

1134

Table 1: Nivre’s parser transitions where W is the initial word list; I , the current input word list; A, the
graph of dependencies; and S, the stack. (n′, n) denotes a dependency relations between n′ and n, where n′

is the head and n the dependent.

Actions Parser actions Conditions

Initialize 〈nil, W, ∅〉
Terminate 〈S, nil, A〉
Left-arc 〈n|S, n′|I,A〉 → 〈S, n′|I, A ∪ {(n′, n)}〉 ¬∃n′′(n′′, n) ∈ A
Right-arc 〈n|S, n′|I,A〉 → 〈n′|n|S, I,A ∪ {(n, n′)}〉 ¬∃n′′(n′′, n′) ∈ A
Reduce 〈n|S, I,A〉 → 〈S, I, A〉 ∃n′(n′, n) ∈ A
Shift 〈S, n|I, A〉 → 〈n|S, I,A〉

between the two parses in a manner that makes the
tree projective, single-head, rooted, and cycle-free,
we applied the Eisner algorithm (Eisner, 1996).

2.4 Beam Search

As in our previous parser (Johansson and Nugues,
2006), we used a beam-search extension to Nivre’s
original algorithm (which is greedy in its original
formulation). Each parsing action was assigned a
score, and the beam search allows us to find a bet-
ter overall score of the sequence of actions. In
this work, we used a beam width of 8 for Catalan,
Chinese, Czech, and English and 16 for the other
languages.

3 Learning Method

3.1 Overview

We model the parsing problem for a sentence x as
finding the parse ŷ = arg maxy F (x, y) that max-
imizes a discriminant function F . In this work, we
consider linear discriminants of the following form:

F (x, y) = w ·Ψ(x, y)

where Ψ(x, y) is a numeric feature representation
of the pair (x, y) and w a vector of feature weights.
Learning F in this case comes down to assigning
good weights in the vector w.
Machine learning research for similar prob-

lems have generally used margin-based formula-
tions. These include global batch methods such
as SVMstruct (Tsochantaridis et al., 2005) as well
as online methods such as the Online Passive-
Aggressive Algorithm (OPA) (Crammer et al.,
2006). Although the batch methods are formulated
very elegantly, they do not seem to scale well to
the large training sets prevalent in NLP contexts –

we briefly considered using SVMstruct but train-
ing was too time-consuming. The online methods
on the other hand, although less theoretically ap-
pealing, can handle realistically sized data sets and
have successfully been applied in dependency pars-
ing (McDonald et al., 2006). Because of this, we
used the OPA algorithm throughout this work.

3.2 Implementation

In the online learning framework, the weight vector
is constructed incrementally. At each step, it com-
putes an update to the weight vector based on the
current example. The resulting weight vector is fre-
quently overfit to the last examples. One way to
reduce overfitting is to use the average of all suc-
cessive weight vectors as the result of the training
(Freund and Schapire, 1999).
Algorithm 1 shows the algorithm. It uses an

“aggressiveness” parameter C to reduce overfitting,
analogous to the C parameter in SVMs. The algo-
rithm also needs a cost function ρ, which describes
how much a parse tree deviates from the gold stan-
dard. In this work, we defined ρ as the sum of link
costs, where the link cost was 0 for a correct depen-
dency link with a correct label, 0.5 for a correct link
with an incorrect label, and 1 for an incorrect link.
The number of iterations was 5 for all languages.
For a sentence x and a parse tree y, we defined

the feature representation by finding the sequence
〈〈S1, I1〉 , a1〉 , 〈〈S2, I2〉 , a2〉 . . . of states and their
corresponding actions, and creating a feature vector
for each state/action pair. The discriminant function
was thus written

Ψ(x, y) ·w =
∑

i

ψ(〈Si, Ii〉 , ai) ·w

where ψ is a feature function that assigns a feature

1135

Algorithm 1 The Online PA Algorithm

input Training set T = {(xt, yt)}Tt=1

Number of iterations N
Regularization parameter C
Cost function ρ

Initialize w to zeros
repeat N times
for (xt, yt) in T
let ỹt = arg maxy F (xt, y) +

√

ρ(yt, y)

let τt = min

(

C,
F (xt,ỹt)−F (xt,yt)+

√
ρ(yt,ỹt)

‖Ψ(x,yt)−Ψ(x,ỹt)‖2

)

w ← w + τt(Ψ(x, yt)−Ψ(x, ỹt))
return waverage

vector to a state 〈Si, Ii〉 and the action ai taken in
that state. Table 2 shows the feature sets used in
ψ for all languages. In principle, a kernel could
also be used, but that would degrade performance
severely. Instead, we formed a new vector by com-
bining features pairwisely – this is equivalent to us-
ing a quadratic kernel.

Since the history-based feature set used in the
parsing algorithm makes it impossible to use inde-
pendence to factorize the scoring function, an ex-
act search to find the best-scoring action sequence
(arg maxy in Algorithm 1) is not possible. How-
ever, the beam search allows us to find a reasonable
approximation.

4 Results

Table 3 shows the results of our system in the Mul-
tilingual task.

4.1 Compared to SVM-based Local Classifiers

We compared the performance of the parser with
a parser based on local SVM classifiers (Johansson
and Nugues, 2006). Table 4 shows the performance
of both parsers on the Basque test set. We see that
what is gained by using a global method such as
OPA is lost by sacrificing the excellent classifica-
tion performance of the SVM. Possibly, better per-
formance could be achieved by using a large-margin
batch method such as SVMstruct.

Table 2: Feature sets.

ar ca cs el en eu hu it tr zh

Fine POS top • • • • • • • • • •

Fine POS top-1 • • • • • • •

Fine POS list • • • • • • • • • •

Fine POS list-1 • • • • • • • • • •

Fine POS list+1 • • • • • • • • • •

Fine POS list+2 • • • • • • • • • •

Fine POS list+3 • • • • • •

POS top • • • • • • • • • •

POS top-1 •

POS list • • • • • • • • • •

POS list-1 • • • • • •

POS list+1 • • • • • • • • • •

POS list+2 • • • • • • • •

POS list+3 • • • • • • • •

Features top • • • • • • • •

Features list • • • • • • • •

Features list-1 • • • • •

Features list+1 • • • • • • •

Features list+2 • • • • •

Word top • • • • • • • • •

Word top-1 • •

Word list • • • • • • • • • •

Word list-1 • • • • • •

Word list+1 • • • •

Lemma top • • • • • •

Lemma list • • • • •

Lemma list-1 • •

Relation top • •

Relation top left • • • • •

Relation top right • • • • •

Relation list right •

Word top left •

Word top right •

Word list left •

POS top left • •

POS top right • • •

POS list left • • • • • • • •

Features top right •

Features first left • •

Table 3: Summary of results.

Languages Unlabeled Labeled

Arabic 80.91 71.76
Basque 80.41 75.08
Catalan 88.34 83.33
Chinese 81.30 76.30
Czech 77.39 70.98
English 81.43 80.29
Greek 79.58 72.77
Hungarian 75.53 71.31
Italian 81.55 77.55
Turkish 84.80 78.46
Average result 81.12 75.78

Table 4: Accuracy by learning method.

Learning Method Accuracy

OPA 75.08
SVM 75.53

1136

4.2 BeamWidth

To investigate the influence of the beam width on the
performance, we measured the accuracy of a left-to-
right parser on a development set for Basque (15%
of the training data) as a function of the width. Ta-
ble 5 shows the result. We see clearly that widening
the beam considerably improves the figures, espe-
cially in the lower ranges.

Table 5: Accuracy by beam width.

Width Accuracy

2 72.01
4 74.18
6 75.05
8 75.30
12 75.49

4.3 Direction

We also investigated the contribution of the bidirec-
tional parsing. Table 6 shows the result of this exper-
iment on the Basque development set (the same 15%
as in 4.2). The beam width was 2 in this experiment.

Table 6: Accuracy by parsing direction.

Direction Accuracy

Left to right 72.01
Right to left 71.02
Bidirectional 74.48

Time did not allow a full-scale experiment, but
for all languages except Catalan and Hungarian, the
bidirectional parsing method outperformed the uni-
directional methods when trained on a 20,000-word
subset. However, the gain of using bidirectional
parsing may be more obvious when the treebank is
small. For all languages except Czech, left-to-right
outperformed right-to-left parsing.

5 Discussion

The paper describes an incremental parser that we
trained to minimize the cost over sentences, rather
than over parsing actions as is usually done. It
was trained using the Online Passive-Aggressive
method, a cost-sensitive online margin-based learn-
ing method, and shows reasonable performance and
received above-average scores for most languages.

The performance of the parser (relative the other
teams) was best for Basque and Turkish, which were
two of the smallest treebanks. Since we found that
the optimal number of iterations was 5 for Basque
(the smallest treebank), we used this number for all
languages since we did not have time to investigate
this parameter for the other languages. This may
have had a detrimental effect for some languages.
We think that some of the figures might be squeezed
slightly higher by optimizing learning parameters
and feature sets.
This work shows that it was possible to combine

approaches used by Nivre’s and McDonald’s parsers
in a single system. While the parser is outperformed
by a system based on local classifiers, we still hope
that the parsing and training combination described
here opens new ways in parser design and eventually
leads to the improvement of parsing performance.

Acknowledgements

This work was made possible because of the anno-
tated corpora that were kindly provided to us: (Hajič
et al., 2004; Aduriz et al., 2003; Martí et al., 2007;
Chen et al., 2003; Böhmová et al., 2003; Marcus et
al., 1993; Johansson and Nugues, 2007; Prokopidis
et al., 2005; Csendes et al., 2005; Montemagni et al.,
2003; Oflazer et al., 2003)

References

A. Abeillé, editor. 2003. Treebanks: Building and Using
Parsed Corpora. Kluwer.

I. Aduriz, M. J. Aranzabe, J. M. Arriola, A. Atutxa,
A. Diaz de Ilarraza, A. Garmendia, and M. Oronoz.
2003. Construction of a Basque dependency treebank.
In Proc. of the 2nd Workshop on Treebanks and Lin-
guistic Theories (TLT), pages 201–204.

A. Böhmová, J. Hajič, E. Hajičová, and B. Hladká. 2003.
The PDT: a 3-level annotation scenario. In Abeillé
(Abeillé, 2003), chapter 7, pages 103–127.

S. Buchholz and E. Marsi. 2006. CoNLL-X shared task
on multilingual dependency parsing. In CoNLL-X.

K. Chen, C. Luo, M. Chang, F. Chen, C. Chen, C. Huang,
and Z. Gao. 2003. Sinica treebank: Design criteria,
representational issues and implementation. In Abeillé
(Abeillé, 2003), chapter 13, pages 231–248.

1137

K. Crammer, O. Dekel, J. Keshet, S. Shalev-Schwartz,
and Y. Singer. 2006. Online passive-aggressive algo-
rithms. JMLR, 2006(7):551–585.

D. Csendes, J. Csirik, T. Gyimóthy, and A. Kocsor. 2005.
The Szeged Treebank. Springer.

J. Eisner. 1996. Three new probabilistic models for de-
pendency parsing: An exploration. In Proceedings of
ICCL.

Y. Freund and R. E. Schapire. 1999. Large margin clas-
sification using the perceptron algorithm. Machine
Learning, 37(3):277–296.

J. Hajič, O. Smrž, P. Zemánek, J. Šnaidauf, and E. Beška.
2004. Prague Arabic dependency treebank: Develop-
ment in data and tools. In Proc. of the NEMLAR In-
tern. Conf. on Arabic Language Resources and Tools,
pages 110–117.

R. Johansson and P. Nugues. 2006. Investigating multi-
lingual dependency parsing. In CoNLL-X.

R. Johansson and P. Nugues. 2007. Extended
constituent-to-dependency conversion for English. In
Proc. of the 16th Nordic Conference on Computational
Linguistics (NODALIDA).

M. Marcus, B. Santorini, and M. Marcinkiewicz. 1993.
Building a large annotated corpus of English: the Penn
Treebank. Computational Linguistics, 19(2):313–330.

M. A. Martí, M. Taulé, L. Màrquez, and M. Bertran.
2007. CESS-ECE: A multilingual and multilevel
annotated corpus. Available for download from:
http://www.lsi.upc.edu/∼mbertran/cess-ece/.

R. McDonald, K. Lerman, and F. Pereira. 2006. Multi-
lingual dependency parsing with a two-stage discrimi-
native parser. In CoNLL-X.

S. Montemagni, F. Barsotti, M. Battista, N. Calzolari,
O. Corazzari, A. Lenci, A. Zampolli, F. Fanciulli,
M. Massetani, R. Raffaelli, R. Basili, M. T. Pazienza,
D. Saracino, F. Zanzotto, N. Nana, F. Pianesi, and
R. Delmonte. 2003. Building the Italian Syntactic-
Semantic Treebank. In Abeillé (Abeillé, 2003), chap-
ter 11, pages 189–210.

J. Nivre and J. Nilsson. 2005. Pseudo-projective depen-
dency parsing. In Proceedings of ACL-05.

J. Nivre, J. Hall, J. Nilsson, G. Eryiğit, and S. Marinov.
2006. Labeled pseudo-projective dependency parsing
with support vector machines. In CoNLL-X.

K. Oflazer, B. Say, D. Zeynep Hakkani-Tür, and G. Tür.
2003. Building a Turkish treebank. In Abeillé
(Abeillé, 2003), chapter 15, pages 261–277.

P. Prokopidis, E. Desypri, M. Koutsombogera, H. Papa-
georgiou, and S. Piperidis. 2005. Theoretical and
practical issues in the construction of a Greek depen-
dency treebank. In Proc. of the 4th Workshop on Tree-
banks and Linguistic Theories (TLT), pages 149–160.

K. Sagae and A. Lavie. 2006. Parser combination by
reparsing. In Proceedings of the HLT-NAACL.

I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Al-
tun. 2005. Large margin methods for structured and
interdependent output variables. JMLR, 6:1453–1484.

1138

