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Abstract 2 Unlabeled Dependency Parsing using
Global Features

In this paper, we describe a two-stage multi- o
lingual dependency parser used for the mul- 2.1 Probabilistic Model
tilingual track of the CoNLL 2007 shared  Rosenfeld et al. (2001) proposed whole-sentence ex-
task. The system consists of two compo-  ponential language models which can incorporate
nents: an unlabeled dependency parser us- arhitrary features in a sentence, and we consider here
ing Gibbs sampling which can incorporate g similar probabilistic model for dependency pars-
sentence-level (global) features as well as ing which can incorporate any sentence-level fea-
token-level (local) features, and a depen- tyre. Letw = wy - - - w)y| denote an input sentence
dency relation labeling module based on  consisting ofw]| tokens, andh = A - - yy| denote
Support Vector Machines. Experimental re-  the sequence of the indices of each token’s head.
sults show that the global features are useful - Root nodes of a sentence do not have heads, and we

in all the languages. regard the index of a root node’s head as zero, i.e.,
, h; € {0,1,---,|w|} \ {i}. We define the probabil-
1 Introduction ity distribution of the dependency structutiegiven
Making use of as many informative features as pog Sentencev using exponential models as follows:
sible is crucial to obtain high performance in ma- 1 al
chine learning based NLP. Recently, several meth{™»(hIw)=7—- Qu(hjw)exp > Mefi(w,h)o.(2)
’ k=1

ods for incorporating non-local features have been K
investigated, though such features often make mod- Zan(w)=>" Qui(b'[w)expd S Mefi(w. ) b, (2)
els complex and thus complicate inference. Collins b €Te(w) Pt

and Koo (2005) proposed a reranking method fqgnere o, (hjw) is an initial distribution,f, (w, h)
phrase structure parsing with which any type Ofs the.-th feature functionk is the number of fea-

global features in a parse tree can be used. re functions, and,, is the weight of thek-th fea-

dependency parsing, McDonald and Pereira (2009} e '7/(w) is the set of possible configurations of

proposed a method which can incorporate SOMg,as for a given sentense. Although it is ap-
types of global features, and Riedel and Clarkg . iate that{(w) is the set of projective trees for
(2006) studied a method using integer linear progyqieciive languages, and is the set of non-projective

gramming which can incorporate global linguisticyees (which is a superset of the set of projective
constraints. In this paper, we study dependengy,

i ; ibh i hich ! ees) for non-projective languages, in this study, we
parsing using Gibbs sampling which can InCorpogefiners(w) to be the set of all the possible graphs,

rate any type of global feature in a sentence. Th hich contains|w|™ elements. Py vi(h|w) and
parser determines unlabeled dependency structures h defined vl Th babil
only, and we attach dependency relation labels u§M (h|w) are defined ovef{(w)". The probabil-
ing Support Vector Machines afterwards. ity distribution PA,M(]@]w) is a joint distribution of

We participated in the multilingual track of theaII the heads conditioned by a sentence, therefore

CoNLL 2007 shared task (Nivre et al., 2007), and'e call this modekentence-level modelThe fea-

evaluated the system on data sets of 10 langua e functionfi,(w, h) is defined on a sentence
(Hajic et al., 2004; Aduriz et al., 2003; Maret ith headsh, and we can use any information in the

al. 2007° Chen et al.. 2003-BBmo\A et al.. 2003: Sentence without the independence assumption for

Marcus et al., 1993; Johansson and Nugues, 200“?‘fe heads of the tokens, therefore we dallw, h)

Prokopidis et al., 2005; Csendes et al., 2005; Mon- 1#(w) is a superset of the set of non-projective trees, and

temagni et al., 2003; Oflazer et al., 2003). is an unnecessarily large set which contains ill-formed depen-
' ’ - ! B ncy trees such as trees with cycles. This issue may cause
The rest of the paper describes the specification 8e?duction of parsing performance, but we adopt this approach

the system and the evaluation results. for computational efficiency.
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sentence-level (global) featureWe define initial s(i, j)=log P; (i|w). @)
distribution Qi (h|w) as the product ofni(2|w,t)  We use the logarithm of the marginal distribution be-
which is the probability distribution of the he&df  cause the summation of edge scores is maximized
eacht-th token calculated with maximum entropypy the MST search algorithms but the product of the

models: Iwl marginal distributions should be maximized. The

QM(hlw):H qm(he|w, t), (3) best projective parse tree is obtained using the Eis-
t=1 L ner algorithm (Eisner, 1996) with the scores, and the

qM(h|w,t):exp{zmgl(w,t,h)}, (4) best non-projective one is obtained using the Chu-
Yau(w, 1) =1 Liu-Edmonds (CLE) algorithm (McDonald et al.,
il L ) 2005b).

Yia(w, )= eXp{Z pagi(wt, b )}7 ) Although in this method, the factored scare, )
o = is used to measure likelihood of dependency trees,

whereg;(w, t, h) is thel-th feature function/. is the the score i_s calcglateo_l taking a vyhole sentence into
number of feature functions, and is the weight of consideration using Gibbs sampling.

the I-th feature. v (h|w, t) is @ model of the head ~ Next, we explain how to estimate the parame-
of a single token, calculated independently froniers of our models, given training data consisting of

other tokens, therefore we calls(h|w,t) token- N examples{(w' h'),---, (w",h")}. In order
level model andg;(w, t, h) token-level (local) fea- to estimate the parameters of the token-level model
ture. M = {p1, -, ur}, we use maximum a posteriori

estimation with Gaussian priors. We define the fol-

2.2 Decoding and Parameter Estimation : L )
g lowing objective functionM:
N

Let us consider how to find the optimal solution L&

~ . n n 2

h, given a sentencer, parameters of the sentence- M=log H Qu(h™[w") — 5~ Zuz, ®)
level modelA = {\1,---, Ak}, and parameters of _ n=1 =1 _ _
the token-level modeM — {1, ---, ). Since Whereo is a hyper parameter of Gaussian priors.

the probabilistic model contains global features andh€ optimal parametefsl which maximizeM can
efficient algorithms such as dynamic programming€ obtained by quasi-Newton methods such as the
cannot be used, we use Gibbs sampling to obtakfBFGS algorithm with aboveM and its partial

an approximated solution. Gibbs sampling can eferivatives. The parameters of the sentence-[evel
ficiently generate samples from high-dimensionghodelA = {A1,--+, Ak} can also be estimated in
probability distributions with complex dependencied Similar way with the following objective function
among variables (Andrieu et al., 2003), and we ad qfter the parameters of the token-level model are
sume thai? samplegh(), ... h()} are generated estimated. N .

from Px vi(h|w) using Gibbs sampling. Then, the _ T O 5

marginal distribution of the head of theth token £=tog [ | Pas(ew) 2072 > Ak ©)

. . . n=1 k=1
given w, F(h|w), is approximately calculated as g ghjective function and its partial derivative con-
follows: tain summations over all the possible configura-
Pi(hlw) = > Pa(hfw), tions which are difficult to calculate. We approx-
R imately calculate these values using static Monte
1 <& ) Carlo (not MCMC) methods with fixed samples
:g Pa(blw)d(h, he) = 5 ;5(}“ i), (8) {h™(M) ... h"(5)} generated frond)y; (h|w™)2:

where §(i, j) is the Kronecker delta. In orderto, eton L 5 - \ SETEN
find a solution using the marginal distribution, we °® an(w")=log SZ_:GXP ; k(w077 0,(10)
adopt the maximum spanning tree (MST) frame- = -

work proposed by McDonald et al. (2005a). In this Z Py ym(h'|w™) fe(w™,h")

framework, scores for possible edges in dependency’ exw»)

graphs are defined, and the optimal dependency tregq * W () K L

is found as the MST in which the summation of the*g.)_ WeXP{Z A fir (W, 0" ))}- (12)
edge scores is maximized. Leti,j) denote the =1 ’ k=1

score of the edge from a parent node (heath a ZStatic Monte Carlo methods become inefficient when the
9 b ( ) dimension of the probabilistic distribution is high, and more so-

ICh”d node (dependenf). We defines(i, j) as fol-  phisticated methods would be used for accurate parameter esti-
OWS: mation.
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2.3 Local Features Parent+All Children This feature template is a tu-

The token-level features used in the system are the ple with more than one element. The first ele-

same as those used in MSTParser version $.4.2 ment is a parent node, and the other elements

The features include lexical forms and (coarse an|g are all of |_ts child nodes. .

fine) POS tags of parent tokens, child tokens, thefrarent+All Children+Grandparent This feature

surrounding tokens, and tokens between the child €mplate is a tuple with more than two ele-

and the parent. The direction and the distance froma Ments. The elements other than the last one

parentto its child, and the FEATS fields of the parent ~ &€ the same as tiRarent+All Childrenfeature
template, and the last element is the grandpar-

and the child which are split into elements and then

combined are also included. Features that appeared €ntnode. _

less than 5 times in training data are ignored. ~ Child+Ancestor This feature template is a 2-tuple
consisting of (1) a child node, and (2) one of its

2.4 Global Features ancestor nodes.

. L Acyclic This feature type has one of two values,
Global features can capture any information in de- = i ,aif the dependency tree is acyclic, faise

pendency trees, and the following nine types of  jihanwise.

gl(;)db:rlnga;;:r:shzg Ltj(flfgn(lgntgi? d fﬁggﬁﬂggﬁ:g Projective This feature type has one of two val-
’ ues,true if the dependency tree is projective,

dependent token): or falseotherwise.

Child Unigram+Parent+Grandparent This fea- 3 Dependency Relation Labeling
ture template is a 4-tuple consisting of (1) a
child node, (2) its parent node, (3) the direc3.1 Model
tion from the parent node to the child node, antbependency relation labeling can be handled as a
(4) the grandparent node. multi-class classification problem, and we use Sup-
Each node in the feature template is expanddiPt Vector Machines (SVMs) which have been suc-
to its lexical form and coarse POS tag in orL€SS{ully applied to many NLP tasks. Solving large-
der to obtain actual features. Features that agc@€ multi-class classification problem with SVMs
peared in four or less sentences are ignore&‘?q“'res substantial computational resources, so we

The same procedure is applied to the followind!S€ the revision learning method (Nakagawa et al.,
other featu?es. PP é21002). The revision learning method combines

) ) ) ) a probabilistic model which has smaller computa-
Child Bigram+Parent This feature template is & 4- {jona| cost with a binary classifier which has higher
tuple consisting of (1) a child node, (2) its par-generalization capacity. In the method, the latter
ent node, (3) the direction from the parent nodg|assifier revises the output of the former model to
to the child node, and (4) the nearest outer sibsongyct multi-class classification with higher ac-
ling node (the nearest sibling node which existgracy and reasonable computational cost. In this
on_the opposite side of the parent node) of th§tudy, we use maximum entropy (ME) models as
child node. This feature template is almost th_%he probabilistic model and SVMs with the second
same as the one used by McDonald and Pereigaqer polynomial kernel as the binary classifier. The
(2006). dependency label of each node is determined inde-
Child Bigram+Parent+Grandparent This feature pendently of the labeling of other nodes.
template is a 5-tuple. The first four ele-
ments (1)—(4) are the same as t@aild Bi- 3-2 Features
gram+Parentfeature template, and the addi-As the features for SVMs to predict the dependency
tional element (5) is the grandparent node.  relation label of the-th token, we use the lexical
Child Trigram+Parent This feature template is a forms, coarse and fine POS tags, and FEATS fields
5-tuple. The first four elements (1)—(4) are thedf thei-th and theh,;-th tokens. We also use lex-
same as th€hild Bigram+Parentfeature tem- cal forms and POS tags of the tokens surround-
plate, and the additional element (5) is the nexf'd and in between them (i.e. theth token where

nearest outer sibling node of the child node. J € {jlmin{i, i} —1 < j < max{i, h;} + 1}),
the grandparenti(, -th) token, the sibling tokens of

®http://sourceforge.net/projects/mstparser i (the j'-th token wherg’ € {j'|h;; = h;,j' # i}),
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Arabic | Basque| Catalan| Chinese| Czech| English | Greek | Hungarian| Ttalian | Turkish | Average
LAS | 75.08 | 7256 | 87.90 83.84 | 80.19 | 88.41 | 76.31 76.74 83.61 | 78.22 80.29
UAS | 86.09 | 81.04 | 92.86 88.88 | 86.28 | 90.13 | 84.08 82.49 8791 8577 86.55

Table 1: Results of Multilingual Dependency Parsing
Algorithm[ Features|| Arabic | Basque| Catalan| Chinese| Czech| English [ Greek [ Hungarian Ttalian | Turkish

Eisner focal 85.15 | 80.20 | 91.75 86.75 | 84.19 [ 88.65 | 83.31 80.27 86.72 | 84.82
(proj.) +global || 86.09 | 81.00 | 92.86 88.88 | 85.99 | 90.13 | 84.08| 81.55 87.91 | 84.82
CLE focal 8480 | 80.39 | 91.23 86.71 | 84.21 | 88.07 | 83.03 81.15 86.85 | 85.35

(non-proj.) | +global || 85.83 | 81.04 | 92.64 88.84 | 86.28 | 90.05 | 83.87 82.49 87.97 | 85.77

Table 2: Unlabeled Attachment Scores in Different Settings (underlined values indicate submitted results,
and bold values indicate the highest scores)

and the child tokens of (the j”-th token where CLE indicate that the Eisner algorithm and the
7" e {i"hjy = i})*. As the features for ME mod- CLE algorithm are used in decoding, alodal and

els, a subset of them is used since ME models angylobal indicate that local features alone, and local
used just for reducing the search space, and do remtd global features together are used. The CLE al-

need so many features. gorithm performed better than the Eisner algorithm
for Basque, Czech, Hungarian, Italian and Turkish.
4 Results and Analysis All of these data sets except Italian contain relatively

. .. alarge number of non-projective sentences (the per-
In order to tune the system, we split each trainingentage of sentences with at least one non-projective
data set into two parts, and used the first half fofg|ation in the training data is over 20% (Nivre et al.,
training and the remaining half for testing in devel2007)), though the Greek data set, on which the Eis-

opment. The CLE algorithm was used for Basquéer algorithm performed better, also contains many
Czech, Hungarian and Turkish, and the Eisner alggion-projective sentences (20.3%).

Catalan, Czech, Greek and ltalian, and word formgnproved in all the cases except for Turkish with
for all others. The values of the parameters 0 bgye Eisner algorithm (Table 2). The increase was
fixed were chosen a8 = 500, 5 = 200, 0 = 0.25,  ather large in Chinese and Czech. When the global
ando’ = 0.25. With these parameter settings, trainfeatures were used in these languages, the depen-
ing took 247 hours, and testing took 343 minutes 0fency accuracy for tokens whose heads had con-
an Opteron 250 processor. junctions as parts-of-speech was notably improved;
Table 1 shows the evaluation results on the tegfom 80.5% to 86.0% in Chinese (Eisner), and from
sets. Accuracy was measured with the labeled a3 294 to 77.6% in Czech (CLE). We investigated
tachment score (LAS) and the unlabeled attachmeffe trained global models, and found tRarent+All
score (UAS). Among the participating systems in thg hjldrenfeatures, whose parents were conjunctions
shared task, we obtained the second best averageq whose children had compatible classes, had
accuracy in the labeled attachment score, and thigge positive weights, and those whose children had
best average accuracy in the unlabeled attachmeftompatible classes had large negative weights. A
score. Compared with other systems, the gap bgsature with a larger weight is generally more influ-
tween our labeled and unlabeled scores is relativepntial. Riedel and Clarke (2006) suggested to use
big. In this study, labeling of dependency relationginguistic constraints such as “arguments of a coor-
was performed in a separate post-processing stfination must have compatible word classes,” and

and each label was predicted independently. The Igych constraint seemed to be represented by the fea-
beled scores may be improved if the parsing procegsres in our models.

and the labeling process are performed at the same
time, and dependencies among labels are taken iffo  Conclusion

account. hi q lied a d d
We conducted experiments with different settingé.n this study, we applied a dependency parser us-
1g global features to multilingual dependency pars-

Table 2 shows the results measured with the unl: .
beled attachment score. In the tablsner and 'M9- Evaluation results showed that the use of global
' features was effective to obtain higher accuracy in

“Although polynomial kernels of SVMs can implicitly han- multilingual dependency parsing. Improving depen-

dle combined features, some of combined features were also iaency relation Iabeling is left for future work
cluded explicitly because using unnecessarily high order poly- ’

nomial kernels decreases performance.
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