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Abstract

This paper describes ETK (Ensemble of
Transformation-based Keys) a new algo-
rithm for inducing search keys for name
filtering. ETK has the low computational
cost and ability to filter by phonetic sim-
ilarity characteristic of phonetic keys such
as Soundex, but is adaptable to alternative
similarity models. The accuracy of ETK in
a preliminary empirical evaluation suggests
that it is well-suited for phonetic filtering
applications such as recognizing alternative
cross-lingual transliterations.

1 Introduction

The task ofname matching—recognizing when two
orthographically distinct strings are likely to denote
the same individual—occurs in a wide variety of im-
portant applications, including law enforcement, na-
tional security, and maintenance of government and
commercial records. Coreference resolution, speech
understanding, and detection of aliases and duplicate
names all require name matching.

The orthographic variations that give rise to the
name-matching task can result from a variety of fac-
tors, including transcription and OCR errors, and
spelling variations. In many applications, cross-
lingual transliterations are a particularly important
source of variation. For example, romanized Ara-
bic names are phonetic transcriptions of sounds that
have no direct equivalent in English,e.g., “Mo-
hamed” or “Muhammet” are two of many possible
transliterations for the same Arabic name.

Name matching can be viewed as a type of range
query in which the input is a set of patterns (such

as names on an immigration-control watch list), a
collection of text strings (such as a passenger list), a
distance metric for calculating the degree of relevant
dissimilarity between pairs of strings, and a match
threshold expressing the maximum allowable dis-
tance between matching names. The goal is to find
all text/pattern pairs whose distance under the metric
is less than or equal to the threshold. In the simplest
case, patterns and the text strings with which they
are matched are both individual words. In the gen-
eral case, the text may not be segmented into strings
corresponding to possible names.

Distance metrics for name matching are typically
computationally expensive. For example, determin-
ing the edit distance between two strings of lengthn

andm requires, in the general case,nm steps. Met-
rics based on algorithms that learn from examples
of strings that should match (Bilenko et al., 2003;
Ristad and Yianilos, 1998) and metrics that use pho-
netic similarity criterion, e.g., (Kondrak, 2000) are
no less expensive than edit distance.

The computational expense of distance metrics
means that tractable name matching on large texts
typically requires an inexpensive, high-recallfilter-
ing step to find a subset of the original text to
which the expensive similarity metric will be ap-
plied. Desiderata for filtering include the following:

1. High recall. The recall of the entire name-
matching process is bounded by the recall of
the filtering step, so high filtering recall is es-
sential.

2. Efficiency. Filtering is useful only to the ex-
tend that it requires less computational expense
than applying the similarity metric to each pat-
tern/text pair. The computational expense of
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a filtering algorithm itself must therefore be
less than the cost of the metric calls eliminated
through the filtering process. Typically, the cost
of the metric is so much higher than the filter-
ing cost that the latter can be neglected. Under
these circumstances, precision is a satisfactory
proxy for efficiency.

3. Adaptability to specific distance metrics.
High precision and recall are achievable in fil-
tering only if the filtering criterion corresponds
to the distance metric. For example, if a dis-
tance metric is based on phonetic differences
between strings, a filtering algorithm that se-
lects candidate text strings based on ortho-
graphic differences may perform poorly. Sim-
ilarly, poor performance may result from use
of a filtering algorithm based on phonetic dif-
ferences if the distance metric is based on or-
thographic differences. For example,“LAYTON”

and “LEIGHTON” differ by a large edit distance
but are phonetically identical (in most dialects),
whereas“BOUGH” and“ROUGH” are orthograph-
ically similar but phonetically dissimilar. An
ideal filtering algorithm should be adaptable to
any particular distance metric.

This paper describes ETK (Ensemble of
Transformation-based Keys) a new algorithm
for inducing filters that satisfy the three criteria
above. ETK is similar to phonetic search key
algorithms such as Soundex and shares phonetic
search key algorithms’ low computational expense
and ability to filter by phonetic similarity. However,
ETK has the advantage that it is adaptable to alter-
native distance metrics and is therefore applicable
to a wider range of circumstances than static key
algorithms.

The next section describes previous work in name
filtering. Section 3 describes the ETK algorithm in
detail, and a preliminary evaluation on English and
German surnames is set forth in Section 4.

2 Previous Work

The division of the retrieval task into an inexpensive,
high-recall filtering stage followed by a more expen-
sive high-precision stage emerged independently in
a variety of different areas of computer science. This

approach is termedtwo-stage retrievalin the Infor-
mation Retrieval literature (Shin and Zhang, 1998),
MAC/FAC by some researchers in analogy (Gen-
tner and Forbus, 1991),blocking in the statistical
record linkage literature (Cohen et al., 2003), andfil-
tering in the approximate string matching literature
(Navarro, 2001).

The two most common approaches to filtering
that have been applied to name matching are in-
dexing byphonetic keysand indexing byngrams.
Two less well known filtering algorithms that often
have higher recall than filtering by phonetic keys or
ngrams arepivot-based retrievalandpartition filter-
ing.

Phonetic Key Indexing. In phonetic key index-
ing, names are indexed by a phonetic representa-
tion created by a key function that maps sequences
of characters to phonetic categories. Such key
functions partition the name space into equivalence
classes of names having identical phonetic represen-
tations. Each member of a partition is indexed by the
shared phonetic representation.

The oldest phonetic key function is apparently
Soundex, which was patented in 1918 and 1922
by Russell and Odell (U.S. Patents 1,261,167 and
1,435,663) and described in (Knuth, 1975). Despite
Soundex’s has many well-known limitations, includ-
ing inability to handle different first letters with
identical pronunciations (e.g., Soundex of “Kris”
is K620, but Soundex of “Chris” is C620), trun-
cation of long names, and bias towards English
pronunciations, Soundex is still in use in many
law enforcement and national security applications
(Dizard, 2004). A number of alternative phonetic
encodings have been developed in response to the
limitations of Soundex,e.g., (Taft, 1970; Gadd,
1990; Zobel and Dart, 1996; Philips, 1990; Philips,
2000; Hodge and Austin, 2001; Christen, 2006).
While each of these alternatives has some advan-
tages over Soundex, none is adaptable to alterna-
tive distance metrics. For purposes of comparison,
Phonex (Gadd, 1990) was included in the evalua-
tion below because it was found to be the most ac-
curate phonetic key for last names in an evaluation
by (Christen, 2006).

Ngram Filtering. The second common filtering
algorithm for names is ngram indexing, under which
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each pattern string is indexed by every n-element
substring,i.e., every sequence of n contiguous char-
acters occurring in the pattern string (typically, the
original string is padded with special leading and
trailing characters to distinguish the start and end of
the name). The candidates for each target string are
retrieved using the ngrams in the target as indices
(Cohen et al., 2003). Typical values for n are 3 or 4.

Pivot-Based Retrieval. Pivot-based retrieval
techniques are applicable to domains, such as name
matching, in which entities are not amenable to
vector representation but for which the distance
metric satisfies the triangle inequality (Chavez et
al., 2001).1

The key idea is to organize the index around a
small group of elements, calledpivots. In retrieval,
the distance between the query probeq and any ele-
mente can be estimated based on the distances of
each to one or more pivots. There are numerous
pivot-based metric space indexing algorithms. An
instructive survey of these algorithms is set forth in
(Chavez et al., 2001).

One of the oldest, and often best-performing,
pivot-based indices is Burkhart-Keller Trees (BKT)
(Burkhard and Keller, 1973; Baeza-Yates and
Navarro, 1998). BKT is suitable for discrete-valued
distance metrics. Construction of a BKT starts with
selection of an arbitrary element as the root of the
tree. Theith child of the root consists of all ele-
ments of distancei from the root. A new BKT is
recursively constructed for each child until the num-
ber of elements in a child falls below a predefined
bucket size.

A range query on a BKT with distance metric
d, probe q, rangek, and pivotp is performed as
follows. If the BKT is a leaf node, then the dis-
tance metricd is applied betweenq and each element
of the leaf node, and those elementse for which
d(q, e) < k are returned. Otherwise, all subtrees
with index i for which |d(q, e) − i| ≤ k are recur-
sively searched.

While all names withink of a query are guaran-

1Edit distance satisfies the triangle inequality because any
string A can be transformed into another string C by first
transforming A to any other string B, then transforming B
into C. Thus, edit-distance(A,C) cannot be greater than edit-
distance(A,B)+ edit-distance(B,C) for any strings A, B, and
C.

teed to be retrieved by a BKT (i.e., recall is 100%),
there are no guarantees on precision. During search,
one application of the distance metric is required at
each internal node traversed, and a distance-metric
application is required for each candidate element in
leaf nodes reached during the traversal. The number
of nodes searched is exponential ink (Chavez et al.,
2001).

Partition Filtering. Partition filtering (Wu and
Manber, 1991; Navarro and Baeza-Yates, 1999), is
an improvement over ngram filtering that relies on
the observation that if a pattern stringP of length
m is divided into segments of length⌊ m

(k+1)⌋, then
any string that matchesP with at mostk errors must
contain an exact match for at least one of the seg-
ments (intuitively, it would take at leastk + 1 er-
rors, e.g., edit operations, to alter all of these seg-
ments). Strings indexed by⌊ m

(k+1)⌋-length segments
can be retrieved by an efficient exact string match-
ing algorithm, such as suffix trees or Aho-Corasick
trees. This is necessary because partitions, unlike
ngrams, vary in length.

Partition filtering differs from ngram filtering in
two respects. First, ngrams overlap, whereas par-
tition filtering involves partitioning each string into
non-overlapping segments. Second, the choice of
n in ngram filtering is typically independent ofk,
whereas the size of the segments in filtering is cho-
sen based onk. Since in most applicationsn is in-
dependent ofk, ngram retrieval, like phonetic key
indexing, lacks any guaranteed lower bound on re-
call, whereas partition filtering guarantees 100% re-
call when the distance metric is edit distance.

3 The ETK algorithm

3.1 Motivation

Any key function partitions the universe of strings
into equivalence classes of strings that share a com-
mon key. If a key function is to serve as a fil-
ter, matching names must be members of the same
equivalence class. However, no single partition can
produce equivalence classes that both include all
matching pairs and exclude all non-matching pairs.2

2For example, suppose that for strings A, B, and C and dis-
tance metric d, d(A,B) = .9, d(B,C) = .9, d(A,C) = 1.7, and
suppose that 1.0 is the match threshold. A query on A would re-
quire a partition that puts A and B in the same equivalence class
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A search key that creates partitions in which there
is a low probability that non-matching pairs share a
common equivalence class will have high precision,
although possibly low recall. However, the recall of
an ensemble of search keys, each having non-zero
recall and each being independent of the others, can
be expected to be greater than the recall of any in-
dividual key. A high-precision and high-recall index
can therefore be constructed if one can find, for a
given similarity metric and match threshold, a suf-
ficiently large set of key functions that (1) are in-
dependent, (2) each have high-precision under the
metric and threshold, and (3) have non-zero recall.

The objective of ETK is to learn a set of inde-
pendent, high-precision key functions from training
data consisting of equivalence classes of names that
satisfy the matching criteria. The similarity metric
and threshold are implicit in the training data. Thus,
under this approach a key function can be learned
even if the similarity model is unknown, provided
that sufficient equivalence classes are available.

For each equivalence class, ETK attempts to find
the shortest transformation rules capable of con-
verting all members of the equivalence class into
an identical orthographic representation. The entire
collection of transformation rules for all equivalence
classes, which in general has many inconsistencies,
is then partitioned into separate consistent subsets.
Each subset of transformation rules constitutes an
independent key function. Each pattern name is in-
dexed by each key produced by applying a key func-
tion to it, and the candidate matches for a new name
consist of all pattern names that share at least one
key.

The equivalence classes of matching names can
be obtained either through somea priori source
(such as alias lists or manual construction) or by ap-
plying the similarity metric to pairs in a training set,
e.g., repeated leave-one-out retrievals with a known
distance metric. In the former case, the keys are
purely empirical; in the later the key functions are
in effect a way of compiling the distance metric to
speed retrieval.

and C into a different equivalence class, a query on C would re-
quire a partition that puts B and C in the same equivalence class
and A in a different equivalence class, and a query on B would
require a partition in which all three were in the same equiva-
lence class. Thus, three independent keys would be needed to
satisfy all three queries while excluding non-matching names.

3.2 Procedure

Inducing Transformation Rules. The inductive
process starts with a collection of equivalence
classes under a given distance metric and match
thresholdk. A collection of transformation rules are
derived from these equivalence classes as follows.
For each equivalence classEC:

• The element ofEC with the least mean pair-
wise edit distance to the other class members
(breaking ties by preferring shorter elements)
is selected as the centroid. For example, if
EC is {LEIGHTON LAYTON SLEIGHTON}, then
LEIGHTON would be the centroid because it has
a smaller edit distance to the other elements
than they do to each other.

• For each elementE other than the centroid, dy-
namic programming is used to find an align-
ment ofE with the centroid that maximizes the
number of corresponding identical characters.3

For example, the alignment ofLEIGHTON and
LAYTON would be:

LAY--TON
LEIGHTON

• For each characterc of the centroid, all win-
dows of characters inE of length from 1 to
some constant maxWindow centered on the
character in the source corresponding toc are
found, skipping blank characters. Each map-
ping from a window toc constitutes a rule.
For example, for maxWindow 7 and the align-
ment above, the transformation rules for theE

in LEIGHTON would be:

$$LAYTO→ E

$LAYT → E

LAY → E

A → E

3See (Damper et al., 2004) for details on alignment by dy-
namic programming. The approach taken here assigns a slightly
higher association weight for aligned identical consonants than
for aligned identical vowels so that,ceteris paribus, consonant
alignment is preferred to vowel alignment and assigns a slightly
higher association weight to non-identical letters that are both
vowels or both consonants than to vowel/consonant alignments.
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Transformation rules derived from multiple
equivalence classes typically have many incon-
sistencies,i.e., rules with identical left-hand
sides (LHSs) but different right hand sides
(RHSs). All RHSs for a given LHS are grouped
together and ranked by frequency of occurrence
in the training data. For example, the frequency
of alternative rules for the middle characters
LAN and LEI for the U.S. name pronunciation
set withk = 1 discussed below is:

LAY → E 5 LEI → A 2
LAY → A 4 LEI → E 1
LAY → AN 3 LEI → - 1

Key Formation. The transformation rules are sub-
divided two different ways: by LHS,e.g., separating
rules for LAY from those forLEI, and by RHS fre-
quency,e.g., separatingLAY → E (the most frequent
rule for LAY) from LAY→ A (the next most frequent).
The highest frequency RHS rules from the example
above are:

LAY → E

LEI → A

and the next most frequent are:

LAY → A

LEI → E

If rules are divided intol LHS subsets, and each
subset is further subdivided by taking ther highest
ranked RHSs (with RHSs ranked lower thanr ig-
nored), the result is a total oflr subsets. Each of
theselr subsets defines a key function. For each po-
sition in a word to which the key function is to be
applied (padded with leading and training markers),
the rule with the longest (i.e., most specific) LHS
that matches the window centered at that position is
used to determine the corresponding character in the
key. If no rules apply, the character in the key is the
same as that in the original word.

For example, suppose that the word to which the
key is to be applied isCREIGHTON and transforma-
tions includeLEIGHTO → -, EIGHT → - andIGH → G.
The character in the key corresponding to theG in
CREIGHTON would be- (i.e., a deletion) because the
EIGHT is the longest LHS matching at that position.
The key consists of the concatenation of the RHSs
produced by successively applying the key function
to each position in the orginal word.

This procedure is similar to window-based
pronunciation-learning algorithms,e.g., (Sejnowski
and Rosenberg, 1987; Bakiri and Dietterich, 1999),
but differs in that the objective is not determining
a correct pronunciation, but is instead transforming
words that are similar under a given metric into a
single, consistent orthographic representation.

3.3 Filtering with ETK

Thelr subsets of transformation rules induced from
a given set of equivalence classes define an ensem-
ble of key functions. To filter potential matches with
this ensemble, each pattern is added to a hash table
indexed by each key generated by a key function.
Candidate matches to a text string consist of all pat-
terns indexed by the keys generated from the text by
the ensemble of key functions. For example, sup-
pose that (as is the case with the rule sets for Amer-
ican names, pronunciation distance, andk = 0)
patternsROLLINS andROWLAND have keys that in-
clude{ROWLINS ROLINS} and{RONLLAND ROLAN},
respectively, and that textRAWLINS has keys that in-
clude {ROWLINS RALINS}. Then ROLLINS but not
ROWLAND would be retrieved because it is indexed
by a key shared withROWLINS.4

4 Evaluation

The retrieval accuracy of ETK was compared to
that of BKT, filtering by partition, ngram filtering,
Phonex, and Soundex on sets of U.S. and German
names. The U.S. name set consisted of the 5,000
most common last names identified during the most
recent U.S. Census5 which have pronunciations in
cmudict, the CMU pronouncing dictionary.6 The
German name set consisted of the first 5963 en-
tries in the HADI-BOMP collection7 whose part of
speech isNAM.

The filtering algorithms were compared with re-
spect to two alternative distance metrics. The first
waspronunciation distance, which consists of edit

4In the evaluation below, the original string itself is added
as an additional index key. This addition slightly increases both
recall and precision.

5The names were taken from the 1990
U.S. Census collection of 88,799 last names at
http://www.census.gov/genealogy/names/names files.html.

6http://www.speech.cs.cmu.edu/cgi-bin/cmudict.
7http://www.ikp.uni-bonn.de/dt/forsch/phonetik/bomp.
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distance between pronunciations represented us-
ing the cmudict phoneme set for U.S. names and
the HADI-BOMP phoneme set for German names.
Stress values were removed from cmudict pronun-
ciations, and syllable divisions were removed from
HADI-BOMP pronunciations. When there were
multiple pronunciations for a name in cmudict, the
first was used. In cmudict, for example,MEUSE

and MEWES have pronunciation distance of 0 be-
cause both have pronunciationM Y UW Z. In HADI-
BOMP,HELGARD andHERBART have pronunciation
distance 2 because their pronunciations areh E l g a r

t andh E r b a r t. The second distance metric was edit
distance with unit weights for insertions, deletions,
and substitutions. In practice, appropriate distance
metrics might be Jaro (Jaro, 1995), Winkler (Win-
kler, 1999), or some metric specialized to a particu-
lar phonetic or error model. Pronunciation and edit
distance were chosen as representative of phonetic
and non-phonetic metrics.

Training data for ETK for a given language,
match thresholdk, and similarity metric consisted of
all sets of at least 2 names containing only elements
were withink of some element of the set under the
metric. These training sets were created by perform-
ing a retrieval on every name in each collection us-
ing BKT, which has 100% recall. For each retrieval,
the true positives from BKT’s return set were de-
termined by applying the similarity metric between
each return set element and the query. If there were
at least 2 true positives (including the query itself),
the set of true positives was included in the training
set.8

ETK was tested using cross validation, so that
names in the training set and those in the testing set
were disjoint. Specifically, all names in the testing
set were removed from each collection in the train-
ing set. If at least 2 names remained, the collection
was retained. ETK’s maxWindow size was 7, as in
the examples above.

In BKT, the bucket size (maximum number of el-
ements in any leaf node) was 2, and the longest el-
ement (rather than a random element) was selected

8Note that each set of true positives is a cluster having the
query as its centroid and radiusk under the distance metric.
The triangle inequality guarantees that the maximum distance
between any pair of names in the collection is no greater than
2k.

as the root of each subtree. The rationale for this
choice is that there is typically more variance in dis-
tance from a longer word than from a shorter word,
and greater variance increases the branching factor
in BKT, reducing tree depth and therefore the num-
ber of nodes visited during search.

Since the importance of precision in filtering is
that it determines the number of calls to the sim-
ilarity metric required for a given level of recall,
precision figures for BKT includeinternal calls to
the similarity metric, that is, calls during indexing.
Thus, precision of BKT is the number of true posi-
tives divided by the number of all positives plus the
number of internal metric calls.

In Soundex and Phonex indexing, each name was
indexed by its Soundex (Phonex) key. Similarly,
in ngram filtering each name was indexed by all
its ngrams, with special leading and trailing char-
acters added. Retrieval was performed by finding
the Soundex or Phonex encoding or the ngrams of
each query and retrieving every name indexed by the
Soundex or Phonex encoding or any ngram. Preci-
sion was measured with duplicates removed.

In partition filtering, each name was indexed by
each of itsk + 1 partitions, and the partitions them-
selves were organized in an Aho-Curasick tree (Gus-
field, 1999). Retrieval was performed by apply-
ing the Aho-Curasick tree to the query to determine
all partitions occurring in the query and retrieving
the names corresponding to each partition, remov-
ing duplicates.

4.1 Optimizing LHS and RHS Subdivisions

The first experiment was performed to clarify the op-
timal sizes ofl, the number of LHS subdivisions,
andr, the number of RHS ranks. ETK was tested
on the U.S. name set withk = 1, pronunciation dis-
tance as similarity metric, and 10-fold cross valida-
tion for l ∈ {1, 2, 4, 8, 16, 32} andr ∈ {1, 2}.

As shown in Table 1, whenl = 1, r = 2 has
higher f-measure thanr = 1, but whenl is 2 or
greater, the best value forr is 1. Overall, the highest
f-measure is obtained withl = 8 andr = 1. In the
experiments below, the value of 16 was used forl

because this leads to slightly higher recall at a small
cost in decreased f-measure.
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Table 1: F-measure forl ∈ {1, 2, 4, 8, 16, 32} and
r ∈ {1, 2, } on U.S. names with pronunciation dis-
tance andk = 1 in 10-fold cross validation.

1 2 4 8 16 32
1 0.1431 0.2112 0.3039 0.3550 0.3428 0.2928
2 0.1469 0.1858 0.1520 0.0729 0.0264 0.0108

4.2 Comparison of ETK to Other Filter
Algorithms

The retrieval accuracy of ETK was compared to that
of BKT, partition, ngram, Phonex, and Soundex on
the U.S. and German name sets for pronunciation
distance withk ∈ {0, 1, 2} and for edit distance
with k ∈ {1, 2}. In tests involving pronuncia-
tion distance BKT was tested under two conditions:
with the pronunciation distance function available
to BKT during indexing and retrieval; and the dis-
tance function unavailable, so that BKT indexing
and retrieval was performed on the surface form
even though the actual similarity metric was pro-
nunciation distance. This is intended to simulate
the situation in which examples of matching names
are available but the underlying similarity metric is
unknown. Ngram and partition filtering were per-
formed on letters only.

Tables 2 and 3 show recall, precision, and f-
measure for pronunciation distance on U.S. and Ger-
man names, respectively, withk ∈ {0, 1, 2}, l =
16, and r = 1. ETK has the highest f-measure
under all conditions because its precision is con-
sistently higher than that of the other algorithms.
This is because each key function in ETK applies
only transformations representing orthographic dif-
ferences between names in the same equivalence
class. Thus, the transformations are very conserva-
tive. BKT always has recall of 1.0 when the pronun-
ciation model is available, but in many cases a model
may be unavailable. When no model is available, no
single algorithm consistently has the highest recall.
Ngrams, partition, Phonex, and BKT each had the
highest recall in at least one language/error thresh-
old combination.

Tables 4 and 5 show recall, precision, and f-
measure for edit distance on U.S. and German
names, respectively, withk ∈ {1, 2}, l = 16, and
r = 1 (k = 0 would be an exact match on the
surface form, for which all algorithms would have

Table 2: Recall, precision, and f-measure for pro-
nunciation distance on U.S. surnames. K is maxi-
mum permitted error. BKT-NM is BKT without the
pronunciation model. Best results are shown in bold,
including highest recall in addition to BKT.

recall precision f-measure
BKT 1.0000 0.0152 0.0299
BKT-NM 0.0510 0.0003 0.0006
partition 0.1298 0.0168 0.0298

k=0 soundex 0.8350 0.0331 0.0637
phonex 0.8811 0.0173 0.0339
ngrams 0.7457 0.0034 0.0068
ETK 0.5642 0.3314 0.4175
BKT 1.0000 0.0039 0.0078
BKT-NM 0.5704 0.0019 0.0038
partition 0.6157 0.0092 0.0181

k=1 soundex 0.4422 0.1803 0.2562
phonex 0.4969 0.1008 0.1676
ngrams 0.4453 0.0213 0.0406
ETK 0.4862 0.2647 0.3428
BKT 1.0000 0.0088 0.0174
BKT-NM 0.7588 0.0050 0.0099
partition 0.6948 0.0122 0.0240

k=2 soundex 0.1298 0.4350 0.2000
phonex 0.1708 0.2860 0.2139
ngrams 0.2063 0.0825 0.1178
ETK 0.4502 0.1953 0.2724

recall 1.0). Again, ETK has the highest f-measure
because of its consistently high precision.

4.3 Training Set Size

The sensitivity of ETK to training set size was tested
by performing 50-fold cross-validation with train-
ing sets for pronunciation distance on U.S. names of
sizes in{48, 96, 191, 381, 762, 1524, 3047} drawn
from the 3047 equivalence classes in the 5000 U.S.
names with pronunciation distance andk = 1. As
shown in Figure 1, the learning curve rises steeply
for the entire range of training set sizes considered
in this experiment.

5 Conclusion

The experimental results demonstrate the feasibil-
ity of basing search keys on transformation rules
acquired from examples. If sufficient examples of
names that match under a given distance metric and
error threshold are available, keys can be induced
that lead to good performance in comparison to al-
ternative filtering algorithms. Moreover, the results
involving pronunciation distance illustrate how pho-
netic keys can be learned that are specific to indi-
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Table 3: Recall, precision, and f-measure for pro-
nunciation distance on German names. K is maxi-
mum permitted error. Best results are shown in bold.

recall precision f-measure
BKT 1.0000 0.0056 0.0110
BKT-NM 0.1600 0.0003 0.0007
partition 0.1223 0.0059 0.0112

k=0 soundex 0.7059 0.0125 0.0235
phonex 0.8997 0.0061 0.0122
ngrams 0.9348 0.0016 0.0031
ETK 0.7715 0.3606 0.4915
BKT 1.0000 0.0013 0.0026
BKT-NM 0.7923 0.0006 0.0013
partition 0.7865 0.0031 0.0062

k=1 soundex 0.3969 0.0533 0.0940
phonex 0.5048 0.0270 0.0512
ngrams 0.6866 0.0090 0.0178
ETK 0.5503 0.3820 0.4510
BKT 1.0000 0.0018 0.0037
BKT-NM 0.8533 0.0010 0.0021
partition 0.8384 0.0029 0.0058

k=2 soundex 0.1311 0.1209 0.1258
phonex 0.1693 0.0640 0.0929
ngrams 0.2801 0.0255 0.0468
ETK 0.3496 0.1687 0.2276

Table 4: Recall, precision, and f-measure for edit
distance on U.S. surnames.

recall precision f-measure
BKT 1.0000 0.0024 0.0048
partition 1.0000 0.0106 0.0210

k=0 soundex 0.3537 0.1010 0.1572
phonex 0.3937 0.0564 0.0986
ngrams 0.8408 0.0288 0.0557
ETK 0.6768 0.3244 0.4386
BKT 1.0000 0.0052 0.0103
partition 1.0000 0.0139 0.0275

k=1 soundex 0.1038 0.2692 0.1498
phonex 0.1288 0.1696 0.1464
ngrams 0.4112 0.1300 0.1976
ETK 0.4001 0.3565 0.3770

Table 5: Recall, precision, and f-measure for edit
distance on German names.

recall precision f-measure
BKT 1.0000 0.0009 0.0018
partition 1.0000 0.0045 0.0091

k=0 soundex 0.5266 0.0826 0.1429
phonex 0.6101 0.0374 0.0704
ngrams 0.8880 0.0134 0.0264
ETK 0.6647 0.4957 0.5679
BKT 1.0000 0.0017 0.0034
partition 1.0000 0.0048 0.0096

k=1 soundex 0.1592 0.2052 0.1793
phonex 0.2019 0.1063 0.1392
ngrams 0.4036 0.0516 0.0915
ETK 0.3986 0.3466 0.3708

Figure 1: F-measure for U.S. names for training sets
containing varying numbers of collections, withk =
1, l = 16, andr = 1. Each training instance consists
of all names withink of some centriod under the
metric.

vidual match criteria. In filtering under pronunci-
ation distance, ETK’s f-measure for German names
was similar to its f-measure for U.S. names (actually
higher fork ∈ {0, 1}) whereas Soundex and Phonex
were approximately an order of magnitude lower.

Although ETK consistently had the highest f-
measure in this experiment, it does not follow that
ETK is necessarily the most desirable name filter for
any particular application. In many applications re-
call may be much more important than precision. In
such cases, it may be essential to choose the highest
recall algorithm notwithstanding a lower f-measure.
However, the highest recall algorthms can lead to a
very large number of distance-metric applications.
For example, in some data sets the number of nodes
examined by BKT during retrieval is a significant
proportion of the entire pattern set.

ETK has the disadvantage of requiring a large set
of training examples consisting of equivalence sets
of strings that match under the metric and maximum
allowable error. Where such large numbers of equiv-
alence sets are unavailable, it may be better to use
simpler and less-informed filters.

A number of variations of ETK are possible. For
example, keys could consist of finite-state trans-
ducers trained from consistent subsets of mappings
rather than transformation rules. There are also
many possible alternatives to ETK’s window-based
approach to deriving mappings from examples.
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In summary, this work has demonstrated that en-
sembles of keys induced from equivalence classes
of names under a specific distance metric and max-
imum allowable error can filter names with high f-
measure. The experimental results illustrate the ben-
efits both of acquiring keys that are adapted to spe-
cific similarity criteria and of indexing with multiple
independent keys.
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