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Abstract

This paper describes ETK (Ensemble of
Transformation-based Keys) a new algo-
rithm for inducing search keys for name
filtering. ETK has the low computational
cost and ability to filter by phonetic sim-
ilarity characteristic of phonetic keys such
as Soundex, but is adaptable to alternative
similarity models. The accuracy of ETK in
a preliminary empirical evaluation suggests
that it is well-suited for phonetic filtering
applications such as recognizing alternative
cross-lingual transliterations.

Introduction

as names on an immigration-control watch list), a

collection of text strings (such as a passenger list), a
distance metric for calculating the degree of relevant
dissimilarity between pairs of strings, and a match

threshold expressing the maximum allowable dis-

tance between matching names. The goal is to find
all text/pattern pairs whose distance under the metric
is less than or equal to the threshold. In the simplest
case, patterns and the text strings with which they
are matched are both individual words. In the gen-

eral case, the text may not be segmented into strings
corresponding to possible names.

Distance metrics for name matching are typically
computationally expensive. For example, determin-
ing the edit distance between two strings of length
andm requires, in the general casepn steps. Met-
rics based on algorithms that learn from examples

orthographically distinct strings are likely to denoteof strings that should match (Bilenko et al., 2003;
the same individual—occurs in a wide variety of im-Ristad and Yianilos, 1998) and metrics that use pho-
portant applications, including law enforcement, nanetic similarity criterion, e.g., (Kondrak, 2000) are
tional security, and maintenance of government anab less expensive than edit distance.

commercial records. Coreference resolution, speechThe computational expense of distance metrics
understanding, and detection of aliases and duplicateeans that tractable name matching on large texts
names all require name matching.
The orthographic variations that give rise to théng step to find a subset of the original text to
name-matching task can result from a variety of facahich the expensive similarity metric will be ap-
tors, including transcription and OCR errors, angblied. Desiderata for filtering include the following:

spelling variations.

have no direct equivalent in Engliste.g, “Mo-

hamed” or “Muhammet” are two of many possible 2.

transliterations for the same Arabic name.

Name matching can be viewed as a type of range
query in which the input is a set of patterns (such
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In many applications, cross-
lingual transliterations are a particularly important
source of variation. For example, romanized Ara-
bic names are phonetic transcriptions of sounds that

typically requires an inexpensive, high-recilier-

1. High recall. The recall of the entire name-
matching process is bounded by the recall of
the filtering step, so high filtering recall is es-
sential.

Efficiency. Filtering is useful only to the ex-
tend that it requires less computational expense
than applying the similarity metric to each pat-
tern/text pair. The computational expense of
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a filtering algorithm itself must therefore beapproach is termetivo-stage retrievain the Infor-
less than the cost of the metric calls eliminatednation Retrieval literature (Shin and Zhang, 1998),
through the filtering process. Typically, the cosMAC/FAC by some researchers in analogy (Gen-
of the metric is so much higher than the filtertner and Forbus, 1991)locking in the statistical
ing cost that the latter can be neglected. Undeecord linkage literature (Cohen et al., 2003), &hd
these circumstances, precision is a satisfactotgring in the approximate string matching literature
proxy for efficiency. (Navarro, 2001).
The two most common approaches to filtering
3. Adaptability to specific distance metrics. that have been applied to name matching are in-
High precision and recall are achievable in ﬁ"dexing by phonetic keysand indexing byngrams
tering only if the filtering criterion corresponds Tyg less well known filtering algorithms that often
to the distance metric. For example, if a dishaye higher recall than filtering by phonetic keys or

tance metric is based on phonetic differencefgrams argivot-based retrievaandpartition filter-
between strings, a filtering algorithm that sejpg,

lects candidate text strings based on ortho-

graphic differences may perform poorly. sim-Phonetic Key Indexing. In phonetic key index-
ilarly, poor performance may result from use/"d, names are indexed by a phonetic representa-
of a filtering algorithm based on phonetic dif-tion created by a key function that maps sequences
ferences if the distance metric is based on oRf characters to phonetic categories. ~ Such key
thographic differences. For exampleayton®  functions partition the name space into equivalence
and“LEIGHTON" differ by a large edit distance Classes of names having identical phonetic represen-
but are phonetically identical (in most dialects) ations. Each member of a partition is indexed by the
whereasBOUGH" and‘ROUGH" are orthograph- Shared phonetic representation.

ically similar but phonetically dissimilar. An _ The oldest phonetic key function is apparently

ideal filtering algorithm should be adaptable to>0undex, which was patented in 1918 and 1922

1,435,663) and described in (Knuth, 1975). Despite

This paper describes ETK (Ensemble ofSoundex’s has many well-known limitations, includ-
Transformation-based Keys) a new algorithming inability to handle different first letters with
for inducing filters that satisfy the three criteriaidentical pronunciationse(g, Soundex of “Kris”
above. ETK is similar to phonetic search keyis K620, but Soundex of “Chris” is C620), trun-
algorithms such as Soundex and shares phonetiation of long names, and bias towards English
search key algorithms’ low computational expenspronunciations, Soundex is still in use in many
and ability to filter by phonetic similarity. However, law enforcement and national security applications
ETK has the advantage that it is adaptable to alte(Pizard, 2004). A number of alternative phonetic
native distance metrics and is therefore applicablencodings have been developed in response to the
to a wider range of circumstances than static kefymitations of Soundex,e.g, (Taft, 1970; Gadd,
algorithms. 1990; Zobel and Dart, 1996; Philips, 1990; Philips,

The next section describes previous work in nam2000; Hodge and Austin, 2001; Christen, 2006).
filtering. Section 3 describes the ETK algorithm inWhile each of these alternatives has some advan-
detail, and a preliminary evaluation on English andages over Soundex, none is adaptable to alterna-

German surnames is set forth in Section 4. tive distance metrics. For purposes of comparison,
_ Phonex (Gadd, 1990) was included in the evalua-
2 Previous Work tion below because it was found to be the most ac-

R . . . . _curate phonetic key for last names in an evaluation
The division of the retrieval task into an in .
e division of the retrieval task into a expensweby (Christen, 2006).

high-recall filtering stage followed by a more expen-
sive high-precision stage emerged independently igram Filtering. The second common filtering
a variety of different areas of computer science. Thialgorithm for names is ngram indexing, under which
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each pattern string is indexed by every n-elemerteed to be retrieved by a BKT.€., recall is 100%),
substring,.e., every sequence of n contiguous charthere are no guarantees on precision. During search,
acters occurring in the pattern string (typically, theone application of the distance metric is required at
original string is padded with special leading andach internal node traversed, and a distance-metric
trailing characters to distinguish the start and end @pplication is required for each candidate element in
the name). The candidates for each target string aeaf hodes reached during the traversal. The number
retrieved using the ngrams in the target as indicesf nodes searched is exponentiakifChavez et al.,
(Cohen et al., 2003). Typical values for n are 3 or 42001).

Pivot-Based Retrieval. Pivot-based retrieval Partition Filtering. Partition filtering (Wu and
techniques are applicable to domains, such as naiv&nber, 1991; Navarro and Baeza-Yates, 1999), is
matching, in which entities are not amenable t@n improvement over ngram filtering that relies on
vector representation but for which the distancéhe observation that if a pattern stritg of length
metrlc satisfies the triangle inequality (Chavez etn is divided into segments of length;"'; |, then

al., 2001 any string that matcheB with at mostk errors must

The key idea is to organize the index around &ontain an exact match for at least one of the seg-
small group of elements, callggvots In retrieval, ments (intuitively, it would take at leagt + 1 er-
the distance between the query prap@nd any ele- rors, e.g, edit operations, to alter all of these seg-
mente can be estimated based on the distances Bfents). Strings indexed ﬂ)’mJ length segments
each to one or more pivots. There are numerouan be retrieved by an eff|C|ent exact string match-
pivot-based metric space indexing algorithms. Aiing algorithm, such as suffix trees or Aho-Corasick
instructive survey of these algorithms is set forth irirees. This is necessary because partitions, unlike
(Chavez et al., 2001). ngrams, vary in length.

One of the oldest, and often best-performing, Partition filtering differs from ngram filtering in
pivot-based indices is Burkhart-Keller Trees (BKT)two respects. First, ngrams overlap, whereas par-
(Burkhard and Keller, 1973; Baeza-Yates andition filtering involves partitioning each string into
Navarro, 1998). BKT is suitable for discrete-valuedion-overlapping segments. Second, the choice of
distance metrics. Construction of a BKT starts withe in ngram filtering is typically independent @f,
selection of an arbitrary element as the root of thehereas the size of the segments in filtering is cho-
tree. Thei!” child of the root consists of all ele- Sen based ok. Since in most applications is in-
ments of distanceé from the root. A new BKT is dependent ok, ngram retrieval, like phonetic key
recursively constructed for each child until the numindexing, lacks any guaranteed lower bound on re-
ber of elements in a child falls below a predefinedall, whereas partition filtering guarantees 100% re-
bucket size. call when the distance metric is edit distance.

A range query on a BKT with distance metric _

d, probeg, rangek, and pivotp is performed as S | ne ETK algorithm

follows. If the BKT is a leaf node, then the dis-3 1 Motivation

tance metriel is applied betweenand each element
of the leaf node, and those elememnt$or which
d(q,e) < k are returned. Otherwise, all subtree
with index for which |d(q,e) — i| < k are recur-
sively searched.

While all names withink of a query are guaran-

Any key function partitions the universe of strings
énto equivalence classes of strings that share a com-
n key. If a key function is to serve as a fil-
ter, matching names must be members of the same
equivalence class. However, no single partition can
produce equivalence classes that both include all

'Edit distance satisfies the triangle inequality because anypiatching pairs and exclude all non-matching pairs.
string A can be transformed into another string C by first
transforming A to any other string B, then transforming B 2For example, suppose that for strings A, B, and C and dis-
into C. Thus, edit-distance(A,C) cannot be greater that- editance metric d, d(A,B) = .9, d(B,C) = .9, d(A,C) = 1.7, and
distance(A,B)+ edit-distance(B,C) for any strings A, B, and suppose that 1.0 is the match threshold. A query on A would re-
C. quire a partition that puts A and B in the same equivalencsscla
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A search key that creates partitions in which ther8.2

is a low probability that non-matching pairs share %ducing Transformation Rules

common equivalence class will have high precisior})
although possibly low recall. However, the recall o

Procedure

The inductive

rocess starts with a collection of equivalence
classes under a given distance metric and match

an ensemble of search keys, each having NON-Z&iftesholdk. A collection of transformation rules are

recall and each being independent of the others, C¥rived from these equivalence classes as follows.
be expected to be greater than the recall of any iR=or each equivalence clag:

dividual key. A high-precision and high-recall index
can therefore be constructed if one can find, for a o
given similarity metric and match threshold, a suf-
ficiently large set of key functions that (1) are in-
dependent, (2) each have high-precision under the
metric and threshold, and (3) have non-zero recall.

The objective of ETK is to learn a set of inde-
pendent, high-precision key functions from training
data consisting of equivalence classes of names that
satisfy the matching criteria. The similarity metric
and threshold are implicit in the training data. Thus, e
under this approach a key function can be learned
even if the similarity model is unknown, provided
that sufficient equivalence classes are available.

For each equivalence class, ETK attempts to find
the shortest transformation rules capable of con-
verting all members of the equivalence class into
an identical orthographic representation. The entire
collection of transformation rules for all equivalence
classes, which in general has many inconsistencies,
is then partitioned into separate consistent subsets.
Each subset of transformation rules constitutes an ®
independent key function. Each pattern name is in-
dexed by each key produced by applying a key func-
tion to it, and the candidate matches for a new name
consist of all pattern names that share at least one
key.

The equivalence classes of matching names can
be obtained either through sonae priori source
(such as alias lists or manual construction) or by ap-
plying the similarity metric to pairs in a training set,
e.g, repeated leave-one-out retrievals with a known
distance metric. In the former case, the keys are
purely empirical; in the later the key functions are
in effect a way of compiling the distance metric to
speed retrieval.

The element ofEC' with the least mean pair-
wise edit distance to the other class members
(breaking ties by preferring shorter elements)
is selected as the centroid. For example, if
EC'is {LEIGHTON LAYTON SLEIGHTON}, then
LEIGHTON would be the centroid because it has
a smaller edit distance to the other elements
than they do to each other.

For each elemenft other than the centroid, dy-
namic programming is used to find an align-
ment of £/ with the centroid that maximizes the
number of corresponding identical characters.
For example, the alignment aEIGHTON and
LAYTON would be:

LAY-- TON
LEI GHTON

For each character of the centroid, all win-
dows of characters i of length from 1 to
some constant maxWindow centered on the
character in the source corresponding:tare
found, skipping blank characters. Each map-
ping from a window toc constitutes a rule.
For example, for maxWindow 7 and the align-
ment above, the transformation rules for the

in LEIGHTON would be:

$$LAYTO — E
SLAYT — E
LAY — E
A—E

3See (Damper et al., 2004) for details on alignment by dy-

and C into a different equivalence class, a query on C would rexamic programming. The approach taken here assigns aglight
quire a partition that puts B and C in the same equivalenasclahigher association weight for aligned identical consosdnan
and A in a different equivalence class, and a query on B woultbr aligned identical vowels so thateteris paribusconsonant
require a partition in which all three were in the same equivaalignment is preferred to vowel alignment and assigns atjig
lence class. Thus, three independent keys would be neededhigher association weight to non-identical letters that lzoth

satisfy all three queries while excluding non-matching eaam
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Transformation rules derived from multiple This procedure is similar to window-based
equivalence classes typically have many incornpronunciation-learning algorithms,g, (Sejnowski
sistencies,i.e., rules with identical left-hand and Rosenberg, 1987; Bakiri and Dietterich, 1999),
sides (LHSs) but different right hand sidesbut differs in that the objective is not determining
(RHSs). All RHSs for a given LHS are groupeda correct pronunciation, but is instead transforming
together and ranked by frequency of occurrence/ords that are similar under a given metric into a
in the training data. For example, the frequencgingle, consistent orthographic representation.

of alternative rules for the middle characters

LAN and LEI for the U.S. name pronunciation 3.3  Filtering with ETK

set withk = 1 discussed below is: Thelr subsets of transformation rules induced from
LAY SE 5 LEI—-A 2 : ; :
LAY A 4 LEISE 1 a given set of gquwalenge classes_ define an ensem-
LAY AN 3 LEl—- 1 ble of key functions. To filter potential matches with

. . this ensemble, each pattern is added to a hash table
Key Formation. The transformation rules are sub-. ' P

divided two different ways: by LHS.g, separating mdexgd by each key generategl by a Key function.
Candidate matches to a text string consist of all pat-
rules forLAY from those forLEl, and by RHS fre-

quencye.g, separating Ay — E (the most frequent terns indexed by the keys generated from the text by

rule for LAY) from LAY— A (the next most frequent). the ensemble of key functions. For example, sup-

. ose that (as is the case with the rule sets for Amer-
The highest frequency RHS rules from the exampllgCan names, pronunciation distance, aad= 0)

above are: patternsROLLINS and ROWLAND have keys that in-
LAY — E clude{ROWLINS ROLINS} and{RONLLAND ROLAN},
LEl — A respectively, and that teRAWLINS has keys that in-

clude {ROWLINS RALINS}. ThenROLLINS but not
ROWLAND would be retrieved because it is indexed
LAY — A by a key shared witROWLINS.*

LEI - E

and the next most frequent are:

4 Evaluation
If rules are divided intd LHS subsets, and each

subset is further subdivided by taking théiighest The retrieval accuracy of ETK was compared to
ranked RHSs (with RHSs ranked lower thang- that of BKT, filtering by partition, ngram filtering,
nored), the result is a total df subsets. Each of Phonex, and Soundex on sets of U.S. and German
theselr subsets defines a key function. For each patames. The U.S. name set consisted of the 5,000
sition in a word to which the key function is to bemost common last names identified during the most
applied (padded with leading and training markersyecent U.S. Censfsvhich have pronunciations in
the rule with the longesti.€., most specific) LHS cmudict, the CMU pronouncing dictiona?y. The
that matches the window centered at that position i§erman name set consisted of the first 5963 en-
used to determine the corresponding character in titiges in the HADI-BOMP collectioh whose part of
key. If no rules apply, the character in the key is thepeech isNAM.
same as that in the original word. The filtering algorithms were compared with re-

For example, suppose that the word to which thepect to two alternative distance metrics. The first
key is to be applied i€EREIGHTON and transforma- was pronunciation distancewhich consists of edit
tions inClUdeLEIGHTO — -, EIGHT — - andIGH - G. ———

; ; : “In the evaluation below, the original string itself is added

The character in the k_ey correspgndlng o then as an additional index key. This addition slightly incresaiseth
CREIGHTON would be- (i.e., a deletion) because the recall and precision.
EIGHT is the longest LHS matching at that position. °The names were taken from the 1990

The key consists of the concatenation of the RHSgS: ~Census  collection of 88,799 last names - at
tp://www.census.gov/genealogy/names/names files.html.

produced by successively applying the key function sy /amww.speech.cs.cmu.edu/cgi-bin/emudict.
to each position in the orginal word. "http://www.ikp.uni-bonn.de/dt/forsch/phonetik/bomp.
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distance between pronunciations represented uss the root of each subtree. The rationale for this
ing the cmudict phoneme set for U.S. names anchoice is that there is typically more variance in dis-
the HADI-BOMP phoneme set for German namegance from a longer word than from a shorter word,
Stress values were removed from cmudict pronurand greater variance increases the branching factor
ciations, and syllable divisions were removed fromin BKT, reducing tree depth and therefore the num-
HADI-BOMP pronunciations. When there wereber of nodes visited during search.

multiple pronunciations for a name in cmudict, the gjnce the importance of precision in filtering is
first was used. In cmudict, for exampl®IEUSE  that it determines the number of calls to the sim-
and MEWES have pronunciation distance of O be-jarity metric required for a given level of recall,

cause both have pronunciationy uw z. In HADI- precision figures for BKT includénternal calls to
BOMP, HELGARD andHERBART have pronunciation the similarity metric, that is, calls during indexing.
distance 2 because their pronunciationshé@gar  Thys, precision of BKT is the number of true posi-

distance with unit weights for insertions, deletionsnymber of internal metric calls.

and substitutions. In practice, appropriate distance . .
) . ! ) X In Soundex and Phonex indexing, each name was

metrics might be Jaro (Jaro, 1995), Winkler (Win- g

[ Ph key. Similarl
kler, 1999), or some metric specialized to a particu!-ndeerI by its Soundex (Phonex) key. Similarly,

. e In ngram filtering each name was indexed by all
lar phonetic or error model. Pronunciation and edi

. . iEs ngrams, with special leading and trailing char-
distance were chosen as representative of phoneg&ers added. Retrieval was performed by finding
and non-phonetic metrics.

e ) the Soundex or Phonex encoding or the ngrams of
Training data for ETK for a given language

A ) _ *each query and retrieving every name indexed by the
match threshold, and similarity metric consisted of g, ,ndex or Phonex encoding or any ngram. Preci-

all sets of at least 2 names containing only eIemen§0n was measured with duplicates removed
were withink of some element of the set under the | iition filteri h indexed b
metric. These training sets were created by perform- N partition Titering, €ach name was [ndexed by

ing a retrieval on every name in each collection ysSach ofitsk + 1 partitions, and the partitions them-

ing BKT, which has 100% recall. For each retrieval selves were organized in an Aho-Curasick tree (Gus-

the true positives from BKT’s return set were def'eld’ 1999). Retrieval was performed by apply-

termined by applying the similarity metric betweenN9 the Aho-Curasick tree to the query to determine

each return set element and the query. If there weﬁe:zl partitions occurrln%im t?e quer:y antqt[ retrieving
at least 2 true positives (including the query itself) € names corresponding fo each partition, remov-

the set of true positives was included in the training';ng duplicates.

setd

ETK was tested using cross validation, so tha#.1 Optimizing LHS and RHS Subdivisions
names in the training set and those in the testing set . i .
were disjoint. Specifically, all names in the testin Thef|r§t experiment was performed to clan_fy the op-
set were removed from each collection in the train-Imal sizes off, the number of LHS subdivisions,
ing set. If at least 2 names remained, the coIIectioﬂndr’ the number of RHS ranks. ETK was tested

was retained. ETK’s maxWindow size was 7, as iff" e U-S. name set with = 1, pronunciation dis-
the examples above. tance as similarity metric, and 10-fold cross valida-

In BKT, the bucket size (maximum number of eI-tlon forl € {1,2,4,8,16,32} andr € {1, 2}.

ements in any leaf node) was 2, and the longest el- AS shown in Table 1, wheh = 1, » = 2 has

ement (rather than a random element) was selectBiher f-measure than = 1, but whenl is 2 or
greater, the best value feris 1. Overall, the highest

®Note that each set of true positives is a cluster having themeasure is obtained with= 8 andr = 1. In the

query as its centroid and radidsunder the distance metric. experiments below, the value of 16 was used !for
The triangle inequality guarantees that the maximum digtan this leads to sliahtly hiah Il at I
between any pair of names in the collection is no greater thgﬂecause IS [eads 1o shightly higher recall al a sma

2k. cost in decreased f-measure.
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Table 1: F-measure fdr € {1,2,4,8,16,32} and Table 2: Recall, precision, and f-measure for pro-
r € {1,2,} on U.S. names with pronunciation dis-nunciation distance on U.S. surnames. K is maxi-
tance andc = 1 in 10-fold cross validation. mum permitted error. BKT-NM is BKT without the

L] 1] 2] 4] 8] 16]  32] pronunciation model. Best results are shown in bold,

1] 0.1431] 0.2112] 0.3039] 0.3550 [ 0.3428[ 0.2928] ; i i i iti
including highest recall in addition to BKT.
2| 0.1469| 0.1858| 0.1520| 0.0729 | 0.0264 | 0.0108 recall | precision| f-measure

BKT 1.0000| 0.0152 | 0.0299
BKT-NM | 0.0510| 0.0003 0.0006
4.2 Comparison of ETK to Other Filter partiton | 0.1298 | 0.0168 | 0.0298

k=0 | soundex | 0.8350| 0.0331 0.0637
phonex 0.8811| 0.0173 0.0339
ngrams 0.7457 | 0.0034 0.0068

Algorithms

—

The retrieval accuracy of ETK was compared to thal

" ETK 0.5642| 0.3314 | 0.4175

of BKT, partition, ngram, Phonex, and Soundex of BKT 100001 0.0039 | 0.0078
the U.S. and German name sets for pronunciatign BKT-NM | 0.5704| 0.0019 | 0.0038
istan with 1.9 nd for it distan partition | 0.6157 | 0.0092 0.0181
d_s tance withk < {0,1,2} a d o edit dista €€ | k=1 | soundex | 0.4422| 0.1803 | 0.2562
with k € {1,2}. In tests mvolvmg pronuncia- phonex 0.4969 | 0.1008 0.1676
tion distance BKT was tested under two conditions: ngrams | 0.4453| 0.0213 | 0.0406
with the pronunciation distance function available E% g'gggé 8'3&‘3‘; 8'8‘52
to BKT during indexing and retrieval; and the dis- BKT-NM | 0.7588| 0.0050 | 0.0099
tance function unavailable, so that BKT indexing partition | 0.6948| 0.0122 | 0.0240
- k=2 | soundex | 0.1298| 0.4350 | 0.2000

and retrieval was performeq on the s.urface form phonex | 0.1708| 0.2860 | 02139
even though the actual similarity metric was prot ngrams | 0.2063| 0.0825 | 0.1178
nunciation distance. This is intended to simulate ETK 0.4502] 0.1953 | 0.2724

the situation in which examples of matching names
are available but the underlying similarity metric is
unknown. Ngram and partition filtering were per-
formed on letters only.

Tables 2 and 3 show recall, precision, and f4.3 Training Set Size

measure for pronunciation distance on U.S. and Ger- o . .
P e'Fhe sensitivity of ETK to training set size was tested

man names, respectively, with € {0,1,2}, [ = . e . .
P Y . {0, 1,2} by performing 50-fold cross-validation with train-
16, andr = 1. ETK has the highest f-measure. " .
. . L ing sets for pronunciation distance on U.S. names of
under all conditions because its precision is con-

sistently higher than that of the other algorithmsSlzes in{48, 96, 19.1’ 381, 762, 152‘.1’ S0uarawn
. o ._from the 3047 equivalence classes in the 5000 U.S.
This is because each key function in ETK applies ) o :
, ; . ..names with pronunciation distance ahd= 1. As
only transformations representing orthographic dif- N . i
. . shown in Figure 1, the learning curve rises steeply
ferences between names in the same equivalence . - ) .
. or the entire range of training set sizes considered
class. Thus, the transformations are very conserv%- this experiment
tive. BKT always has recall of 1.0 when the pronun- P '
ciation model is available, but in many cases a modg Conclusion
may be unavailable. When no model is available, no
single algorithm consistently has the highest recalllhe experimental results demonstrate the feasibil-
Ngrams, partition, Phonex, and BKT each had thiy of basing search keys on transformation rules
highest recall in at least one language/error threslcquired from examples. If sufficient examples of
old combination. names that match under a given distance metric and
Tables 4 and 5 show recall, precision, and ferror threshold are available, keys can be induced
measure for edit distance on U.S. and Germathat lead to good performance in comparison to al-
names, respectively, with € {1,2}, [ = 16, and ternative filtering algorithms. Moreover, the results
r = 1 (k = 0 would be an exact match on theinvolving pronunciation distance illustrate how pho-

surface form, for which all algorithms would havenetic keys can be learned that are specific to indi-

recall 1.0). Again, ETK has the highest f-measure
because of its consistently high precision.
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. Figure 1: F-measure for U.S. names for training sets
Table 3: Recall, precision, and f-measure for pro- 9 o ) ) 9

o . . containing varying numbers of collections, with=
nunciation distance on German names. K is maxi:

, . = 16, andr = 1. Each training instan nsi
mum permitted error. Best results are shown in boldl.’l 6, andr - - tac training s'ta ce consists
recall | precision| F-measure of all names withink of some centriod under the
BKT 1.0000| 0.0056 | 0.0110 metric.
BKT-NM | 0.1600| 0.0003 | 0.0007
partition | 0.1223| 0.0059 0.0112

k=0 | soundex | 0.7059| 0.0125 | 0.0235 03500
phonex | 0.8997| 0.0061 | 0.0122 i,
ngrams 0.9348 | 0.0016 0.0031 0.2750
ETK 0.7715| 0.3606 | 0.4915 02500
BKT 1.0000 | 0.0013 | 0.0026 02250 Vi

0.2000
0.1750
0.1500

BKT-NM | 0.7923| 0.0006 0.0013
partition | 0.7865| 0.0031 0.0062

f-measure

k=1 | soundex | 0.3969| 0.0533 | 0.0940 0.1250
phonex | 0.5048| 0.0270 | 0.0512 P
ngrams | 0.6866| 0.0090 0.0178 -
ETK 0.5503 | 0.3820 | 0.4510 0.0250
BKT 1.0000 | 0.0018 | 0.0037 0.0000 — ‘ ‘
BKT-NM | 0.8533| 0.0010 | 0.0021 “ % 191 81 762 Rl

training set size

partition | 0.8384 | 0.0029 0.0058
k=2 | soundex | 0.1311| 0.1209 0.1258
phonex 0.1693 | 0.0640 0.0929

E%rsms 8-%28{15 8-%23 8-23?2 vidual match criteria. In filtering under pronunci-

- - - ation distance, ETK'’s f-measure for German names
was similar to its f-measure for U.S. names (actually
higher fork € {0, 1}) whereas Soundex and Phonex

measure for ed\;v : .
ere approximately an order of magnitude lower.

Table 4: Recall, precision, and f-
distance on U.S. surnames.

recall | precision| f-measure Although ETK consistently had the highest f-

BKT 1-8888 8-82(2)2 8-8%3 measure in this experiment, it does not follow that
partition . . . . . . .

k=0 | soundex!| 035371 01010 | 01572 ETKis ngcessarlly_the_mostdeswable nqme_fllterfor
phonex | 0.3937| 0.0564 | 0.0986 any particular application. In many applications re-
ngrams | 0.8408| 0.0288 | 0.0557 call may be much more important than precision. In
ETK 0.6768 | 0.3244 | 0.4386 h it b tial to ch the hiahest
BKT 100001 00052 00103 such cases, it may be essential to choose the highes
partition | 1.0000 | 0.0139 | 0.0275 recall algorithm notwithstanding a lower f-measure.

k=1 | soundex| 0.1038| 0.2692 | 0.1498 However, the highest recall algorthms can lead to a
phonex | 0.1288| 0.1696 | 0.1464 | ber of di : licati
ngrams | 0.4112| 0.1300 | 0.1976 very large number o istance-metric applications.
ETK 0.4001 | 0.3565 | 0.3770 For example, in some data sets the number of nodes

examined by BKT during retrieval is a significant
proportion of the entire pattern set.
Table 5: Recall, precision, and f-measure for edit ETK has the disadvantage of requiring a large set

distance on German names. of training examples consisting of equivalence sets
recall | precision| f-measure . . .
BKT 100001 00009 | 0.0018 of strings that match under the metric and maximum
partition | 1.0000 | 0.0045 | 0.0091 allowable error. Where such large numbers of equiv-
k=0 | soundex| 0.5266| 0.0826 | 0.1429 alence sets are unavailable, it may be better to use

phonex | 0.6101| 0.0374 | 0.0704 : . :
ngrams | 0.8880| 0.0134 | 0.0264 simpler and less-informed filters.
ETK 0.6647| 0.4957 | 0.5679 A number of variations of ETK are possible. For

BKT 1.0000| 0.0017 0.0034

partition | 1.0000 | 0.0048 | 0.0096 example, _keys could copS|st of finite-state tra_ns-
k=1 | soundex| 0.1592| 0.2052 | 0.1793 ducers trained from consistent subsets of mappings

phonex 8-28;2 8-(132(152 8-(1)35135 rather than transformation rules. There are also

B | 02086 | 03486 | 0.3708 many possible alternatives to ETK’s window-based

approach to deriving mappings from examples.
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In summary, this work has demonstrated that erd. Gusfield. 1999. Algorithms on Strings, Trees, and
sembles of keys induced from equivalence classes SequencesCambridge University Press.
of names under a specific distance metric and max- j. Hodge and J. Austin. 2001. An evaluation of pho-
imum allowable error can filter names with high f- netic spell checkers. Technical report, Department of
measure. The experimental results illustrate the ben- Computer Science, University of York.
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