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Abstract

This paper proposes a framework for
semi-supervised structured output learning
(SOL), specifically for sequence labeling,
based on a hybrid generative and discrim-
inative approach. We define the objective
function of our hybrid model, which is writ-
ten in log-linear form, by discriminatively
combining discriminative structured predic-
tor(s) with generative model(s) that incor-
porate unlabeled data. Then, unlabeled
data is used in a generative manner to in-
crease the sum of the discriminant functions
for all outputs during the parameter estima-
tion. Experiments on named entity recogni-
tion (CoNLL-2003) and syntactic chunking
(CoNLL-2000) data show that our hybrid
model significantly outperforms the state-
of-the-art performance obtained with super-
vised SOL methods, such as conditional ran-
dom fields (CRFs).

Introduction

}@cslab.kecl.ntt.co.jp

amples are available. In fact, many attempts have re-
cently been made to develop semi-supervised SOL
methods (Zhu et al., 2003; Li and McCallum, 2005;
Altun et al., 2005; Jiao et al., 2006; Brefeld and
Scheffer, 2006).

With the generative approach, we can easily in-
corporate unlabeled data into probabilistic models
with the help of expectation-maximization (EM) al-
gorithms (Dempster et al., 1977). For example, the
Baum-Welch algorithm is a well-known algorithm
for training a hidden Markov model (HMM) of se-
guence learning. Generally, with sequence learning
tasks such as NER and Chunking, we cannot expect
to obtain better performance than that obtained us-
ing discriminative approaches in supervised learning
settings.

In contrast to the generative approach, with the
discriminative approach, it is not obvious how un-
labeled training data can be naturally incorporated
into a discriminative training criterion. For ex-
ample, the effect of unlabeled data will be elimi-
nated from the objective function if the unlabeled
data is directly used in traditional i.i.d. conditional-
probability models. Nevertheless, several attempts

Structured output learning (SOL) methods, whicthave recently been made to incorporate unlabeled
attempt to optimize an interdependent output spadkata in the discriminative approach. An approach
globally, are important methodologies for certairbased on pairwise similarities, which encourage
natural language processing (NLP) tasks such a®arby data points to have the same class label, has
part-of-speech tagging, syntactic chunking (Chunkbeen proposed as a way of incorporating unlabeled
ing) and named entity recognition (NER), which aredata discriminatively (Zhu et al., 2003; Altun et al.,
also referred to as sequence labeling tasks. When \2605; Brefeld and Scheffer, 2006). However, this
consider the nature of these sequence labeling taskpproach generally requires joint inference over the
a semi-supervised approach appears to be more natiole data set for prediction, which is not practi-
ural and appropriate. This is because the number oél as regards the large data sets used for standard
features and parameters typically become extremedgquence labeling tasks in NLP. Another discrim-
large, and labeled examples can only sparsely covierative approach to semi-supervised SOL involves
the parameter space, even if thousands of labeled @ke incorporation of an entropy regularizer (Grand-
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valet and Bengio, 2004). Semi-supervised condglobally conditioned on a set of inputs (Lafferty
tional random fields (CRFs) based on a minimunet al., 2001). Let\ be a parameter vector and
entropy regularizer (SS-CRF-MER) have been prof (ys—1,ys, ) be a (local) feature vector obtained
posed in (Jiao et al., 2006). With this approach, thsEom the corresponding position given . CRFs
parameter is estimated to maximize the likelihood oflefine the conditional probability(y|x), as being
labeled data and the negative conditional entropy @froportional to a product of potential functions on
unlabeled data. Therefore, the structured predicttine cliques. That isy(y|x) on a (linear-chain) CRF
is trained to separate unlabeled data well under ttean be defined as follows:

entropy criterion by parameter estimation. !
In contrast to these previous studies, this paper p(ylz;A) = mnexp(kf(ysfl,ys,w))-
proposes a semi-supervised SOL framework based s=1

on a hybrid generative and discriminative approacty (z) = Sy Hf;rll exp(A - f(ys—1,ys,x)) is @ nor-

A hybrid approach was first proposed in a supeimalization factor over all output valued), and is
vised learning setting (Raina et al., 2003) for texklso known as the partition function.

classification. (Fujino et al., 2005) have developed a For parameter estimation (training), given labeled
semi-supervised approach by discriminatively comdatapD, = {(x*, yk)}szl, the Maximum a Posteri-
bining a supervised classifier with generative modori (MAP) parameter estimation, namely maximiz-
els that incorporate unlabeled data. We extend thifg log p(A|D;), is now the most widely used CRF
framework to the structured output domain, specifitraining criterion. Thus, we maximize the following
cally for sequence labeling tasks. Moreover, we reppjective function to obtain optima\:

formalize the objective function to allow the incor-

poration of discriminative models (structured pre- £ (A) = Z{'\'Zfs — log Z(wk)} +logp(A), (1)
dictors) trained from labeled data, since the original . s

framework only considers the combination of genwhere f is an abbreviation off (ys—1,ys, ) and
erative classifiers. As a result, our hybrid model cap(A) is a prior probability distribution ofA. A
significantly improve on the state-of-the-art perforgradient-based optimization algorithm such as L-
mance obtained with supervised SOL methods, su@FGS (Liu and Nocedal, 1989) is widely used for
as CRFs, even if a large amount of labeled data aximizing Equation (1). The gradient of Equation
available, as shown in our experiments on CoNLL(1) can be written as follows:

2003 NER and CoNLL-2000 Chunking data. In CRE(vy _

addition, compared with SS-CRF-MER, our hybrid VET) 7;%(“‘"“) [Z”

model has several good characteristics including a _ZEP(ylmk;A) [Z £+ Viegp(A).

low calculation cost and a robust optimization in k s

terms of a sensitiveness of hyper-parameters. Tf@alculatinng(y‘m) as well as the partition func-
is described in detail in Section 5.3. tion Z(x) is not always tractable. However, for
2 Supervised SOL: CRFs Ii'near-c.ha.\in QRFS, a dynamic programming algo-
rithm similar in nature to the forward-backward al-
This paper focuses solely on sequence labelingbrithm in HMMs has already been developed for
tasks, such as named entity recognition (NER) angh efficient calculation (Lafferty et al., 2001).
syntactic chunking (Chunking), as SOL problems. For prediction, the most probable output, that is,
Thus, letz=(z1, ..., z5) € X be an input sequence, 4 — arg max,ecy p(y|z; A), can be efficiently ob-

andy=(yo, - - -, ys+1) €Y be a particular output se- tained by using the Viterbi algorithm.
guence, whergy andygs are special fixed labels

that represent the beginning and end of a sequencd. HYbrid Generative and Discriminative

As regards supervised sequence learning, CRFs APproach to Semi-Supervised SOL
are recently introduced methods that constitute flexn this section, we describe our formulation of a
ible and powerful models for structured predictordwybrid approach to SOL and a parameter estima-
based on undirected graphical models that have begon method for sequence predictors. We assume
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that we have a set of labeled and unlabeled datmodels (CRFs), which is equivalent 49 = 0 for

D = {D;,,D,}, whereD; = {(z",y")})_, and all j, we obtain essentially the same objective func-

D, = {z™}M_,. tion as that of the LOP-CRFs. Thus, our framework
Let us assume that we haveunits of discrimina- can also be seen as an extension of LOP-CRFs that

tive models,p”, and.J-units of generative models, enables us to incorporate unlabeled data.

Py ._Our hybrid m(_)de! fqr a_structure.d p_redlctor 'S3.1  Discriminative Combination

designed by the discriminative combination of sev- o

- o " For estimating the paramet#y, let us assume that
eral joint probability densities af andy, p(z,y). we already have discriminatively trained models on
That s, the posterior probability of our hybrid model y y

, . . labeled datap? (y|x; A;). We maximize the fol-
is defined by providing the log-values pfz, y) as . oo . o

. s lowing objective function for estimating parameter
the features of a log-linear model, such that:

T under a fixedd:
R(y|z; A, ©,T)
L@y A I 0f (2,93 0;)
>y LLipP (@ ys Xi)vi [ pf (w,9;0;)

n

) wherep(T') is a prior probability distribution of".
_ Ll ) T1, o (@, 6, The value ofT" providing a global maximum of
>y LLip? (ylas X) i [T, pf (2, y;0,)7 LM°4T|®) is guaranteed under an arbitrary fixed
value in the® domain, sinceL"*°(T"|®) is a con-
Here, T' = {{v}/_1,{v}}2/,1} represents the cave function off". Thus, we can easily maximize
discriminative combination Welght of each mOdeEquation (3) by using a gradient-based Optimization

wherey;,y; € [0, 1]. MoreoverA={\;}/_; and®=  g|gorithm such as (bound constrained) L-BFGS (Liu
{Gj}jzl represent model parameters of individuahnd Nocedal, 1989).

models estimated from labeled and unlabeled data, )
respectively. Using® (z, y) = pP (y|z)p? (z), we 3.2 Incorporatlng L.Jnlabeled Data
can derive the third line from the second line, wherdVe cannot directly incorporate unlabeled data for
pP(a; \;) for all i are canceled out. Thus, our hy_dlscnmmatlve training such as Equation (3) since
brid model is constructed by combining discriminatn€ correct outputy for unlabeled data are un-
tive models,p? (y|z; A;), with generative models, known. On the other hand, generative approaches
PG ( y:0;). can easily deal with unlabeled data as incomplete
" Hereafter, let us assume that our hybrid modéfata (data with missing variablg) by using a mix-
consists of CRFs for discriminative modei), and  turé model. A well-known way to achieve this in-
HMMs for generative models;$, shown in Equa- corporation is to maximize the log likelihood of un-
tion (2), since this paper focusjes solely on sequen&beled da_ta with respect to the marginal distribution
modeling. For HMMs, we consider a first order®f generative models as
HMM defined in the following equation: m
ged £0) =3 log > p(a",y; ).
m Y

S+1

p@y16) = ] 0v. 1000, In fact, (Nigam et al., 2000) have reported that using
= unlabeled data with a mixture model can improve
where 6, _, ,. and 6, . represent the transition the text classification performance.
probability between states_; andys and the sym-  According to Bayes' rule, p(y|z;0)
bol emission probability of the-th position of the p(x,y;0), the discriminant functions of gener-
corresponding input sequence, respectively, wheegive classifiers are provided by generative models
Oysir,eser = 1o p(x,y;0). Therefore, we can regard(0) as the
It can be seen that the formalization in the logiogarithm of the sum of discriminant functions for
linear combination of our hybrid model is very sim-all missing variableg of unlabeled data. Following
ilar to that of LOP-CRFs (Smith et al., 2005). Inthis view, we can directly incorporate unlabeled
fact, if we only use a combination of discriminativedata into our hybrid model by maximizing the
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discriminant functionsg of our hybrid model in 1.Given training setD, = {w’"}m 1 and

. i — — — n n\1N
the same way as for a mixture model as explalneq CO%utejxDﬁsng e D = {@" Y}
i

above. Thus, we maximize the following objective 3 |pitialize T ©© andt — 0.
) ( )
function for estimating the model paramet@®@sor  , poitorm the following until e _

. . IR
generative models of unlabeled data: 4.1. Compute®“+1) to maximize Equation (4)

under fixed'® andA usingD.,.
gepr) = Z log Z g(xz™,y;©) +logp(©). (4) 4.2. Computd**+Y to maximize Equation (3)
under fixed®**+ andA usingD;’.
43.t—t+1.
wherep(®) is a prior probability distribution 0®. 5 0utput a structured predictd(y|z, A, @), 7).

Here, the discriminant functiog of outputy given Figure 1: Algorithm of learning model parameters
input z in our hybrid model can be obtained by the €,sed in our hybrid model.

numerator on the third line of Equation (2), since the

denominator does not affect the determinatiogpf using Equation (3) with a fixe®, while the param-

that is, eters of the generative model®, should be esti-
mated using Equation (4) with a fixdd As a solu-
(z,y;© le (ylas )" [ [ o5 (@, ;6,077 tion to our parameter estimation, we search for the

©® andT that maximizeL"*°/(T'|®) and G(®|T")

Under a fixedl, we can estimate the local m(,;lx_simultaneously. For this search, we compétend

imum of G(®|T) around the initialized value o® T by maximizing the objective functions shown in
by an iterative computation such as the EM algoEquatlons (4) and (3) iteratively and alternately. We
fithm (Dempster et al., 1977). L&®” and ®' be summarize the algorithm for estimating these model

estimates o® in the next and current steps, respecparameters in F'|gure L o
tively. Using Jensen’s inequalitfoga < a — 1, Note that during thd™ estimation (procedure 4.2

we obtain aQ-function that satisfies the mequallty'n Figure 1).I" can be over-fitted to the labeled train-
G(©"T')-G(®'I") >Q(e",0';T)-Q(e, eI ing data if we use the same labeled training data as

used for theA estimation. There are several possible
ways to reduce this over-fit. In this paper, we select
Q(e",e"; T one of the simplest; we divide the labeled training
—Z% ZZR ylz": A, @, T)logpj (z",y;©")  dataD; into two distinct setsD] andD/’. Then,D,
andD;’ are individually used for estimating and
sy T, respectively. In our experiments, we divide the
SinceQ(®’,®’;T) is independent o®”, we can labeled training dat&; so that 4/5 is used fob;
improve the value off(©|T") by computing®” to  and the remaining 1/5 fap;'.

maximize Q(©", ©';T"). We can obtain @ es- 34 Efficient Parameter Estimation Algorithm

timate by iteratively performing this update Wh'IeLet Nr(x) represent the denominator of Equation
G(®T) is hill climbing. _ , (2), that is the normalization factor @t. We can
As shown in Equation (5)R is used for estimat- rearrange Equation (2) as follows:

ing the paramete®. The intuitive effect of maxi- 3 Ny

mizing Equation (4) is similar to performing ‘soft- Riyle: A, ©.T) = [LIL VR IT, V]

clustering’. That is, unlabeled data is clustered with Nr(@)[[,[Zi(=):

respect to tha? distribution, which also includes in- whereVD represents the potential function of the

formation about labeled data, under the constraint ofth posmon of the sequence in thigh CRF and

generative model structures. VG represents the probablhty of theth position
3.3 Parameter Estimation Procedure in theg -th HMM, that is, V; ZS = exp(A; - f,) and
According to our definition, th@® and T estima- V]CT; = Oy, 1.0y, 2., respectively. See the Ap-

tions are mutually dependent. That is, the paranpendix for the derivation of Equation (6) from Equa-
eters of the hybrid modell’, should be estimated tion (2).

such that

+10gp(®”).

(6)
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To estimatel’ ™) namely procedure 4.2 in Fig- ~;, where the only difference is tha{ig is substi-
ure 1, we employ the derivatives with respectjto tuted byng in Equation (7).
andv; showr_l in .Equat?on (6), which are the parame- To estimate®**+1), which is procedure 4.1 in Fig-
ters of the discriminative and generative models, rg; 1 the same forward-backward algorithm as used
spectively. Thus, we obtain the following derivativesy, gtandard HMMs is available since the form of our
with respect toy;: Q-function shown in Equation (5) is the same as that

aLMOUT|@) oo o of standard HMMs. The only difference is that our
o =) logp(y"lz") + ) logZ”(@")  method uses marginal probabilities given Byin-
_"Z Erimnom ["Z log V7). stead of they(x, y; @) of standard HMMs.
- T - ’ Therefore, only a forward-backward algorithm is

_ ~ required for the efficient calculation of our param-
The first and second terms are constant during ifster estimation process. Note that even though our
erative procedure 4 in our optimization algorithmnybrid model supports the use of a combination of
shown in Figure 1. Thus, we only need to calCugeyeral generative and discriminative models, we
late these values once at the beginning of procg|y need to calculate the forward-backward algo-
dure 4. Letos(y) and3,(y) represent the forward yithm once for each sample during optimization pro-
and backward state costs at positiomwith output  cequres 4.1 and 4.2. This means that the required
y for corresponding inpute. Let Vs(y,y") repre-  numper of executions of the forward-backward al-
sent the products of the total value of the trans't'oﬁorithm for our parameter estimation is independent
cost between—1 ands with labelsy andy’ N the  of the number of models used in the hybrid model.
corre%pond/mg' mputgeque,ncg that¥is(y, ') = In addition, after training, we can easily merge all
[T Viis (o, o)1 T IVi(y )], The third term, e oarameter values in a single parameter vector.
WhICh indicates the_ expgctatlon of potential func-l-hiS means that we can simply employ the Viterbi-
tions, can be rgwrltten n the form of a forWard'algorithm for evaluating unseen samples, as well as
backward algorithm, thatis, that of standard CRFs, without any additional cost.

D
Erpaaen| ) logVil] 4 Experiments

1 Y / ’ / . .
= Zn@ Zzas—l(y)vs(y,y)ﬁs(y)log%g(%y), We examined our hybrid model (HySOL) by ap-
s vy plying it to two sequence labeling tasks, named

(7 . " . )
whereZg(x) represents the partition function ofouremIty recognition (NER) and syntactic chunking

hybrid model, that isZx(z) =Nz (z) [1;[Z: (2)]". (Chunking). We used the same Chunking and

Hence, the calculation of derivatives with respect t(t)EnE“St; CNENT_Ld;t)aOOaSTFhOSGKPSGSd for thz ;haLed
~; is tractable since we can incorporate the sa SKS oP%0 ) (Tjong Kim Sang and Buch-

forward-backward algorithm as that used in a sta?r—hOIZ’ 2000) and CoNLL-2003 (Tjong Kim Sang and

dard CRE Meulder, 2003), respectively.
Then, the derivatives with respectig which are _ FOr the baseline method, we performed a condi-

the parameters of generative models, can be writtd{onal randomfield (CRF), which is exactly the same
as follows: training procedure described in (Sha and Pereira,

2003) with L-BFGS. Moreover, LOP-CRF (Smith et
aLMHr|O) al., 2005) is also compared with our hybrid model,
‘3’71'6 oo . since the formalism of our hybrid model can be seen
= logp; (" y")= Y Froyjrnom| Y log Vi) as an extension of LOP-CRFs as described in Sec-
" " : tion 3. For CRF, we used the Gaussian prior as
Again, the second term, which indicates the expedhe second term on the RHS in Equation (1), where
tation of transition probabilities and symbol emis-<? represents the hyper-parameter in the Gaussian
sion probabilities, can be rewritten in the form of gorior. In contrast, for LOP-CRF and HySOL, we
forward-backward algorithm in the same manner assed the Dirichlet priors as the second term on the
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X1 [f(word,), f(word.), (pos,), f(Wiype, ), X1 [f(word,), (pos,),
f(pos, ;. pos,), f(wtype, ;, wtype,), f(word, _1, word,), f(pos, _,, pos,),
f(pos, pos,,, ). fwtype, wiype, ). f(word,, word, +1), f(pos,, pos, ;)
i(prefL,), f(pref2,), f(pref3,), f(prefa,), X [ f(word.), (pos,),
f(sufl,), f(suf2,), f(suf3,), f(suf4s) f(words_1), f(pos,_;), f(word,_2), f(pos,_,),
X, f(word. ), f(word,), f(pos,), f(wiype,), f(word, _»,word, 1), f(pos, _,, pos_,)
f(word, 1), f(lword,_1), f(pos,_,), f(wtype,_,), X5 | f(word,), (pos,),
f(word, 2), f(lword, _»), f(pos,_,), f(wtype, _,), f(word, 41), f(pos, ), f(word, ), f(pos, ,,).
f(pos,_,,pos, ), f(wtype, _,, wtype, ;) f(word, 1, word,»), f(pos,_,,pos,,,
Az | f(word,), f(lword,), f(pos,), f(wtype,), A4 | all of the above
f(words+1), f(lwords41), f(possﬂ), f(wtype, ),
f(word.2), f(lword. ), f(pos, , ,), f(wtype, , ,), Table 2: Features used in Chunking experiments
f(pos,, 1, POs,,,), f(Wtype,, ,, Wtype, , ,
A4 | all of the above

lword : lowercase of word,  wtype : ‘word type’ ture types, namely the same ks

prefl-4: 1-4 character prefix of word : : - -
SUFL-4 - 1-4 character suffix of word As we explained in Sectlon.3.3’_, _for .tralnlng
HySOL, the parameters of four discriminative mod-
els, A, were trained from 4/5 of the labeled training
data, andl’ were trained from remaining 1/5. For

RHS in Equations (3), and (4), whefendn are the the features of the generative models, we used all of
hyper-parameters in each Dirichlet prior. the feature types shown in Figure 1. Note that one
feature type corresponds to one HMM. Thus, each

4.1 Named Entity Recognition Experiments HMM maintains to consist of a non-overlapping fea-

The English NER data consists of 203,621, 51,36RIre set since each feature type only generates one

and 46,435 words from 14,987, 3,466 and 3,684 sefymbol per state.

tences in training, development and test data, re-

spectively, with four named entity tags, PERSONg 2  Syntactic Chunking Experiments

LOCATION, ORGANIZATION and MISC, plus the

‘O’ tag. The unlabeled data consists of 17,003,9260NLL-2000 Chunking data was obtained from the

words from 1,029,122 sentences. These data sets #Yall Street Journal (WSJ) corpus: sections 15-18 as

exactly the same as those provided for the shardghining data (8,936 sentences and 211,727 words),

task of CoNLL-2003. and section 20 as test data (2,012 sentences and
We slightly extended the feature set of the sup?7,377 words), with 11 different chunk-tags, such

plied data by adding feature types such as ‘wor@S NP and VP plus the ‘O’ tag, which represents the

type’, and word prefix and suffix. Examples off€gion outside any target chunk.

‘word type’ include whether the word is capitalized, For LOP-CRF and HySOL, we also used four

contains digit or contains punctuation, which basibase discriminative models trained by CRFs with

cally follows the baseline features of (Sutton et al different feature sets. Table 2 shows the feature set

2006) without regular expressions. Note that, unlikeve used in the Chunking experiments. We used the

several previous studies, we did not employ addfeature set of the supplied data without any exten-

tional information from external resources such asion of additional feature types.

gazetteers. All our features can be automatically eX- 1q train HySOL, we used the same unlabeled data
tracted from the supplied data. as used for our NER experiments (17,003,926 words

For LOP-CRF and HySOL, we used four base disfrom the Reuters corpus). Moreover, the division of
criminative models trained by CRFs with differentthe |abeled training data and the feature set of the
feature sets. Table 1 shows the feature sets we usgherative models were derived in the same man-
for training these models. The design of these feger as our NER experiments (see Section 4.1). That
ture sets was derived from a suggestion in (Smith ¢ e divided the labeled training data into 4/5 for
al., 2005), which exhibited the best performance igstimatingA and 1/5 for estimatind"; one feature

the several feature division. Note that the CRF fOfype shown in Table 2 is assigned in one generative
the comparison method was trained by using all fegngdel.

Table 1: Features used in NER experiments
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methods (hyper-params) [Fs—: (gain)| Sent (gain)

CRF  (5°=100.0) 84.70 78.30 F-score
(4/5 labeled dataj?=100.0) |83.74 (-0.96)77.06 (-1.24)
LOP-CRF €=0.1) 84.90 (+0.20)79.02 (+0.72) 865 |- 042 -

n
\ F-score
\

HySOL (£=0.1,/=0.0001}87.20 (+2.50) 81.19 (+2.89) value of | velue of
(w/o prior) 86.86 (+2.16)80.75 (+2.45) oo 1 | precedure 4
wlo p§ Vj (£'=1.0) 84.56 (-0.14)78.23 (-0.07) 85.5 [ M T
\
\
"~ .

Table 3: NER performance (CoNLL-2003)

methods (hyper-params) [Fs—, (gain)| Sent (gain)

CRF  (°=10.0) 93.87 - [59.84 - (@) NER (b) Chunking
(4/5 labeled dataj?=10.0) |93.70 (-0.17)58.85 (-0.99)
LOP-CRF €'=0.1) 93.91 (+0.04)60.34 (+0.50)  Figure 2: Changes in the performance and the con-
HySOL (¢'=1.0,/=0.0001)94.30 (+0.43)61.73 (+1.89) i e
(Wlo prior) 94.17 (+0.30)61.23 (+1.39) vergence condition value (procedure 4 in Figure 1)
wiop§ Vj (¢'=1.0) 93.84 (-0.03)59.74 (-0.10) Of HySOL.

cantly improved the performance of supervised set-
ting, CRF and LOP-CRF, as regards both NER and
Chunking experiments.

We evaluated the performance in terms of theF 5.1 Impact of Incorporating Unlabeled Data
score, which is the evaluation measure used ifihe contributions provided by incorporating unla-
CoNLL-2000 and 2003, and sentence accuracheled data in our hybrid model can be seen by com-
since all the methods in our experiments optimiz@arison with the performance of the first and third
sequence loss. Tables 3 and 4 show the results rfws in HySOL, namely a 2.64 point F-score and a
the NER and Chunking experiments, respectively2.96 point sentence accuracy gain in the NER exper-
The F;—; and ‘Sent’ columns show the performancéments and a 0.46 point F-score and a 1.99 point sen-
evaluated using thege, score and sentence accutence accuracy gain in the Chunking experiments.
racy, respectivelys?, ¢ andn, which are the hyper-  We believe there are two key ideas that enable
parameters in Gaussian or Dirichlet priors, are se¢he unlabeled data in our approach to exhibit this
lected from a certain value set by using a developmprovement compared with the the state-of-the-art
ment set, that is,62 € {0.01,0.1,1,10,100,1000}, performance provided by discriminative models in
¢—1=¢ €{0.01,0.1,1,10} andn — 1 =/ € supervised settings. First, unlabeled data is only
{0.00001, 0.0001,0.001,0.01}. The second rows of used for optimizing Equation (4) to obtain a similar
CRF in Tables 3 and 4 represent the performance effect to 'soft-clustering’, which can be calculated
base discriminative models used in HySOL with allvithout information about the correct output. Sec-
the features, which are trained with 4/5 of the laend, by using a combination of generative models,
beled training data. The third rows of HySOL showwe can enhance the flexibility of the feature design
the performance obtained without using generativ®r unlabeled data. For example, we can handle ar-
models (unlabeled data). The model itself is esselitrary overlapping features, similar to those used in
tially the same as LOP-CRFs. However the perfordiscriminative models, for unlabeled data by assign-
mance in the third HySOL rows was consistentlying one feature type for one generative model as in
lower than that of LOP-CRF since the discrimina-our experiments.
g\;izar'nodels in HySOL are trained with 4/5 IabeledS.Z Impact of Iterative Parameter Estimation

As shown in Tables 3 and 4, HySOL Signiﬁ_F|gure 2 shows the cha_n_ges in the performance and

the convergence condition value of HySOL dur-

"Chunking (CoNLL-2000) data has no common developing parameter estimation iteration in our NER and
ment set. Thus, our preliminary examination employed by usin

4/5 labeled training data with the remaining 1/5 as developmer%’hur?kmg experiments, respectively. As shown in
data to determine the hyper-parameter values. the figure, HySOL was able to reach the conver-

Table 4: Chunking performance (CoNLL-2000)

5 Results and Discussion
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gence condition in a small number of iterations in [ Fs=1 [additional resources
our experiments. Moreover, the change in the perASO-semi 89.31unlabeled data (27M words)
formance remains quite stable during the iteratior‘(AnOIO and Zhang, 2005)
; a o g '(Florian et al., 2003) [88.76 their own large gazetteers,

However, theoretically, our optimization procedure 2M-word labeled data
is not guaranteed to converge in tiand® space, (Chieu and Ng, 2003) [88.31their O|WE Iargedgfazetteers,

. .. . . very elaborated features
since the optimization o0® has local maxima. Even “HySOL §8.14 uniabeled data (17M words)

if we were unable to meet the convergence condi- supplied gazetters
tion, we were easily able to obtain model parameHySOL 87.20 unlabeled data (17/M words)
ters by performing a sufficient fixed number of iteraaple 5: Previous top systems in NER (CONLL-
tions, and then select the parameters when Equat|9@03) experiments

(4) obtained the maximum objective value.

| Fs—1 [additional resources

5.3 Comparison with SS-CRF-MER ASO-semi 94.39unlabeled data

i i ; (Ando and Zhang, 2005) (15M words: WSJ)
When we conS|d_er semi superv!sed SOL methonHySOL ST 30 L rabelod data
SS-CRF-MER (Jiao et al., 2006) is the most compet- (17M words: Reuters)
itive with HySOL, since both methods are defined (Zhang etal., 2002) 94.17full parser output
based on CRFs. We planned to compare the perfortKudo and Matsumoto, 20093.93

mance with that of SS-CRF-MER in our NER andraple 6: Previous top systems in Chunking
Chunking experiments. Unfortunately, we failed tqCoNLL-2000) experiments
implement SS-CRF-MER since it requires the use of
a slightly complicated algorithm, called the ‘nested4 indicate that HySOL is rather robust with respect
forward-backward algorithm. to the hyper-parameter since we can obtain fairly
Although, we cannot compare the performancegood performance without a prior distribution.
our hybrid approach has several good characteris- _ ) _
tics compared with SS-CRF-MER. First, it requires>-4 Comparison with Previous Top Systems
a higher order algorithm, namely a ‘nested’ forwardWith respect to the performance of NER and Chunk-
backward algorithm, for the parameter estimation ahg tasks, the current best performance is reported
unlabeled data whose time complexity@§L3S?) in (Ando and Zhang, 2005), which we refer to as
for each unlabeled data, whelteandS representthe ‘ASO-semi’, as shown in Figures 5 and 6. ASO-
output label size and unlabeled sample length, reéemi also incorporates unlabeled data solely for
spectively. Thus, our hybrid approach is more scathe additional information in the same way as our
able for the size of unlabeled data, since HySOmethod. Unfortunately, our results could not reach
only needs a standard forward-backward algorithrtheir level of performance, although the size and
whose time complexity isD(L2S). In fact, we source of the unlabeled data are not the same for cer-
still have a question as to whether SS-CRF-MERain reasons. First, (Ando and Zhang, 2005) does not
is really scalable in practical time for such a largedescribe the unlabeled data used in their NER ex-
amount of unlabeled data as used in our experperiments in detail, and second, we are not licensed
ments, which is about 680 times larger than that db use the TREC corpus including WSJ unlabeled
(Jiao et al., 2006). Scalability for unlabeled datalata that they used for their Chunking experiments
will become really important in the future, as it will (training and test data for Chunking is derived from
be natural to use millions or billions of unlabeledWSJ). Therefore, we simply used the supplied unla-
data for further improvement. Second, SS-CRFseled data of the CoNLL-2003 shared task for both
MER has a sensitive hyper-parameter in the objed®NER and Chunking. If we consider the advantage of
tive function, which controls the influence of the un-our approach, our hybrid model incorporating gener-
labeled data. In contrast, our objective function onhative models seems rather intuitive, since it is some-
has a hyper-parameter of prior distribution, which igimes difficult to find out a design of effective auxil-
widely used for standard MAP estimation. More-ary problems for the target problem.
over, the experimental results shown in Tables 3 and Interestingly, the additional information obtained
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[Fs=1 (gain) In NER, we also examined HySOL with addi-
HYSOL (£'=0.1;,"=0.0001) 87.20 - tional resources to observe the performance gain.
+ w/ F-score opt. (Suzuki et al., 20088.02 (+0.82) The third ts th f h
+ unlabeled data (17M- 27M words) 88.41 (+0.39) e thir rO_W represents the perlormance when we
+ supplied gazetters 88.90 (+0.49) add approximately 10M words of unlabeled data (to-

+ add dev. set for estimatiri 89.27 (+0.37) tal 27M words§ that are derived from 1996/11/15-

Table 7: The HySOL performance with the F-30 articles in Reuters corpus. Then, the fourth and

score optimization technique and some additiondifth rows represent the performance when we add

resources in NER (CoNLL-2003) experiments the supplied gazetters in the CoNLL-2003 data as
features, and adding development data as training

[Fs—1 (gain) data of". In this case, HySOL achieved a com-
HySOL (¢'=0.15"=0.0001) 9430 - parable performance to that of the current best sys-
* w/ F-score opt. (Suzuki et al., 2006.36 (+0.06) tem, ASO-semi, in both NER and Chunking exper-

Table 8: The HySOL performance with the F-scoréments even though the NER experiment is not a
optimization technique on Chunking (CoNLL-2000)fair comparison since we added additional resources
experiments (gazetters and dev. set) that ASO-semi does not use
in training.
from unlabeled data appear different from eac .
other. ASO-semi uses unlabeled data for construct- Conclusion and Future Work
ing auxiliary problems to find the ‘shared structures¥Ve proposed a framework for semi-supervised SOL
of auxiliary problems that are expected to improv@ased on a hybrid generative and discriminative ap-
the performance of the main problem. MoreoveRroach. Experimental results showed that incorpo-
it is possible to combine both methods, for examtating unlabeled data in a generative manner has
ple, by incorporating the features obtained with theii’® Power to further improve on the state-of-the-art
method in our base discriminative models, and theperformance provided by supervised SOL methods
construct a hybrid model using our method. ThereSUch as CRFs, with the help of our hybrid approach,
fore, there may be a possibility of further improvingWhiCh discriminatively combines with discrimina-
the performance by this simple combination. tive models. In future we intend to investigate more
In NER, most of the top systems other tharfPPropriate model and feature design for unlabeled

ASO-semi boost performance by employing exterdat@, which may further improve the performance
nal hand-crafted resources such as large gazettedthieved in our experiments.

This is why their results are superior to those obAppendix

tained with HySOL. In fact, if we simply add the Let V£ — exp(A- £,) and V]Gs — 0y Oy

?aztetteeralné:lclfed ;1” CON;;_i?OS supplied data aéquation (6) can be obtained by the following rear-
catures, 1y achieves ce.L4. rangement of Equation (2) :

5.5 Applying F-score Optimization Technique R(y|z; A, ©,T)

D i (e} R%7
In addition, we can simply apply the F-score opti- _ [T, : (g“”w)w I1, 75 (Z:,y,oj)” |
mization technique for the sequence labeling tasks 2y 1P (y|w”\g” I1,pf (. y,0;)
proposed in (Suzuki et al., 2006) to boost the - H{%(‘f;}%ﬂ{ﬂ@pﬁ

HySOL performance since the base discriminative Nr(@) Y s
D . . . . . . _ D Yi G ,7.]
models p”(y|z) and discriminative combination, = @ Lz H[HV] H[HVJ]
namely Equation (3), in our hybrid model basically ) ios s
uses the same optimization procedure as CRFs. Ta= 3z 7o T2 TIvE]
st s j

bles 7 and 8 show the F-score gain when we apply
the F-score optimization technique. As shown in the
Tables, the F-score optimization technique can eas—; _

In order to keep the consistency of POS tags, we re-

ily wp_prove the (F-score) performapce V\_”thOUt aMYattached POS tags of the supplied data set and new 10M words
additional resources or feature engineering. of unlabeled data using a POS tagger trained from WSJ corpus.
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