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Abstract

This paper proposes a framework for
semi-supervised structured output learning
(SOL), specifically for sequence labeling,
based on a hybrid generative and discrim-
inative approach. We define the objective
function of our hybrid model, which is writ-
ten in log-linear form, by discriminatively
combining discriminative structured predic-
tor(s) with generative model(s) that incor-
porate unlabeled data. Then, unlabeled
data is used in a generative manner to in-
crease the sum of the discriminant functions
for all outputs during the parameter estima-
tion. Experiments on named entity recogni-
tion (CoNLL-2003) and syntactic chunking
(CoNLL-2000) data show that our hybrid
model significantly outperforms the state-
of-the-art performance obtained with super-
vised SOL methods, such as conditional ran-
dom fields (CRFs).

1 Introduction

Structured output learning (SOL) methods, which
attempt to optimize an interdependent output space
globally, are important methodologies for certain
natural language processing (NLP) tasks such as
part-of-speech tagging, syntactic chunking (Chunk-
ing) and named entity recognition (NER), which are
also referred to as sequence labeling tasks. When we
consider the nature of these sequence labeling tasks,
a semi-supervised approach appears to be more nat-
ural and appropriate. This is because the number of
features and parameters typically become extremely
large, and labeled examples can only sparsely cover
the parameter space, even if thousands of labeled ex-

amples are available. In fact, many attempts have re-
cently been made to develop semi-supervised SOL
methods (Zhu et al., 2003; Li and McCallum, 2005;
Altun et al., 2005; Jiao et al., 2006; Brefeld and
Scheffer, 2006).

With the generative approach, we can easily in-
corporate unlabeled data into probabilistic models
with the help of expectation-maximization (EM) al-
gorithms (Dempster et al., 1977). For example, the
Baum-Welch algorithm is a well-known algorithm
for training a hidden Markov model (HMM) of se-
quence learning. Generally, with sequence learning
tasks such as NER and Chunking, we cannot expect
to obtain better performance than that obtained us-
ing discriminative approaches in supervised learning
settings.

In contrast to the generative approach, with the
discriminative approach, it is not obvious how un-
labeled training data can be naturally incorporated
into a discriminative training criterion. For ex-
ample, the effect of unlabeled data will be elimi-
nated from the objective function if the unlabeled
data is directly used in traditional i.i.d. conditional-
probability models. Nevertheless, several attempts
have recently been made to incorporate unlabeled
data in the discriminative approach. An approach
based on pairwise similarities, which encourage
nearby data points to have the same class label, has
been proposed as a way of incorporating unlabeled
data discriminatively (Zhu et al., 2003; Altun et al.,
2005; Brefeld and Scheffer, 2006). However, this
approach generally requires joint inference over the
whole data set for prediction, which is not practi-
cal as regards the large data sets used for standard
sequence labeling tasks in NLP. Another discrim-
inative approach to semi-supervised SOL involves
the incorporation of an entropy regularizer (Grand-
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valet and Bengio, 2004). Semi-supervised condi-
tional random fields (CRFs) based on a minimum
entropy regularizer (SS-CRF-MER) have been pro-
posed in (Jiao et al., 2006). With this approach, the
parameter is estimated to maximize the likelihood of
labeled data and the negative conditional entropy of
unlabeled data. Therefore, the structured predictor
is trained to separate unlabeled data well under the
entropy criterion by parameter estimation.

In contrast to these previous studies, this paper
proposes a semi-supervised SOL framework based
on a hybrid generative and discriminative approach.
A hybrid approach was first proposed in a super-
vised learning setting (Raina et al., 2003) for text
classification. (Fujino et al., 2005) have developed a
semi-supervised approach by discriminatively com-
bining a supervised classifier with generative mod-
els that incorporate unlabeled data. We extend this
framework to the structured output domain, specifi-
cally for sequence labeling tasks. Moreover, we re-
formalize the objective function to allow the incor-
poration of discriminative models (structured pre-
dictors) trained from labeled data, since the original
framework only considers the combination of gen-
erative classifiers. As a result, our hybrid model can
significantly improve on the state-of-the-art perfor-
mance obtained with supervised SOL methods, such
as CRFs, even if a large amount of labeled data is
available, as shown in our experiments on CoNLL-
2003 NER and CoNLL-2000 Chunking data. In
addition, compared with SS-CRF-MER, our hybrid
model has several good characteristics including a
low calculation cost and a robust optimization in
terms of a sensitiveness of hyper-parameters. This
is described in detail in Section 5.3.

2 Supervised SOL: CRFs

This paper focuses solely on sequence labeling
tasks, such as named entity recognition (NER) and
syntactic chunking (Chunking), as SOL problems.
Thus, letx=(x1, . . . , xS)∈X be an input sequence,
andy=(y0, . . . , yS+1)∈Y be a particular output se-
quence, wherey0 andyS+1 are special fixed labels
that represent the beginning and end of a sequence.

As regards supervised sequence learning, CRFs
are recently introduced methods that constitute flex-
ible and powerful models for structured predictors
based on undirected graphical models that have been

globally conditioned on a set of inputs (Lafferty
et al., 2001). Letλ be a parameter vector and
f(ys−1, ys, x) be a (local) feature vector obtained
from the corresponding positions given x. CRFs
define the conditional probability,p(y|x), as being
proportional to a product of potential functions on
the cliques. That is,p(y|x) on a (linear-chain) CRF
can be defined as follows:

p(y|x; λ) =
1

Z(x)

S+1∏

s=1

exp(λ · f (ys−1, ys, x)).

Z(x) =
∑

y

∏S+1
s=1 exp(λ · f(ys−1, ys, x)) is a nor-

malization factor over all output values,Y, and is
also known as the partition function.

For parameter estimation (training), given labeled
dataDl = {(xk, yk)}K

k=1, the Maximum a Posteri-
ori (MAP) parameter estimation, namely maximiz-
ing log p(λ|Dl), is now the most widely used CRF
training criterion. Thus, we maximize the following
objective function to obtain optimalλ:

LCRF(λ) =
∑

k

[
λ ·

∑

s

f s − log Z(xk)
]

+ log p(λ), (1)

wheref s is an abbreviation off(ys−1, ys, x) and
p(λ) is a prior probability distribution ofλ. A
gradient-based optimization algorithm such as L-
BFGS (Liu and Nocedal, 1989) is widely used for
maximizing Equation (1). The gradient of Equation
(1) can be written as follows:

∇LCRF(λ) =
∑

k

Ep̃(yk,xk;λ)

[∑

s

f s

]

−
∑

k

Ep(Y|xk;λ)

[∑

s

f s

]
+∇ log p(λ).

CalculatingEp(Y|x,λ) as well as the partition func-
tion Z(x) is not always tractable. However, for
linear-chain CRFs, a dynamic programming algo-
rithm similar in nature to the forward-backward al-
gorithm in HMMs has already been developed for
an efficient calculation (Lafferty et al., 2001).

For prediction, the most probable output, that is,
ŷ = arg maxy∈Y p(y|x; λ), can be efficiently ob-
tained by using the Viterbi algorithm.

3 Hybrid Generative and Discriminative
Approach to Semi-Supervised SOL

In this section, we describe our formulation of a
hybrid approach to SOL and a parameter estima-
tion method for sequence predictors. We assume
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that we have a set of labeled and unlabeled data,
D = {Dl,Du}, whereDl = {(xn, yn)}N

n=1 and
Du = {xm}M

m=1.
Let us assume that we haveI-units of discrimina-

tive models,pD
i , andJ-units of generative models,

pG
j . Our hybrid model for a structured predictor is

designed by the discriminative combination of sev-
eral joint probability densities ofx andy, p(x, y).
That is, the posterior probability of our hybrid model
is defined by providing the log-values ofp(x, y) as
the features of a log-linear model, such that:

R(y|x;Λ,Θ,Γ)

=

∏
i
pD

i (x, y; λi)
γi

∏
j
pG

j (x, y; θj)
γj

∑
y

∏
i
pD

i (x, y; λi)γi
∏

j
pG

j (x, y; θj)γj

=

∏
i
pD

i (y|x; λi)
γi

∏
j
pG

j (x, y; θj)
γj

∑
y

∏
i
pD

i (y|x; λi)γi
∏

j
pG

j (x, y; θj)γj
.

(2)

Here, Γ = {{γi}I
i=1, {γj}I+J

j=I+1} represents the
discriminative combination weight of each model
whereγi,γj∈ [0, 1]. Moreover,Λ={λi}I

i=1 andΘ=
{θj}J

j=1 represent model parameters of individual
models estimated from labeled and unlabeled data,
respectively. UsingpD(x,y) = pD(y|x)pD(x), we
can derive the third line from the second line, where
pD

i (x; λi)γi for all i are canceled out. Thus, our hy-
brid model is constructed by combining discrimina-
tive models,pD

i (y|x; λi), with generative models,
pG

j (x, y; θj).
Hereafter, let us assume that our hybrid model

consists of CRFs for discriminative models,pD
i , and

HMMs for generative models,pG
j , shown in Equa-

tion (2), since this paper focuses solely on sequence
modeling. For HMMs, we consider a first order
HMM defined in the following equation:

p(x, y|θ) =

S+1∏

s=1

θys−1,ysθys,xs ,

where θys−1,ys and θys,xs represent the transition
probability between statesys−1 andys and the sym-
bol emission probability of thes-th position of the
corresponding input sequence, respectively, where
θyS+1,xS+1 = 1.

It can be seen that the formalization in the log-
linear combination of our hybrid model is very sim-
ilar to that of LOP-CRFs (Smith et al., 2005). In
fact, if we only use a combination of discriminative

models (CRFs), which is equivalent toγj = 0 for
all j, we obtain essentially the same objective func-
tion as that of the LOP-CRFs. Thus, our framework
can also be seen as an extension of LOP-CRFs that
enables us to incorporate unlabeled data.

3.1 Discriminative Combination
For estimating the parameterΓ, let us assume that
we already have discriminatively trained models on
labeled data,pD

i (y|x;λi). We maximize the fol-
lowing objective function for estimating parameter
Γ under a fixedΘ:

LHySOL(Γ|Θ) =
∑

n

log R(yn|xn;Λ,Θ,Γ)+log p(Γ). (3)

wherep(Γ) is a prior probability distribution ofΓ.
The value ofΓ providing a global maximum of

LHySOL(Γ|Θ) is guaranteed under an arbitrary fixed
value in theΘ domain, sinceLHySOL(Γ|Θ) is a con-
cave function ofΓ. Thus, we can easily maximize
Equation (3) by using a gradient-based optimization
algorithm such as (bound constrained) L-BFGS (Liu
and Nocedal, 1989).

3.2 Incorporating Unlabeled Data
We cannot directly incorporate unlabeled data for
discriminative training such as Equation (3) since
the correct outputsy for unlabeled data are un-
known. On the other hand, generative approaches
can easily deal with unlabeled data as incomplete
data (data with missing variabley) by using a mix-
ture model. A well-known way to achieve this in-
corporation is to maximize the log likelihood of un-
labeled data with respect to the marginal distribution
of generative models as

L(θ) =
∑

m

log
∑

y

p(xm, y; θ).

In fact, (Nigam et al., 2000) have reported that using
unlabeled data with a mixture model can improve
the text classification performance.

According to Bayes’ rule, p(y|x; θ) ∝
p(x, y; θ), the discriminant functions of gener-
ative classifiers are provided by generative models
p(x, y; θ). Therefore, we can regardL(θ) as the
logarithm of the sum of discriminant functions for
all missing variablesy of unlabeled data. Following
this view, we can directly incorporate unlabeled
data into our hybrid model by maximizing the
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discriminant functionsg of our hybrid model in
the same way as for a mixture model as explained
above. Thus, we maximize the following objective
function for estimating the model parametersΘ for
generative models of unlabeled data:

G(Θ|Γ) =
∑

m

log
∑

y

g(xm, y;Θ) + log p(Θ). (4)

wherep(Θ) is a prior probability distribution ofΘ.
Here, the discriminant functiong of outputy given
input x in our hybrid model can be obtained by the
numerator on the third line of Equation (2), since the
denominator does not affect the determination ofy,
that is,

g(x, y;Θ) =
∏

i

pD
i (y|x; λi)

γi
∏

j

pG
j (x, y; θj)

γj .

Under a fixedΓ, we can estimate the local max-
imum of G(Θ|Γ) around the initialized value ofΘ
by an iterative computation such as the EM algo-
rithm (Dempster et al., 1977). LetΘ′′ andΘ′ be
estimates ofΘ in the next and current steps, respec-
tively. Using Jensen’s inequality,log a ≤ a − 1,
we obtain aQ-function that satisfies the inequality
G(Θ′′|Γ)−G(Θ′|Γ)≥Q(Θ′′,Θ′;Γ)−Q(Θ′,Θ′;Γ),
such that

Q(Θ′′,Θ′;Γ)

=
∑

j

γj

∑

m

∑

y

R(y|xm;Λ,Θ′,Γ) log pG
j (xm, y;Θ′′)

+ log p(Θ′′).
(5)

SinceQ(Θ′,Θ′;Γ) is independent ofΘ′′, we can
improve the value ofG(Θ|Γ) by computingΘ′′ to
maximizeQ(Θ′′,Θ′;Γ). We can obtain aΘ es-
timate by iteratively performing this update while
G(Θ|Γ) is hill climbing.

As shown in Equation (5),R is used for estimat-
ing the parameterΘ. The intuitive effect of maxi-
mizing Equation (4) is similar to performing ‘soft-
clustering’. That is, unlabeled data is clustered with
respect to theR distribution, which also includes in-
formation about labeled data, under the constraint of
generative model structures.

3.3 Parameter Estimation Procedure
According to our definition, theΘ and Γ estima-
tions are mutually dependent. That is, the param-
eters of the hybrid model,Γ, should be estimated

1.Given training set:Du = {xm}M
m=1 and

Dl = {D′
l = {(xk, yk)}K

k=1,D′′
l = {(xn, yn)}N

n=1}
2.ComputeΛ, usingD′

l.
3.InitializeΓ(0), Θ(0) andt ← 0.

4.Perform the following until|Θ
(t+1)−Θ(t)|
|Θ(t)|

< ε.

4.1. ComputeΘ(t+1) to maximize Equation (4)
under fixedΓ(t) andΛ usingDu.

4.2. ComputeΓ(t+1) to maximize Equation (3)
under fixedΘ(t+1) andΛ usingD′′

l .
4.3. t ← t + 1.

5.Output a structured predictorR(y|x,Λ,Θ(t),Γ(t)).

Figure 1: Algorithm of learning model parameters
used in our hybrid model.

using Equation (3) with a fixedΘ, while the param-
eters of the generative models,Θ, should be esti-
mated using Equation (4) with a fixedΓ. As a solu-
tion to our parameter estimation, we search for the
Θ andΓ that maximizeLHySOL(Γ|Θ) andG(Θ|Γ)
simultaneously. For this search, we computeΘ and
Γ by maximizing the objective functions shown in
Equations (4) and (3) iteratively and alternately. We
summarize the algorithm for estimating these model
parameters in Figure 1.

Note that during theΓ estimation (procedure 4.2
in Figure 1),Γ can be over-fitted to the labeled train-
ing data if we use the same labeled training data as
used for theΛ estimation. There are several possible
ways to reduce this over-fit. In this paper, we select
one of the simplest; we divide the labeled training
dataDl into two distinct setsD′

l andD′′
l . Then,D′

l

andD′′
l are individually used for estimatingΛ and

Γ, respectively. In our experiments, we divide the
labeled training dataDl so that 4/5 is used forD′

l

and the remaining 1/5 forD′′
l .

3.4 Efficient Parameter Estimation Algorithm
Let NR(x) represent the denominator of Equation
(2), that is the normalization factor ofR. We can
rearrange Equation (2) as follows:

R(y|x;Λ,Θ,Γ) =

∏
s

∏
i

[
V D

i,s

]γi ∏
j

[
V G

j,s

]γj

NR(x)
∏

i
[Zi(x)]γi

, (6)

whereV D
i,s represents the potential function of the

s-th position of the sequence in thei-th CRF and
V G

j,s represents the probability of thes-th position
in the j-th HMM, that is,V D

i,s = exp(λi · f s) and
V G

j,s = θys−1,ysθys,xs , respectively. See the Ap-
pendix for the derivation of Equation (6) from Equa-
tion (2).
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To estimateΓ(t+1), namely procedure 4.2 in Fig-
ure 1, we employ the derivatives with respect toγi

andγj shown in Equation (6), which are the parame-
ters of the discriminative and generative models, re-
spectively. Thus, we obtain the following derivatives
with respect toγi:

∂LHySOL(Γ|Θ)

∂γi
=

∑

n

log pD
i (yn|xn) +

∑

n

log ZD
i (xn)

−
∑

n

ER(Y|xn;Λ,Θ,Γ)

[∑

s

log V D
i,s

]
.

The first and second terms are constant during it-
erative procedure 4 in our optimization algorithm
shown in Figure 1. Thus, we only need to calcu-
late these values once at the beginning of proce-
dure 4. Letαs(y) andβs(y) represent the forward
and backward state costs at positions with output
y for corresponding inputx. Let Vs(y, y′) repre-
sent the products of the total value of the transition
cost betweens−1 ands with labelsy andy′ in the
corresponding input sequence, that is,Vs(y, y′) =∏

i[V
D
i,s(y, y′)]γi

∏
j [V

G
j,s(y, y′)]γj . The third term,

which indicates the expectation of potential func-
tions, can be rewritten in the form of a forward-
backward algorithm, that is,

ER(Y|x;Λ,Θ,Γ)

[∑

s

log V D
i,s

]

=
1

ZR(x)

∑

s

∑

y,y′

αs−1(y)Vs(y, y′)βs(y
′) log V D

i,s(y, y′),

(7)

whereZR(x) represents the partition function of our
hybrid model, that is,ZR(x)=NR(x)

∏
i[Zi(x)]γi .

Hence, the calculation of derivatives with respect to
γi is tractable since we can incorporate the same
forward-backward algorithm as that used in a stan-
dard CRF.

Then, the derivatives with respect toγj , which are
the parameters of generative models, can be written
as follows:

∂LHySOL(Γ|Θ)

∂γj

=
∑

n

log pG
j (xn, yn)−

∑

n

ER(Y|xn;Λ,Θ,Γ)

[∑

s

log V G
j,s

]
.

Again, the second term, which indicates the expec-
tation of transition probabilities and symbol emis-
sion probabilities, can be rewritten in the form of a
forward-backward algorithm in the same manner as

γi, where the only difference is thatV D
i,s is substi-

tuted byV G
j,s in Equation (7).

To estimateΘ(t+1), which is procedure 4.1 in Fig-
ure 1, the same forward-backward algorithm as used
in standard HMMs is available since the form of our
Q-function shown in Equation (5) is the same as that
of standard HMMs. The only difference is that our
method uses marginal probabilities given byR in-
stead of thep(x, y; θ) of standard HMMs.

Therefore, only a forward-backward algorithm is
required for the efficient calculation of our param-
eter estimation process. Note that even though our
hybrid model supports the use of a combination of
several generative and discriminative models, we
only need to calculate the forward-backward algo-
rithm once for each sample during optimization pro-
cedures 4.1 and 4.2. This means that the required
number of executions of the forward-backward al-
gorithm for our parameter estimation is independent
of the number of models used in the hybrid model.

In addition, after training, we can easily merge all
the parameter values in a single parameter vector.
This means that we can simply employ the Viterbi-
algorithm for evaluating unseen samples, as well as
that of standard CRFs, without any additional cost.

4 Experiments

We examined our hybrid model (HySOL) by ap-
plying it to two sequence labeling tasks, named
entity recognition (NER) and syntactic chunking
(Chunking). We used the same Chunking and
‘English’ NER data as those used for the shared
tasks of CoNLL-2000 (Tjong Kim Sang and Buch-
holz, 2000) and CoNLL-2003 (Tjong Kim Sang and
Meulder, 2003), respectively.

For the baseline method, we performed a condi-
tional random field (CRF), which is exactly the same
training procedure described in (Sha and Pereira,
2003) with L-BFGS. Moreover, LOP-CRF (Smith et
al., 2005) is also compared with our hybrid model,
since the formalism of our hybrid model can be seen
as an extension of LOP-CRFs as described in Sec-
tion 3. For CRF, we used the Gaussian prior as
the second term on the RHS in Equation (1), where
δ2 represents the hyper-parameter in the Gaussian
prior. In contrast, for LOP-CRF and HySOL, we
used the Dirichlet priors as the second term on the
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λ1 f(words), f(lwords), f(poss), f(wtypes),
f(poss−1, poss), f(wtypes−1, wtypes),
f(poss, poss+1), f(wtypes, wtypes+1),
f(pref1s), f(pref2s), f(pref3s), f(pref4s),
f(suf1s), f(suf2s), f(suf3s), f(suf4s)

λ2 f(words), f(lwords), f(poss), f(wtypes),
f(words−1), f(lwords−1), f(poss−1), f(wtypes−1),
f(words−2), f(lwords−2), f(poss−2), f(wtypes−2),
f(poss−2, poss−1), f(wtypes−2, wtypes−1)

λ3 f(words), f(lwords), f(poss), f(wtypes),
f(words+1), f(lwords+1), f(poss+1), f(wtypes+1),
f(words+2), f(lwords+2), f(poss+2), f(wtypes+2),
f(poss+1, poss+2), f(wtypes+1, wtypes+2)

λ4 all of the above
lword : lowercase of word, wtype : ‘word type’
pref1-4: 1-4 character prefix of word
suf1-4 : 1-4 character suffix of word

Table 1: Features used in NER experiments

RHS in Equations (3), and (4), whereξ andη are the
hyper-parameters in each Dirichlet prior.

4.1 Named Entity Recognition Experiments

The English NER data consists of 203,621, 51,362
and 46,435 words from 14,987, 3,466 and 3,684 sen-
tences in training, development and test data, re-
spectively, with four named entity tags, PERSON,
LOCATION, ORGANIZATION and MISC, plus the
‘O’ tag. The unlabeled data consists of 17,003,926
words from 1,029,122 sentences. These data sets are
exactly the same as those provided for the shared
task of CoNLL-2003.

We slightly extended the feature set of the sup-
plied data by adding feature types such as ‘word
type’, and word prefix and suffix. Examples of
‘word type’ include whether the word is capitalized,
contains digit or contains punctuation, which basi-
cally follows the baseline features of (Sutton et al.,
2006) without regular expressions. Note that, unlike
several previous studies, we did not employ addi-
tional information from external resources such as
gazetteers. All our features can be automatically ex-
tracted from the supplied data.

For LOP-CRF and HySOL, we used four base dis-
criminative models trained by CRFs with different
feature sets. Table 1 shows the feature sets we used
for training these models. The design of these fea-
ture sets was derived from a suggestion in (Smith et
al., 2005), which exhibited the best performance in
the several feature division. Note that the CRF for
the comparison method was trained by using all fea-

λ1 f(words), (poss),
f(words−1, words), f(poss−1, poss),
f(words, words+1), f(poss, poss+1)

λ2 f(words), (poss),
f(words−1), f(poss−1), f(words−2), f(poss−2),
f(words−2, words−1), f(poss−2, poss−1)

λ3 f(words), (poss),
f(words+1), f(poss+1), f(words+2), f(poss+2),
f(words+1, words+2), f(poss+1, poss+2)

λ4 all of the above

Table 2: Features used in Chunking experiments

ture types, namely the same asλ4.

As we explained in Section 3.3, for training
HySOL, the parameters of four discriminative mod-
els,Λ, were trained from 4/5 of the labeled training
data, andΓ were trained from remaining 1/5. For
the features of the generative models, we used all of
the feature types shown in Figure 1. Note that one
feature type corresponds to one HMM. Thus, each
HMM maintains to consist of a non-overlapping fea-
ture set since each feature type only generates one
symbol per state.

4.2 Syntactic Chunking Experiments

CoNLL-2000 Chunking data was obtained from the
Wall Street Journal (WSJ) corpus: sections 15-18 as
training data (8,936 sentences and 211,727 words),
and section 20 as test data (2,012 sentences and
47,377 words), with 11 different chunk-tags, such
as NP and VP plus the ‘O’ tag, which represents the
region outside any target chunk.

For LOP-CRF and HySOL, we also used four
base discriminative models trained by CRFs with
different feature sets. Table 2 shows the feature set
we used in the Chunking experiments. We used the
feature set of the supplied data without any exten-
sion of additional feature types.

To train HySOL, we used the same unlabeled data
as used for our NER experiments (17,003,926 words
from the Reuters corpus). Moreover, the division of
the labeled training data and the feature set of the
generative models were derived in the same man-
ner as our NER experiments (see Section 4.1). That
is, we divided the labeled training data into 4/5 for
estimatingΛ and 1/5 for estimatingΓ; one feature
type shown in Table 2 is assigned in one generative
model.
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methods (hyper-params) Fβ=1 (gain) Sent (gain)

CRF (δ2=100.0) 84.70 - 78.30 -
(4/5 labeled data,δ2=100.0) 83.74 (-0.96)77.06 (-1.24)

LOP-CRF (ξ′=0.1) 84.90 (+0.20)79.02 (+0.72)
HySOL (ξ′=0.1,η′=0.0001)87.20 (+2.50) 81.19 (+2.89)

(w/o prior) 86.86 (+2.16)80.75 (+2.45)
w/o pG

j ∀j ( ξ′=1.0) 84.56 (-0.14)78.23 (-0.07)

Table 3: NER performance (CoNLL-2003)

methods (hyper-params) Fβ=1 (gain) Sent (gain)

CRF (δ2=10.0) 93.87 - 59.84 -
(4/5 labeled data,δ2=10.0) 93.70 (-0.17)58.85 (-0.99)

LOP-CRF (ξ′=0.1) 93.91 (+0.04)60.34 (+0.50)
HySOL (ξ′=1.0,η′=0.0001)94.30 (+0.43) 61.73 (+1.89)

(w/o prior) 94.17 (+0.30)61.23 (+1.39)
w/o pG

j ∀j (ξ′=1.0) 93.84 (-0.03)59.74 (-0.10)

Table 4: Chunking performance (CoNLL-2000)

5 Results and Discussion

We evaluated the performance in terms of the Fβ=1

score, which is the evaluation measure used in
CoNLL-2000 and 2003, and sentence accuracy,
since all the methods in our experiments optimize
sequence loss. Tables 3 and 4 show the results of
the NER and Chunking experiments, respectively.
The Fβ=1 and ‘Sent’ columns show the performance
evaluated using the Fβ=1 score and sentence accu-
racy, respectively.δ2, ξ andη, which are the hyper-
parameters in Gaussian or Dirichlet priors, are se-
lected from a certain value set by using a develop-
ment set1, that is,δ2 ∈ {0.01, 0.1, 1, 10, 100, 1000},
ξ − 1 = ξ′ ∈ {0.01, 0.1, 1, 10} andη − 1 = η′ ∈
{0.00001, 0.0001, 0.001, 0.01}. The second rows of
CRF in Tables 3 and 4 represent the performance of
base discriminative models used in HySOL with all
the features, which are trained with 4/5 of the la-
beled training data. The third rows of HySOL show
the performance obtained without using generative
models (unlabeled data). The model itself is essen-
tially the same as LOP-CRFs. However the perfor-
mance in the third HySOL rows was consistently
lower than that of LOP-CRF since the discrimina-
tive models in HySOL are trained with 4/5 labeled
data.

As shown in Tables 3 and 4, HySOL signifi-
1Chunking (CoNLL-2000) data has no common develop-

ment set. Thus, our preliminary examination employed by using
4/5 labeled training data with the remaining 1/5 as development
data to determine the hyper-parameter values.
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(a) NER (b) Chunking

Figure 2: Changes in the performance and the con-
vergence condition value (procedure 4 in Figure 1)
of HySOL.

cantly improved the performance of supervised set-
ting, CRF and LOP-CRF, as regards both NER and
Chunking experiments.

5.1 Impact of Incorporating Unlabeled Data
The contributions provided by incorporating unla-
beled data in our hybrid model can be seen by com-
parison with the performance of the first and third
rows in HySOL, namely a 2.64 point F-score and a
2.96 point sentence accuracy gain in the NER exper-
iments and a 0.46 point F-score and a 1.99 point sen-
tence accuracy gain in the Chunking experiments.

We believe there are two key ideas that enable
the unlabeled data in our approach to exhibit this
improvement compared with the the state-of-the-art
performance provided by discriminative models in
supervised settings. First, unlabeled data is only
used for optimizing Equation (4) to obtain a similar
effect to ’soft-clustering’, which can be calculated
without information about the correct output. Sec-
ond, by using a combination of generative models,
we can enhance the flexibility of the feature design
for unlabeled data. For example, we can handle ar-
bitrary overlapping features, similar to those used in
discriminative models, for unlabeled data by assign-
ing one feature type for one generative model as in
our experiments.

5.2 Impact of Iterative Parameter Estimation
Figure 2 shows the changes in the performance and
the convergence condition value of HySOL dur-
ing parameter estimation iteration in our NER and
Chunking experiments, respectively. As shown in
the figure, HySOL was able to reach the conver-
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gence condition in a small number of iterations in
our experiments. Moreover, the change in the per-
formance remains quite stable during the iteration.
However, theoretically, our optimization procedure
is not guaranteed to converge in theΓ andΘ space,
since the optimization ofΘ has local maxima. Even
if we were unable to meet the convergence condi-
tion, we were easily able to obtain model parame-
ters by performing a sufficient fixed number of itera-
tions, and then select the parameters when Equation
(4) obtained the maximum objective value.

5.3 Comparison with SS-CRF-MER

When we consider semi-supervised SOL methods,
SS-CRF-MER (Jiao et al., 2006) is the most compet-
itive with HySOL, since both methods are defined
based on CRFs. We planned to compare the perfor-
mance with that of SS-CRF-MER in our NER and
Chunking experiments. Unfortunately, we failed to
implement SS-CRF-MER since it requires the use of
a slightly complicated algorithm, called the ‘nested’
forward-backward algorithm.

Although, we cannot compare the performance,
our hybrid approach has several good characteris-
tics compared with SS-CRF-MER. First, it requires
a higher order algorithm, namely a ‘nested’ forward-
backward algorithm, for the parameter estimation of
unlabeled data whose time complexity isO(L3S2)
for each unlabeled data, whereL andS represent the
output label size and unlabeled sample length, re-
spectively. Thus, our hybrid approach is more scal-
able for the size of unlabeled data, since HySOL
only needs a standard forward-backward algorithm
whose time complexity isO(L2S). In fact, we
still have a question as to whether SS-CRF-MER
is really scalable in practical time for such a large
amount of unlabeled data as used in our experi-
ments, which is about 680 times larger than that of
(Jiao et al., 2006). Scalability for unlabeled data
will become really important in the future, as it will
be natural to use millions or billions of unlabeled
data for further improvement. Second, SS-CRF-
MER has a sensitive hyper-parameter in the objec-
tive function, which controls the influence of the un-
labeled data. In contrast, our objective function only
has a hyper-parameter of prior distribution, which is
widely used for standard MAP estimation. More-
over, the experimental results shown in Tables 3 and

Fβ=1 additional resources
ASO-semi 89.31 unlabeled data (27M words)
(Ando and Zhang, 2005)
(Florian et al., 2003) 88.76 their own large gazetteers,

2M-word labeled data
(Chieu and Ng, 2003) 88.31 their own large gazetteers,

very elaborated features
HySOL 88.14 unlabeled data (17M words)

supplied gazetters
HySOL 87.20 unlabeled data (17M words)

Table 5: Previous top systems in NER (CoNLL-
2003) experiments

Fβ=1 additional resources
ASO-semi 94.39 unlabeled data
(Ando and Zhang, 2005) (15M words: WSJ)
HySOL 94.30 unlabeled data

(17M words: Reuters)
(Zhang et al., 2002) 94.17 full parser output
(Kudo and Matsumoto, 2001)93.91 –

Table 6: Previous top systems in Chunking
(CoNLL-2000) experiments

4 indicate that HySOL is rather robust with respect
to the hyper-parameter since we can obtain fairly
good performance without a prior distribution.

5.4 Comparison with Previous Top Systems

With respect to the performance of NER and Chunk-
ing tasks, the current best performance is reported
in (Ando and Zhang, 2005), which we refer to as
‘ASO-semi’, as shown in Figures 5 and 6. ASO-
semi also incorporates unlabeled data solely for
the additional information in the same way as our
method. Unfortunately, our results could not reach
their level of performance, although the size and
source of the unlabeled data are not the same for cer-
tain reasons. First, (Ando and Zhang, 2005) does not
describe the unlabeled data used in their NER ex-
periments in detail, and second, we are not licensed
to use the TREC corpus including WSJ unlabeled
data that they used for their Chunking experiments
(training and test data for Chunking is derived from
WSJ). Therefore, we simply used the supplied unla-
beled data of the CoNLL-2003 shared task for both
NER and Chunking. If we consider the advantage of
our approach, our hybrid model incorporating gener-
ative models seems rather intuitive, since it is some-
times difficult to find out a design of effective auxil-
iary problems for the target problem.

Interestingly, the additional information obtained
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Fβ=1 (gain)

HySOL (ξ′=0.1,η′=0.0001) 87.20 -
+ w/ F-score opt. (Suzuki et al., 2006)88.02 (+0.82)
+ unlabeled data (17M→ 27M words) 88.41 (+0.39)
+ supplied gazetters 88.90 (+0.49)
+ add dev. set for estimatingΓ 89.27 (+0.37)

Table 7: The HySOL performance with the F-
score optimization technique and some additional
resources in NER (CoNLL-2003) experiments

Fβ=1 (gain)
HySOL (ξ′=0.1,η′=0.0001) 94.30 -

+ w/ F-score opt. (Suzuki et al., 2006)94.36 (+0.06)

Table 8: The HySOL performance with the F-score
optimization technique on Chunking (CoNLL-2000)
experiments

from unlabeled data appear different from each
other. ASO-semi uses unlabeled data for construct-
ing auxiliary problems to find the ‘shared structures’
of auxiliary problems that are expected to improve
the performance of the main problem. Moreover,
it is possible to combine both methods, for exam-
ple, by incorporating the features obtained with their
method in our base discriminative models, and then
construct a hybrid model using our method. There-
fore, there may be a possibility of further improving
the performance by this simple combination.

In NER, most of the top systems other than
ASO-semi boost performance by employing exter-
nal hand-crafted resources such as large gazetteers.
This is why their results are superior to those ob-
tained with HySOL. In fact, if we simply add the
gazetteers included in CoNLL-2003 supplied data as
features, HySOL achieves 88.14.

5.5 Applying F-score Optimization Technique

In addition, we can simply apply the F-score opti-
mization technique for the sequence labeling tasks
proposed in (Suzuki et al., 2006) to boost the
HySOL performance since the base discriminative
models pD(y|x) and discriminative combination,
namely Equation (3), in our hybrid model basically
uses the same optimization procedure as CRFs. Ta-
bles 7 and 8 show the F-score gain when we apply
the F-score optimization technique. As shown in the
Tables, the F-score optimization technique can eas-
ily improve the (F-score) performance without any
additional resources or feature engineering.

In NER, we also examined HySOL with addi-
tional resources to observe the performance gain.
The third row represents the performance when we
add approximately 10M words of unlabeled data (to-
tal 27M words)2 that are derived from 1996/11/15-
30 articles in Reuters corpus. Then, the fourth and
fifth rows represent the performance when we add
the supplied gazetters in the CoNLL-2003 data as
features, and adding development data as training
data ofΓ. In this case, HySOL achieved a com-
parable performance to that of the current best sys-
tem, ASO-semi, in both NER and Chunking exper-
iments even though the NER experiment is not a
fair comparison since we added additional resources
(gazetters and dev. set) that ASO-semi does not use
in training.

6 Conclusion and Future Work

We proposed a framework for semi-supervised SOL
based on a hybrid generative and discriminative ap-
proach. Experimental results showed that incorpo-
rating unlabeled data in a generative manner has
the power to further improve on the state-of-the-art
performance provided by supervised SOL methods
such as CRFs, with the help of our hybrid approach,
which discriminatively combines with discrimina-
tive models. In future we intend to investigate more
appropriate model and feature design for unlabeled
data, which may further improve the performance
achieved in our experiments.

Appendix

Let V D
i,s = exp(λ · f s) andV G

j,s = θys−1,ysθys,xs .
Equation (6) can be obtained by the following rear-
rangement of Equation (2) :

R(y|x;Λ,Θ,Γ)

=

∏
i
pD

i (y|x, λi)
γi

∏
j
pG

j (x, y, θj)
γj

∑
y

∏
i
pD

i (y|x, λi)γi
∏

j
pG

j (x, y, θj)γj

=
1

NR(x)

∏

i

[∏
s
V D

i,s

Zi(x)

]γi
∏

j

[∏

s

V G
j,s

]γj

=
1

NR(x)
∏

i
[Zi(x)]γi

∏

i

[∏

s

V D
i,s

]γi
∏

j

[∏

s

V G
j,s

]γj

=
1

NR(x)
∏

i
[Zi(x)]γi

∏

s

∏

i

[
V D

i,s

]γi
∏

j

[
V G

j,s

]γj
.

2In order to keep the consistency of POS tags, we re-
attached POS tags of the supplied data set and new 10M words
of unlabeled data using a POS tagger trained from WSJ corpus.
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