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Abstract 

In this paper, we analyze the effect of 
resampling techniques, including under-
sampling and over-sampling used in active 
learning for word sense disambiguation 
(WSD). Experimental results show that un-
der-sampling causes negative effects on ac-
tive learning, but over-sampling is a rela-
tively good choice. To alleviate the within-
class imbalance problem of over-sampling, 
we propose a bootstrap-based over-
sampling (BootOS) method that works bet-
ter than ordinary over-sampling in active 
learning for WSD. Finally, we investigate 
when to stop active learning, and adopt two 
strategies, max-confidence and min-error, 
as stopping conditions for active learning. 
According to experimental results, we sug-
gest a prediction solution by considering 
max-confidence as the upper bound and 
min-error as the lower bound for stopping 
conditions. 

1 Introduction 

Word sense ambiguity is a major obstacle to accu-
rate information extraction, summarization, and 
machine translation (Ide and Veronis, 1998). In 
recent years, a variety of techniques for machine 
learning algorithms have demonstrated remarkable 
performance for automated word sense disam-
biguation (WSD) (Chan and Ng, 2006; Dagan et. 
al., 2006; Xue et. al., 2006; Kohomban and Lee. 
2005; Dang and Palmer, 2005), when enough la-
beled training data is available. However, creating 

a large sense-tagged corpus is very expensive and 
time-consuming, because these data have to be an-
notated by human experts.  

Among the techniques to solve the knowledge 
bottleneck problem, active learning is a promising 
way (Lewis and Gale, 1994; McCallum and Ni-
gram, 1998). The purpose of active learning is to 
minimize the amount of human labeling effort by 
having the system automatically select for human 
annotation the most informative unannotated case.  

In real-world data, the distribution of the senses 
of a word is often very skewed. Some studies re-
ported that simply selecting the predominant sense 
provides superior performance, when a highly 
skewed sense distribution and insufficient context 
exist (Hoste et al., 2001; McCarthy et. al., 2004). 
The data set is imbalanced when at least one of the 
senses is heavily underrepresented compared to the 
other senses. In general, a WSD classifier is de-
signed to optimize overall accuracy without taking 
into account the class imbalance distribution in a 
real-world data set. The result is that the classifier 
induced from imbalanced data tends to over-fit the 
predominant class and to ignore small classes 
(Japkowicz and Stephen, 2002). Recently, much 
work has been done in addressing the class 
imbalance problem, reporting that resampling 
methods such as over-sampling and under-
sampling are useful in supervised learning with 
imbalanced data sets to induce more effective 
classifiers (Estabrooks et al., 2004; Zhou and Liu, 
2006).  

In general framework of active learning, the 
learner (i.e. supervised classifier) is formed by us-
ing supervised learning algorithms. To date, how-
ever, no-one has studied the effects of over-
sampling and under-sampling on active learning 
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methods. In this paper, we study active learning 
with resampling methods addressing the class im-
balance problem for WSD. It is noteworthy that 
neither of these techniques need modify the 
architecture or learning algorithm, making them 
very easy to use and extend to other domains. 

Another problem in active learning is  knowing 
when to stop the process. We address this problem 
in this paper, and discuss how to form the final 
classifier for use. This is a problem of estimation 
of classifier effectiveness (Lewis and Gale, 1994). 
Because it is difficult to know when the classifier 
reaches maximum effectiveness, previous work 
used a simple stopping condition when the training 
set reaches desirable size. However, in fact it is 
almost impossible to predefine an appropriate size 
of desirable training data for inducing the most 
effective classifier. To solve the problem, we 
consider the problem of estimation of classifier 
effectiveness as a second task of estimating 
classifier confidence. This paper adopts two 
strategies: max-confidence and min-error, and sug-
gests a prediction solution by considering max-
confidence as the upper bound and min-error as the 
lower bound for the stopping conditions. 

2 Related Work 

The ability of the active learner can be referred to 
as selective sampling, of which two major schemes 
exist: uncertainty sampling and committee-based 
sampling. The former method, for example pro-
posed by Lewis and Gale (1994), is to use only one 
classifier to identify unlabeled examples on which 
the classifier is least confident. The latter method 
(McCallum and Nigam, 1998) generates a commit-
tee of classifiers (always more than two classifiers) 
and selects the next unlabeled example by the prin-
ciple of maximal disagreement among these classi-
fiers. With selective sampling, the size of the train-
ing data can be significantly reduced for text 
classification (Lewis and Gale, 1994; McCallum 
and Nigam, 1998), and word sense disambiguation 
(Chen, et al. 2006).  

A method similar to committee-based sampling 
is co-testing proposed by Muslea et al. (2000), 
which trains two learners individually on two 
compatible and uncorrelated views that should be 
able to reach the same classification accuracy. In 
practice, however, these conditions of view selec-

tion are difficult to meet in real-world word sense 
disambiguation tasks.  

Recently, much work has been done on the class 
imbalance problem. The well-known approach is 
resampling, in which some training material is du-
plicated. Two types of popular resampling methods 
exist for addressing the class imbalance problem: 
over-sampling and under-sampling. The basic idea 
of resampling methods is to change the training 
data distribution and make the data more balanced. 
It works ok in supervised learning, but has not 
been tested in active learning. Previous work re-
ports that cost-sensitive learning is a good solution 
to the class imbalance problem (Weiss, 2004). In 
practice, for WSD, the costs of various senses of a 
disambiguated word are unequal and unknown, 
and they are difficult to evaluate in the process of 
learning.   

In recent years, there have been attempts to ap-
ply active learning for word sense disambiguation 
(Chen et al., 2006). However, to our best knowl-
edge, there has been no such attempt to consider 
the class imbalance problem in the process of ac-
tive learning for WSD tasks. 

3 Resampling Methods 

3.1 Under-sampling 

Under-sampling is a popular method in addressing 
the class imbalance problem by changing the train-
ing data distribution by removing some exemplars 
of the majority class at random. Some previous 
work reported that under-sampling is effective in 
learning on large imbalanced data sets (Japkowicz 
and Stephen, 2002). However, as under-sampling 
removes some potentially useful training samples, 
it could cause negative effects on the classifier per-
formance.  

One-sided sampling is a method similar to un-
der-sampling, in which redundant and borderline 
training examples are identified and removed from 
training data (Kubat and Matwin, 1997). Kuban 
and Matwin reported that one-sided sampling is 
effective in learning with two-class large imbal-
anced data sets. However, the relative computa-
tional cost of one-sided sampling in active learning 
is very high, because sampling computations must 
be implemented for each learning iteration. Our 
primitive experimental results show that, in the 
multi-class problem of WSD, one-sided sampling 
degrades the performance of active learning. And 

784



due to the high computation complexity of one-
sided sampling, we use random under-sampling in 
our comparison experiments instead.  

To control the degree of change of the training 
data distribution, the ratio of examples from the 
majority and the minority class after removal from 
the majority class is called the removal rate (Jo 
and Japkowicz, 2004). If the removal rate is 1.0, 
then under-sampling methods build data sets with 
complete class balance. However, it was reported 
previously that perfect balance is not always the 
optimal rate (Estabrooks et al., 2004). In our com-
parison experiments, we set the removal rate for 
under-sampling to 0.8, since some cases have 0.8 
as the optimal rate reported in (Estabrooks et al., 
2004). 

3.2 Over-sampling 

Over-sampling is also a popular method in ad-
dressing the class imbalance problem by resam-
pling the small class until it contains as many ex-
amples as the large one. In contrast to under-
sampling, over-sampling is the process of adding 
examples to the minority class, and is accom-
plished by random sampling and duplication. Be-
cause the process of over-sampling involves 
making exact copies of examples, it usually in-
creases the training cost and may lead to overfit-
ting. There is a recent variant of over-sampling 
named SMOTE (Chawla et al., 2002) which is a 
synthetic minority over-sampling technique. The 
authors reported that a combination of SMOTE 
and under-sampling can achieve better classifier 
performance in ROC space than only under-
sampling the majority class. 

In our comparison experiments, we use over-
sampling, measured by a resampling rate called the 
addition rate (Jo and Japkowicz, 2004) that indi-
cates the number of examples that should be added 
into the minority class. The addition rate for over-
sampling is also set to 0.8 in our experiments. 

3.3 Bootstrap-based Over-sampling 

While over-sampling decreases the between-class 
imbalance, it increases the within-class imbalance 
(Jo and Japkowicz, 2004) because of the increase 
of exact copies of examples at random. To allevi-
ate this within-class imbalance problem, we pro-
pose a bootstrap-based over-sampling method 
(BootOS) that uses a bootstrap resampling tech-
nique in the process of over-sampling.  Bootstrap-

ping, explained below, is a resampling technique 
similar to jackknifing.  

There are two reasons for choosing a bootstrap 
method as resampling technique in the process of 
over-sampling. First, using a bootstrap set can 
avoid exactly copying samples in the minority 
class. Second, the bootstrap method may give a 
smoothing of the distribution of the training sam-
ples (Hamamoto et al., 1997), which can alleviate 
the within-class imbalance problem cased by over-
sampling.  

To generate the bootstrap set, we use a well-
known bootstrap technique proposed by Hama-
moto et al. (1997) that does not select samples ran-
domly, allowing all samples in the minority 
class(es) an equal chance to be selected.  

Algorithm BootOS(X, N, r, k) 
Input: Minority class sample set X={x1, x2, …, xn} of 
size n; Difference in number of examples between the 
majority and the minority class = N; Addition rate = r 
(< 1.0); Number of nearest neighbors = k. 
Output: bootstrap sample set XB of size N*r 
=X (xB1, xB2, …, xB(N*r)). ∪
1. For i = 1 To N*r 
2.       If i == n then (*all samples in minority class 

sample set have been used*) 
3.             j = 1; //the first sample is selected again  
4.       Else     
5.             j = i; // the i-th sample is selected 
6.       Endif 
7.       Select j-th sample xj (also as xj,0) from X 
8.       Find the k nearest neighbor samples xj,1, xj,2, 

…, xj,k using similarity functions. 
9.       Compute a bootstrap sample xBi: 

,01
k

Bi j ll

1x x
k =

=
+ ∑  

10. Endfor 
11. return 

Figure 1. The BootOS algorithm 

4 Active Learning with Resampling 

In this work, we are interested in selective sam-
pling for pool-based active learning, and focus on 
uncertainty sampling (Lewis and Gale, 1994). The 
key point is how to measure the uncertainty of an 
unlabeled exemplar, and select a new exemplar 
with maximum uncertainty to augment the training 
data. The maximum uncertainty implies that the 
current classifier has the least confidence in its 
classification of this exemplar. The well-known 
entropy is a good uncertainty measurement widely 
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used in active learning (zhang and Chen, 2002; 
Chen et al., 2006): 

1
( ) ( ) ( | ) log ( | )i j i j

j
U i H P p s w p s w

=

= = −∑
in

i    (1) 

where U is the uncertainty measurement function 
H represents the entropy function. In the WSD 
task, p(sj|wi) is the predicted probability of sense sj 
outputted by the current classifier, when given a 
sample i containing a disambiguated word wi.  
Algorithm Active-Learning-with-Resampling(L,U,m) 
Input: Let L be initial small training data set; U the 
pool of unlabeled exemplars 
Output: labeled training data set L 
1. Resample L to generate new training data set L* 

using resampling techniques such as under-
sampling, over-sampling or BootOS, and then use 
L* to train the initial classifier 

2. Loop while adding new instances into L 
a. use the current classifier to probabilistically la-

bel all unlabeled exemplars in U 
b. Based on active learning rules, present m top-

ranked exemplars to oracle for labeling 
c. Augment L with the m new exemplars, and re-

move them from U 
d. Resample L to generate new training data set 

L* using resampling techniques such as under-
sampling, over-sampling, or BootOS, and use 
L* to retrain the current classifier         

3. Until the predefined stopping condition is met. 
4. return 
Figure 2. Active learning with resampling 
 

In step 1 and 2(d) in Fig. 2, if we do not gener-
ate L*, and L is used directly to train the current 
classifier, we call it ordinary active learning. In the 
process of active learning, we used the entropy-
based uncertainty measurement for all active learn-
ing frameworks in our comparison experiments. 
Actually our active learning with resampling is a 
heterogeneous approach in which the classifier 
used to select new instances is different from the 
resulting classifier (Lewis and Catlett, 1994).  

We utilize a maximum entropy (ME) model 
(Berger et al., 1996) to design the basic classifier 
used in active learning for WSD. The advantage of 
the ME model is the ability to freely incorporate 
features from diverse sources into a single, well-
grounded statistical model. A publicly available 
ME toolkit (Zhang et. al., 2004) was used in our 
experiments. In order to extract the linguistic fea-
tures necessary for the ME model, all sentences 
containing the target word were automatically part-

of-speech (POS) tagged using the Brill POS tagger 
(Brill, 1992). Three knowledge sources were used 
to capture contextual information: unordered single 
words in topical context, POS of neighboring 
words with position information, and local colloca-
tions.  These are same as three of the four knowl-
edge sources used in (Lee and Ng, 2002). Their 
fourth knowledge source (named syntactic rela-
tions) was not used in our work. 

5 Stopping Conditions 

In active learning algorithm, defining the stopping 
condition for active learning is a critical problem, 
because it is almost impossible for the human an-
notator to label all unlabeled samples. This is a 
problem of estimation of classifier effectiveness 
(Lewis and Gale 1994). In fact, it is difficult to 
know when the classifier reaches maximum 
effectiveness. In previous work some researchers 
used a simple stopping condition when the training 
set reached a predefined desired size. It is almost 
impossible to predefine an appropriate size of 
desirable training data for inducing the most 
effective classifier.  

To solve the problem, we consider the problem 
of estimating  classifier effectiveness as the 
problem of confidence estimation of classifier on 
the remaining unlabeled samples. Concretely, if we 
find that the current classifier already has 
acceptably strong confidence on its classification 
results for all remained unlabeled data, we assume 
the current training data is sufficient to train the 
classifier with maximum effectiveness. In other 
words, if a classifier induced from the current 
training data has strong classification confidence 
on an unlabeled example, we could consider it as a 
redundant example. 

Based on above analyses, we adopt here two 
stopping conditions for active learning: 
• Max-confidence: This strategy is based on 

uncertainty measurement, considering whether 
the entropy of each selected unlabeled example 
is less than a very small predefined threshold 
close to zero, such as 0.001.  

• Min-error: This strategy is based on feedback 
from the oracle when the active learner asks 
for true labels for selected unlabeled examples, 
considering whether the current trained 
classifier could correctly predict the labels or 
the accuracy performance of predictions on 
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selected unlabeled examples is already larger 
than a predefined accuacy threshold. 

Once max-confidence and min-error conditions 
are met, the current classifier is assumed to have 
strong enough confidence on the classification 
results of all remained unlabeled data. 

6 Evaluation 

6.1 Data 

The data used for our comparison experiments 
were developed as part of the OntoNotes project 
(Hovy et al., 2006), which uses the WSJ part of the 
Penn Treebank (Marcus et al., 1993). The senses 
of noun words occurring in OntoNotes are linked 
to the Omega ontology. In OntoNotes, at least two 
humans manually annotate the coarse-grained 
senses of selected nouns and verbs in their natural 
sentence context. To date, OntoNotes has 
annotated several tens of thousands of examples, 
covering several hundred nouns and verbs, with an 
inter-annotator agreement rate of at least 90%.   

Those 38 random chosen ambiguous nouns used 
in all following experiments are shown in Table 1. 
It is apparent that the sense distributions of most 
nouns are very skewed (frequencies shown in the 
table, separated by /). 
Words sense distribution  words sense distribution 
Rate 1025/182 president 936/157/17 
People 815/67/7/5 part 456/102/75/16 
Point 471/88/37/19/9/6 director 517/23 
Revenue 517/23 bill 348/130/40 
Future 413/82/23 order 354/61/54/6/6 
Plant 376/51 board 369/15 
Today 238/149 policy 308/74 
Capital 325/21/8 term 147/137/52/13 
management 210/130 move 302/13/5 
Position 97/75/67/61/10/7 amount 236/57/16 
Home 267/17/16 power 154/134/15 
Leader 244/38 return 191/35/29/12/9 
administration 266/11 payment 201/69 
Account 233/18/13 control 90/66/64/21/12/5 
Lot 221/20 activity 218/23 
Drug 160/74 building 177/48/5 
Estate 214/11 house 112/71/25 
development 165/46/6 network 127/53/29 
Strategy 198/11 place 69/63/50/18/5 
Table 1. Data set used in experiments 

6.2 Results 

In the following active learning comparison 
experiments, we tested with five resampling 
methods including random sampling (Random), 
uncertainty sampling (Ordinary), under-sampling, 
over-sampling, and BootOS. The 1-NN technique 

was used for bootstrap-based resampling of 
BootOS in our experiments. A 5 by 5-fold cross-
validation was performed on each noun’s data.  

We used 20% randomly chosen data for held-out 
evaluation  and the other 80% as the pool of 
unlabeled data for each round of the active 
learning.  For all words, we started with a 
randomly chosen initial training set of 10 
examples, and we made 10 queries after each 
learning iteration.  

In the evaluation, average accuracy and recall 
are used as measures of performances for each 
active learning method. Note that the macro-
average way is adopted for recall evaluation in 
each noun WSD task. The accuracy measure 
indicates the percentage of testing instances 
correctly identified by the system. The macro-
average recall measure indicates how well the 
system performs on each sense.   

 
Experiment 1: Performance comparison ex-
periments on active learning 
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Figure 3. Average accuracy performance com-

parison experiments 
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Figure 4. Average recall performance comparison 
experiments 
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As shown in Fig. 3 and Fig. 4, when the number of 
learned samples for each noun is smaller than 120, 
the BootOS has the best performance, followed by 
over-sampling and ordinary method. As the num-
ber of learned samples increases, ordinary, over-
sampling and BootOS have similar performances 
on accuracy and recall. Our experiments also ex-
hibit that random sampling method is the worst on 
both accuracy and recall.  

Previous work (Estabrooks et al., 2004) reported 
that under-sampling of the majority class (pre-
dominant sense) has been proposed as a good 
means of increasing the sensitivity of a classifier to 
the minority class (infrequent sense). However, in 
our active learning experiments, under-sampling is 
apparently worse than ordinary, over-sampling and 
our BootOS. The reason is that in highly imbal-
anced data, too many useful training samples of 
majority class are discarded in under-sampling, 
causing the performance of active learning to de-
grade.  
 
Experiment 2: Effectiveness of learning in-
stances for infrequent senses 
It is important to enrich the corpora by learning 
more instances for infrequent senses using active 
learning with less human labeling. This procedure 
not only makes the corpora ‘richer’, but also 
alleviates  the domain dependence problem faced 
by corpus-based supervised approaches to WSD.  

The objective of this experiment is to evaluate 
the performance of active learning in learning 
samples of infrequent senses from an unlabeled 
corpus. Due to highly skewed word sense 
distributions in our data set, we consider all senses 
other than the predominant sense as infrequent 
senses in this experiment.  
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Figure 5. Comparison experiments on learning in-
stances for infrequent senses 

Fig. 5 shows that random sampling is the worst 
in active learning for infrequent senses. The reason 
is very obvious: the sense distribution of the 
learned sample set by random sampling is almost 
identical to that of the original data set. 

 Under-sampling is apparently worse than ordi-
nary active learning, over-sampling and BootOS 
methods. When the number of learned samples for 
each noun is smaller than 80, BootOS achieves 
slight better performance than ordinary active 
learning and over-sampling.  

When the number of learned samples is larger 
than 80 and smaller than 160, these three methods 
exhibit similar performance. As the number of it-
erations increases, ordinary active learning is 
slightly better than over-sampling and BootOS. In 
fact, after the 16th iteration (10 samples chosen in 
each iteration), results indicate that most instances 
for infrequent senses have been learned.  
 
Experiment 3: Effectiveness of Stopping Condi-
tions for active learning 
To evaluate the effectiveness of two strategies 
max-confidence and min-error as stopping condi-
tions of active learning, we first construct an ideal 
stopping condition when the classifier could reach 
the highest accuracy performance at the first time 
in the procedure of active learning. When the ideal 
stopping condition is met, it means that the current 
classifier has reached maximum effectiveness. In 
practice, it is impossible to exactly know when the 
ideal stopping condition is met before all unlabeled 
data are labeled by a human annotator. We only 
use this ideal method in our comparison experi-
ments to analyze the effectiveness of our two pro-
posed stopping conditions. 

For general purpose, we focus on the ordinary 
active learning to design the basic system, and to 
evaluate the effectiveness of three stop conditions. 
In the following experiments, the entropy threshold 
used in max-confidence strategy is set to 0.001, and 
the accuracy threshold used in min-error strategy 
is set to 0.9.   

In Table 2, the column “Size” stands for the size 
of unlabeled data set of corresponding noun word 
used in active learning. There are two columns for 
each stopping condition: the left column “num” 
presents number of learned instances and the right 
column “%” presents its percentage over all data 
when the corresponding stopping condition is met. 
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Ideal Max-
confidence Min-error 

Words Size 
num % num % num % 

Rate 966 200 .23 410 .41 290 .29 
People 715 140 .20 290 .41 200 .28 
Point 504 90 .18 220 .44 120 .24 
Revenue 432 70 .16 110 .25 80 .19 
Future 414 120 .29 140 .34 60 .14 
Plant 342 210 .61 180 .53 110 .32 
Today 382 250 .65 240 .63 230 .60 
Capital 283 70 .25 180 .64 90 .32 
Management 272 200 .74 210 .77 210 .77 
Position 254 210 .83 230 .91 220 .87 
Home 240 60 .25 160 .67 60 .25 
Leader 226 60 .27 120 .53 70 .31 
administration 222 30 .14 90 .41 50 .23 
Account 211 50 .24 130 .62 70 .33 
Lot 185 30 .16 60 .32 40 .22 
Drug 187 130 .70 140 .75 120 .64 
Estate 180 20 .11 50 .28 30 .17 
Development 174 40 .23 150 .86 80 .46 
Strategy 167 10 .06 100 .60 10 .06 
President 888 120 .14 220 .25 120 .14 
Part 519 110 .21 240 .46 130 .25 
Director 432 110 .25 130 .30 90 .21 
Bill 414 120 .29 280 .68 150 .36 
Order 385 130 .34 220 .57 140 .36 
Board 307 40 .13 190 .62 40 .13 
Policy 306 90 .29 200 .65 150 .49 
Term 279 120 .43 190 .68 130 .47 
Move 256 50 .20 140 .55 50 .20 
Amount 247 210 .85 200 .81 140 .57 
Power 242 190 .78 190 .78 190 .78 
Return 221 90 .41 160 .72 100 .45 
Payment 216 120 .56 160 .74 150 .69 
Control 206 160 .78 200 .97 200 .97 
Activity 193 30 .16 130 .67 70 .36 
Building 184 90 .49 130 .71 110 .60 
House 166 100 .60 150 .90 110 .66 
Network 167 110 .66 130 .78 100 .60 
Place 164 120 .73 150 .91 120 .73 

Table 2 Effectiveness of three stopping conditions 
 

As shown in Table 2, the min-error strategy 
based on feedback of human annotator is very 
close to the ideal method. Therefore, when com-
paring to ideal stopping condition, min-error strat-
egy is a good choice as stopping condition for ac-
tive learning. It is important to note that the min-
error method does not need more additional 
computational costs, it only depends upon the 
feedback of human annotator when labeling the 
chosen unlabeled samples.   

From experimental results, we can see that max-
confidence strategy is worse than min-error 
method. However, we believe that the entropy of 
each unlabeled sample is a good signal to stop ac-
tive learning. So we suggest that there may be a 
good prediction solution in which the min-error 
strategy is used as the lower-bound of stopping 
condition, and max-confidence strategy as the up-
per-bound of stopping condition for active learning. 

7 Discussion 

As discussed above, finding more instances for 
infrequent senses at the earlier stages of active 
learning is very significant in making the corpus 
richer, meaning less effort for human labeling. In 
practice, another way to learn more instances for 
infrequent senses is to first build a training data set 
by active learning or by human efforts, and then 
build a supervised classifier to find more instances 
for infrequent sense. However, it is interesting to 
know how much initial training data is enough for 
this task, and how much human labeling efforts 
could be saved.  

From experimental results, we found that among 
these chosen unlabeled instances by active learner, 
some instances are informative samples helpful for 
improving classification performance, and other 
instances are borderline samples which are unreli-
able because even a small amount of noise can lead 
the sample to the wrong side of the decision 
boundary. The removal of these borderline samples 
might improve the performance of active learning. 

The proposed prediction solution based on max-
confidence and min-error strategies is a coarse 
framework. To predict when to stop active learning 
procedure, it is logical to consider the changes of 
accuracy performance of the classifier as a signal 
to stop the learning iteration. In other words, dur-
ing the range predicted by the proposed solution, if 
the change of accuracy performance of the learner 
(classifier) is very small, we could assume that the 
current classifier has reached maximum effective-
ness. 

8 Conclusion and Future Work 

In this paper, we consider the class imbalance 
problem in WSD tasks, and analyze the effect of 
resampling techniques including over-sampling 
and under-sampling in active learning. Experimen-
tal results show that over-sampling is a relatively 
good choice in active learning for WSD in highly 
imbalanced data. Under-sampling causes negative 
effect on active learning. A new over-sampling 
method named BootOS based on bootstrap tech-
nique is proposed to alleviate the within-class im-
balance problem of over-sampling, and works bet-
ter than ordinary over-sampling in active learning 
for WSD. It is noteworthy that none of these 
techniques require to modify the architecture or 
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learning algorithm; therefore, they are very easy to 
use and extend to other applications. To predict 
when to stop active learning, we adopt two 
strategies including max-confidence and min-error 
as stopping conditions. According to our 
experimental results, we suggest a prediction 
solution by considering max-confidence as the 
upper bound and min-error as the lower bound of 
stopping conditions for active learning.  

In the future work, we will study how to exactly 
identify these borderline samples thus they are not 
firstly selected in active learning procedure. The 
borderline samples have the higher entropy values 
meaning least confident for the current classifier. 
The borderline instances can be detected using the 
concept of Tomek links (Tomek 1976). It is also 
worth studying cost-sensitive learning for active 
learning with imbalanced data, and using such 
techniques for WSD. 
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