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Abstract realized on a WFST. Their modeling was reduced to
Maximum Entropy Markov Model (MEMM) to han-
dle a large number of features which, in turn, faced
the labeling bias problem (li&erty et al., 2001).
Tillmann and Zhang (2006) trained their feature set
using an online discriminative algorithm. Since the
decoding is still expensive, their online training ap-
proach is approximated by enlarging a merded
best list one-by-one with a 1-best output. Liang
et al. (2006) introduced an averaged perceptron al-
gorithm, but employed only 1-best translation. In
Watanabe et al. (2006a), binary features were trained
only on a small development set using a variant of
1 Introduction voted perceptron for rerankinkrbest translations.

The recent advances in statistical machine transl hus, the improvement is merely relative to the

tion have been achieved by discriminatively train- asell_ne translation Sy?te”_“’ namely whether or not
ing a small number of real-valued features based etﬁere is a good translation in thétbest.
ther on (hierarchical) phrase-based translation (Och We present a method to estimate a large num-
and Ney, 2004; Koehn et al., 2003; Chiang, 2005) dser of parameters — of the order of millions —
syntax-based translation (Galley et al., 2006). Howdsing an online training algorithm. Although it
ever, it does not scale well with a large number ofvas intuitively considered to be prone to overfit-
features of the order of millions. ting, training on a small development set — less
Tillmann and Zhang (2006), Liang et al. (2006)than 1K sentences — wasfBuaient to achieve im-
and Bangalore et al. (2006) introduced sparse binaproved performance. In this method, each train-
features for statistical machine translation trained oimg sentence is decoded and weights are updated at
a large training corpus. In this framework, the probevery iteration (Liang et al., 2006). When updat-
lem of translation is regarded as a sequential labelirigg model parameters, we employ a memorization-
problem, in the same way as part-of-speech taggingariant of a local updating strategy (Liang et al.,
chunking or shallow parsing. However, the use of 2006) in which parameters are optimized toward
large number of features did not provide any signifia set of good translations found in thkebest list
cantimprovements over a conventional small featuragcross iterations. The objective function is an ap-
set. proximated BLEU (Watanabe et al., 2006a) that
Bangalore et al. (2006) trained the lexical choicecales the loss of a sentence BLEU to a document-
model by using Conditional Random Fields (CRFwise loss. The parameters are trained using the

We achieved a state of the art performance
in statistical machine translation by using
a large number of features with an online
large-margin training algorithm. The mil-
lions of parameters were tuned only on a
small development set consisting of less than
1K sentences. Experiments on Arabic-to-
English translation indicated that a model
trained with sparse binary features outper-
formed a conventional SMT system with a
small number of features.
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Margin Infused Relaxed Algorithm (MIRA) (Cram-  Based on hierarchical phrase-based modeling, we
mer et al., 2006). MIRA is successfully employedadopted the left-to-right target generation method
in dependency parsing (McDonald et al., 2005) ofWatanabe et al., 2006b). This method is able to
the joint-labelingchunking task (Shimizu and Haas,generate translationsteiently, first, by simplifying
2006). Experiments were carried out on an Arabicthe grammar so that the target side takes a phrase-
to-English translation task, and we achieved signifprefixed form, namely a target normalized form.
icant improvements over conventional minimum erSecond, a translation is generated in a left-to-right
ror training with a small number of features. manner, similar to the phrase-based approach using
This paper is organized as follows: First, SecEarley-style top-down parsing on the source side.
tion 2 introduces the framework of statistical ma-Coupled with the target normalized form;gram
chine translation. As a baseline SMT system, wkanguage models ardfeiently integrated during the
use the hierarchical phrase-based translation wiearch even with a higher orderrof
an dficient left-to-right generation (Watanabe et al.,
2006b) originally proposed by Chiang (2005). In2-2 Target Normalized Form
Section 3, a set of binary sparse features are defingfiChiang (2005), each production rule is restricted
including numeric features for our baseline systemo a rank-2 or binarized form in which each rule con-
Section 4 introduces an online large-margin trainingains at most two non-terminals. The target normal-
algorithm using MIRA with our key components. ized form (Watanabe et al., 2006b) further imposes
The experiments are presented in Section 5 followesl constraint whereby the target side of the aligned
by discussion in Section 6. right-hand side is restricted to a Greibach Normal
2 Statistical Machine Trandation Form fike structure:
We use a log-linear approach (Och, 2003) in which X— <7” bg, ~> (2)
a foreign language sentendds translated into an-
other language, for example Englighpy seeking a
maximum solution:

whereX is a non-terminaly is a source side string of
arbitrary terminals andr non-terminalsbg is a cor-
responding target side whebas a string of termi-

é=argmaxw' - h(f,e) (1) nals, or a phrase, aglis a (possibly empty) string

e of non-terminals~ defines one-to-one mapping be-

whereh(f, €) is a large-dimension feature vectoy. tween non-terminals ity andgB. The use of phrase
is a weight vector that scales the contribution fron® as a prefix maintains the strength of the phrase-
each feature. Each feature can take any real valuease framework. A contiguous English side with a
such as the log of the-gram language model to (Possibly) discontiguous foreign language side pre-
represent fluency, or a lexicon model to capture theerves phrase-bounded local word reordering. At

word or phrase-wise correspondence. the same time, the target normalized framework still
combines phrases hierarchically in a restricted man-
2.1 Hierarchical Phrase-based SMT ner.

Chiang (2005) introduced the hierarchical phrase-

based translation approach, in which non-terminag3 L €ft-to-
are embedded in each phrase. A translation is gen@&ecoding is performed by parsing on the source side
ated by hierarchically combining phrases using thand by combining the projected target side. We
non-terminals. Such a quasi-syntactic structure capplied an Earley-style top-down parsing approach
naturally capture the reordering of phrases that is n¢#vu and Wong, 1998; Watanabe et al., 2006b; Zoll-
directly modeled by a conventional phrase-based apiann and Venugopal, 2006). The basic idea is
proach (Koehn et al., 2003). The non-terminal emto perform top-down parsing so that the projected
bedded phrases are learned from a bilingual corptigrget side is generated in a left-to-right manner.
without a linguistically motivated syntactic struc-The search is guided with a push-down automaton,
ture. which keeps track of the span of uncovered source

Right Target Generation
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word positions. Combined with the rest-cost esti-
mation aggregated in a bottom-up way, our decoder 7
efficiently searches for the most likely translation.

The use of a target normalized form further sim-
plifies the decoding procedure. Since the rule form @
does not allow any holes for the target side, the inte-

gration with ann-gram language model is straight-
forward: the prefixed phrases are simply concaté:-Igure 1: An example of sparse features for a phrase

nated and intersected withgram. translation.
3 Features with the same source and target sides, only the fre-
31 Basdine Features quently observed word alignment is kept to reduce

: . . the grammar size.
The hierarchical phrase-based translation system g

employs standard numeric value features: 3.21 Word Pair Features
e n-gram |anguage model to capture the f|uency Word pair features reflect the word correspon-
of the target side. dence in a hierarchical phrase. Figure 1 illustrates

_ _ _ ~_an example of sparse features for a phrase trans-
» Hierarchical phrase translation probabilities ingtion pair fi,...fiu2 and @, ...e,3 L. From the
both directionsh(ylbg) andh(bply), estimated \yord alignment encoded in this phrase, we can ex-

by relative counts, count(bg). tract word pair features of fj.1), (€2, fj:2) and

e Word-based lexically weighted models of(e'+3’ fj)-

h|ex(7|5/3) and h|ex(5,3|7) using lexical transla- The bigrams of word pairs are also used to
tion models. capture the contextual dependency. We assume

that the word pairs follow the target side order-
e Word-based insertigdeletion penalties that ing. For instance, we defineg((s, fj_1), (&, fj+1)),
penalize through the low probabilities of the((e, fj;1), (612, fj+2)) and (€2, fj+2). (843, fj)) in-

lexical translation models (Bender et al., 2004)dicated by the arrows in Figure 1.

Extracting bigram word pair features following
the target side ordering implies that the correspond-
o Backtrack-based penalties inspired by the digng source side is reordered according to the tar-

tortion penalties in phrase-based modelinget side. The reordering of hierarchical phrases is

(Watanabe et al., 2006D). represented by using contextually dependent word
pairs across their boundaries, as with the feature
((&-1, fj-1), (&, fj+1)) in Figure 1.

In addition to the baseline features, a large number
of binary features are integrated in our MT system3-2.2 Insertion Features
We may use any binary features, such as The above features are irfBuient to capture the
translation because spurious words are sometimes
inserted in the target side. Therefore, insertion fea-
tures are integrated in which no word alignment is
associated in the target. The inserted words are asso-
The features are designed by considering the decoelated with all the words in the source sentence, such
ing eficiency and are based on the word alignmerts €1, f1), ..., (641, f;) for the non-aligned word
structure preserved in hierarchical phrase translg-1 With the source sentendg in Figure 1. In the
tion pairs (Zens and Ney, 2006). When hierarchif_ _

. . For simplicity, we show an example of phrase translation
cal phrases are extracted, the word alignment is prséirs, but it is trivial to define the features over hieracahi
served. If multiple word alignments are observeghrases.

e Word/hierarchical-phrase length penalties.

3.2 SparseFeatures

English word “violate” and Arabic
h(f,e) = word “tnthk” appeared irrand f.
0 otherwise.
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Algorithm 1 Online Training Algorithm

261
);\ Training data7 = {(f!, &)},
m >/\@§ m-best oraclesO = {}]

L /\‘/V i=0
*@‘/ @/<X 1. forn=1,..,Ndo
,’ 22 fort=1,..,Tdo
\ \‘@ 3: C! « best(ft;w')
" 4 O « oraclg,(0' U Ct; &)
5 w'*! = updatew' usingCt w.r.t. Ot
Figure 2: Example hierarchical features. 6 i=i+1
7. end for
same way, we will be able to include deletion fea- 8: end foerT w

: : iated: TEtUrN =
tures where a non-aligned source word is associate

with the target sentence. However, this would lead to
complex decoding in which all the translated words

are memorized for each hypothesis, and thus not in-
tegrated in our feature set.

“violate” is normalized to “viok” and “+late”
by taking the prefix and slix, respectively.

¢ Digits replaced by a sequence of “@". For ex-

. . . ample, the word “200B/27" is represented as
Target side bigram features are also included to ‘00@QQ/0@"

directly capture the fluency as in thegram lan-

guage model (Roark et al., 2004). For instance, biae consider all possible combination of those to-
gram features ofe{_1, &), (&6,€:1), (6+1,€+2)... areé  ken types. For example, the word pair feature (vi-
observed in Figure 1. olate, tnthk) is normalized and expanded to (¥iol
tnthk), (viol+, tnth+), (violate, tnth+), etc. using the

- _ 4-letter prefix token type.
In addition to the phrase motivated features, we

included features inspired by the hierarchical strue4 Online Large-Margin Training
ture. Figure 2 shows an example of hierarchical
phrases in the source side, consistingXgf —

3.2.3 Target Bigram Features

3.24 Hierarchical Features

Algorithm 1 is our generic online training algo-

_ _ " _ rithm. The algorithm is slightly dierent from other
<Hf|g rlr:;;g’t;;eg] gglza;ieﬁeﬁgg?é opline training algorithms (Tillmann and Zhang,
P P y 006; Liang et al., 2006) in that we keep and up-

the source words in a parent phrase to the sour%e . S
words in child phrases. such £, (Fra. Fiua) ate oracle translations, which is a set of good trans-
P : 30, 1)), (Tia, Tja), lations reachable by a decoder according to a met-

() 0 O el ) ol 4™ SEEl tapaent ot at. 2000, e
y g ' k-best list is generated by bg} using the cur-

features are extracted only for those source words . : L
. A . o rent weight vectow' for the training instance of
that are aligned with the target side to limit the fea; _; L i
. (f',€). Each training instance has multiple (or, pos-
ture size. : :
sibly one) reference translatiore for the source
3.3 Normalization sentencef!. Using thek-best list, m-best oracle
. N - translations0' is updated by oracig-) for every it-
In order to achieve the generalization capability, the _ . . P y ) y
. . . ération (line 4). Usually, a decoder cannot generate
following normalized tokens are introduced for each .
surface form: translations that exactly match the reference transla-
’ tions due to its beam search pruning and OOV. Thus,
e Word class or POS. we cannot always assign scores for each reference
translation. Therefore, possible oracle translations

o 4-letter prefix and dtix. For instance, the word are maintained according to an objective function,
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i.e. BLEU. Tillmann and Zhang (2006) avoided thein order to reduce the number of constraints in Eq. 3.
problem by precomputing the oracle translations ifn the translation task, multiple translations are ac-
advance. Liang et al. (2006) presented a similar ugeptable. Thus, margins faroracle translation are
dating strategy in which parameters were updatecteated, which amount tom x k large-margin con-
toward an oracle translation founddh, but ignored straints. In this online training, only active features
potentially better translations discovered in the pasonstrained by Eq. 3 are kept and updated, unlike
iterations. offline training in which all possible features have to

Neww'*! is computed using thebest listC' with ~ be extracted and selected in advance.
respect to the oracle translatioB5(line 5). After N The Lagrange dual form of Eq. 3 is:
iterations, the algorithm returns an averaged weight 1
vector to avoid overfitting (line 9). The key to this MaX()=0 —Ellza(é, ) (h(f'.8) - h(ft,e')) &
online training algorithm is the selection of the up- &e
dating scheme in line 5. + Z a(& )L €; )

ae

4.1 Margin Infused Relaxed Algorithm

The Margin Infused Relaxed Algorithm (MIRA)
(Crammer et al., 2006) is an online version of the
large-margin training algorithm for structured clas-
sification (Taskar et al., 2004) that has been suc-
cessfully used for dependency parsing (McDonald &vith the weight vector update:

al., 2005) and joint-labelinghunking (Shimizu and W= w4+ Z (@ e’)(h(ft & — h(f! e’)) 5)
&€

- > a@€)(S(f,8) - S(f',¢))
ee

subject to Z ae)<C 4)

ée

Haas, 2006). The basic idea is to keep the norm of

the updates to the weight vector as small as possible,

considering a margin at least as large as the loss pfluation 4is solved using a QP-solver, such as a co-
the incorrect classification. ordinate ascent algorithm, by heuristically selecting

Line 5 of the weight vector update procedure if& €) and by updating.() iteratively:
Algorithm 1 is replaced by the solution of: a(® €) max(0, (& €) + 5(& €)) (6)
L@e;e) - (s(f.8-s(f'.e))

Wt = argminw'*t - w'|| + C Z £@¢€)
e

i+ 5 A, / ~
o &) IN(T.8) — h(f. )P
S.litlne::tjo 1 et R . C is used to clip the amount of updates.
TG -7 e)+ 5@ €) 2 LEEE) A single oracle with 1-best translation is analyti-
£B€)>0 cally solved without a QP-solver and is represented
vee O, ve et (3) as the following perceptron-like update (Shimizu

_ T and Haas, 2006):
where $(fl,e) = {w'} - h(fl,e). &()is a non-
negative slack variable ard > 0 is a constant to , _ max[O, min{C,
control the influence to the objective function. A

IargerC_lmplles Iarge_r updat(_as o the We'ght Vec'lntuitively, the update amount is controlled by the
tor. L(-) is a loss function, for instanceftirence of

. . margin and the loss between the correct and incor-
BLEU, that measures theftkrence between dnd g

. . .~ rect translations and by the closeness of two transla-
¢ according to the reference translatias In this . . .
.tions in terms of feature vectors. Indeed, Liang et al.

update, a margin is created for each correct and ins .
. 2006) employed an averaged perceptron algorithm
correct translation at least as large as the loss of the A
incorrect translation. A larger error means a lar elrn which a value was always set to one. Tillmann
) ' 9 9% g Zhang (2006) used afdirent update style based
distance between the scores of the correct and mcc())rr-] 2 convex loss function:
rect translations. Following McDonald et al. (2005), '

only k-best translations are used to form the marging = 7L(& €; €') - max(O, 1- (é(ft, & - s(ft, e’)))

L@e;e)-(s(f.8 - S(fl.&))
Ih(f', & — h(ft, e)I12 D
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Table 1: Experimental results obtained by varying nornealitokens used with surface form.

# features 2003 (dev) 2004 2005
NIST BLEU[%] | NIST BLEU[%] | NIST BLEU [%]
surface form 492K | 11.32 54.11 | 10.57 49.01 | 10.77 48.05

w/ prefix/sufix 4,204K | 12.38 63.87 | 10.42 48.74 | 10.58 47.18
w/ word class 2,689K | 10.87 49.59 10.63 49.55 10.89 48.79
w/ digits 576K | 11.01 50.72 | 10.66 49.67 | 10.84 48.39
all token types| 13,759K| 11.24 52.85 | 10.66 49.81 | 10.85 48.41

wheren > 0 is a learning rate for controlling the The score can be regarded as a normalization which
convergence. scales a sentence-wise score into a document-wise

_ score.
4.2 Approximated BLEU

We used the BLEU score (Papineni et al., 2002) & Experiments
the loss function computed by:
N We employed our online large-margin training pro-
BLEU(E; E) = exp[EZIog o(E.E) |- BPE, E) cedure _fqr an Arabic-to-English translation task.
N & The training data were extracted from the Ara-
(7) bic/English newAJN bilingual corpora supplied by
wherep,(-) is then-gram precision of hypothesized LDC. The data amount to nearly 3.8M sentences.
translationsE = {et}tT:l given reference translations The Arabic part of the bilingual data is tokenized by
E= {e‘}tT=1 and BP() < 1is a brevity penalty. BLEU isolating Arabic scripts and punctuation marks. The
is computed for a set of sentences, not for a sirdevelopment set comes from the MT2003 Arabic-
gle sentence. Our algorithm requires frequent ugenglish NIST evaluation test set consisting of 663
dates on the weight vector, which implies higher costentences in the news domain with four reference
in computing the document-wise BLEU. Tillmanntranslations. The performance is evaluated by the
and Zhang (2006) and Liang et al. (2006) solvediews domain MT200MT2005 test set consisting
the problem by introducing a sentence-wise BLEUof 707 and 1,056 sentences, respectively.
However, the use of the sentence-wise scoring doesThe hierarchical phrase translation pairs are ex-
not translate directly into the document-wise scor&acted in a standard way (Chiang, 2005): First,
because of the-gram precision statistics and thethe bilingual data are word alignment annotated by
brevity penalty statistics aggregated for a sentencanning GIZA++ (Och and Ney, 2003) in two di-
set. Thus, we use an approximated BLEU scoreections. Second, the word alignment is refined
that basically computes BLEU for a sentence set, by a grow-diag-final heuristic (Koehn et al., 2003).
accumulates the flerence for a particular sentenceThird, phrase translation pairs are extracted together
(Watanabe et al., 2006a). with hierarchical phrases by considering holes. In
The approximated BLEU is computed as followsthe last step, the hierarchical phrases are constrained
Given oracle translation® for 7, we maintain the so that they follow the target normalized form con-
best oracle translatior@I = {él, ...,éT}. The ap- straint. A 5-gram language model is trained on the
proximated BLEU for a hypothesized translatién English side of the bilingual data combined with the
for the training instancef{, &) is computed oveOI English Gigaword from LDC.
except fore!, which is replaced bg’: First, the use of normalized token types in Sec-
" Aol v A4l ATa. tion 3.3 is evaluated in Table 1. In this setting, all
BLEU(E"... 87, €.8", .. 8"} ) the structural features in Section 3.2 are used, but
The loss computed by the approximated BLEU medifferentiated by the normalized tokens combined
sures the document-wise loss of substituting the cowith surface forms. Our online large-margin train-
rect translationg” into an incorrect translatioe’. ing algorithm performed 50 iterations constrained
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Table 2: Experimental results obtained by incrementallyirsgl structural features.

# features 2003 (dev) 2004 2005
NIST BLEU[%] | NIST BLEU[%] | NIST BLEU [%]
word pairs 11,042K | 11.05 51.63 | 10.43 48.69 | 10.73 47.72
+ target bigram| 11,230K | 11.19 53.49 | 10.40 48.60 | 10.66 47.47
+ insertion 13,489K | 11.21 52.20 | 10.77 50.33 | 10.93 48.08
+ hierarchical 13,759K | 11.24 52.85 | 10.66 49.81 | 10.85 48.41

Table 3: Experimental results for varyifgbest andn-oracle translations.

# features 2003 (dev) 2004 2005
NIST BLEU [%] | NIST BLEU [%] | NIST BLEU [%]
baseline 10.64 46.47 | 10.83 49.33 | 10.90 47.03

l-oracle 1-best 8,735K| 11.25 52.63 | 10.82 50.77 | 10.93 48.11
l-oracle 10-best 10,480K| 11.24 53.45 | 10.55 49.10 | 10.82 48.49
10-oracle  1-best 8,416K| 10.70 47.63 | 10.83 48.88 | 10.76 46.00
10-oracle 10-best 13,759K| 11.24 52.85 | 10.66 49.81 | 10.85 48.41
sentence-BLEU 14,587K | 11.10 51.17 | 10.82 49.97 | 10.86 47.04

by 10-oracle and 10-best list. When decoding, alusion of target bigram features clearly overfit to
1000-best list is generated to achieve better oractee development data. The problem is resolved by
translations. The training took nearly 1 day using &dding insertion features which can take into ac-
cores of Opteron. The translation quality is evalcount an agreement with the source side that is not
uated by case-sensitive NIST (Doddington, 200Zjirectly captured by word pair features. Hierarchi-
and BLEU (Papineni et al., 2002) The table also cal features are somewhéfextive in the 2005 test
shows the number of active features in which nonset by considering the dependency structure of the
zero values were assigned as weights. The additi@ource side.

of pre_fix/sWﬁx tokens great!y increased the n_umber Finally, we compared our online training algo-
of active features. The setting severely overfit to thﬁthm with sparse features with a baseline system

development data, and therefore resulted in WOrSg tapje 3. The baseline hierarchical phrase-based
results in open tests. The word clasith surface gy stom is trained using standard max-BLEU training
form avoided the overfitting problem. The digit Se{MERT) without sparse features (Och, 2003). Table
quence normalization provides a similar generalizag o1, \vs the results obtained by varying theracle
tion capability despite of the moderate increase ignd k-best size K, m = 1,10) using all structural

the active feature size. By including all token typesye1re5 and all token types. We also experimented
we achieved better NIFBLEU scores for the 2004 sentence-wise BLEU as an objective function con-

and 2005 test sets. This set of experiments indiy ina by 10-oracle and 10-best list. Even the 1-
cates that a token normalization is useful espemallgracle 1-best configuration achieved significant im-

trained on a small data. _ provements over the baseline system. The use of
Second, we used all the normalized token typeg, |argerk-best list further optimizes to the devel-

but incrementally added structural features in Taﬁpment set, but at the cost of degraded translation
ble 2. Target bigram features account for only th‘auality in the 2004 test set. The largeroracle size
fluency of the target side without considering th&eems to be harmful if coupled with the 1-best list.
sourcgtarget correspondence. Therefore, the iNag indicated by the reduced active feature size, 1-
~2we used the tool available afttp: /. nist.gov/ best tra_nslat_ion seems to be updated toward worse
speech/tests/mt/ translations in 10-oracles that are “close” in terms
3We induced 50 classes each for English and Arabic. of features. We achieved significant improvements

770



(2006), k-best list generation is approximated by a

Table 4: Two-fold cross validation experiments. step-by-step one-best merging method that separates

closed test open test ) . .
the decoding and training steps. The weight vector
NIST BLEU | NIST BLEU . -
[%] [%] update scheme is very similar to MIRA but based

on a convex loss function. Our method directly em-
ploys thek-best list generated by the fast decoding
method (Watanabe et al., 2006b) at every iteration.
One of the benefits is that we avoid the rather expen-
when thek-best list size was also increased. Thé&ive cost of merging the-best list especially when
use of sentence-wise BLEU as an objective providd¥ndling millions of features.
almost no improvement in the 2005 test set, but is Liang et al. (2006) employed an averaged percep-
comparable for the 2004 test set. tron algorithm. They decoded each training instance
As observed in three experiments, the 2Q005 and performed a perceptron update to the weight
test sets behaved ftérently, probably because of vector. An incorrect translation was updated toward
the domain mismatch. Thus, we conducted a twan oracle translation found inkabest list, but dis-
fold cross validation using the 20@®042005 test carded potentially better translations in the past iter-
sets to observe thefect of optimization as shown ations.
in Table 4. The MERT baseline system performed An experiment has been undertaken using a small
similarly both in closed and open tests. Our ondevelopment set together with sparse features for the
line large-margin training with 10-oracle and 10-reranking of ak-best translation (Watanabe et al.,
best constraints and the approximated BLEU los8006a). They relied on a variant of a voted percep-
function significantly outperformed the baseline systron, and achieved significant improvements. How-
tem in the open test. The development data is almosver, their work was limited to reranking, thus the
doubled in this setting. The MERT approach seemmprovement was relative to the performance of the
to be confused with the slightly larger data and wittbaseline system, whether or not there was a good

baseline| 10.71 44.79| 10.68 44.44
online 11.58 53.42| 10.90 47.64

the mixed domains from fferent epochs. translation in a list. In our work, the sparse features
_ _ are directly integrated into the DP-based search.
6 Discussion The design of the sparse features was inspired

In this work, the translation model consisting of mil-PY Zens and Ney (2006). They exploited the

lions of features are successfully integrated. In ofVord alignment structure inside the phrase trans-
der to avoid poor overfitting, features are limited td@tion pairs for discriminatively training a reorder-

word-based features, but are designed to reflect ¢ model in their phrase-based translation. The re-
structures inside hierarchical phrases. One of tH¥dering model simply classifies whether to perform
benefit of MIRA is its flexibility. We may include Monotone decoding or not. The trained model is
as many constraints as possible, likeoracle con- treated as a single feature function integrated in Eq.

straints in our experiments. Although we described+ OUr approach diers in that each sparse feature is
experiments on the hierarchical phrase-based trar@dividually integrated in Eg. 1.
lation, the online training algorithm is applicable to

any translation systems, such as phrase-based trafs- Conclusion

lations and syntax-based translations. We exploited a large number of binary features

t%ﬂ"geb dl_sr(_:”rlmlnatlve dtr;ur:ung h;goglreaddy Lb_eer}or statistical machine translation. The model was
studied by fiimann an ang ( ) an 'aNY ained on a small development set. The optimiza-

et al. (2006). In their approach, training was PEMion was carried out by MIRA, which is an online

formed on a Iarge corpus using the sparse features\? rsion of the large-margin training algorithm. Mil-
phrase translation pairs, targegrams antbr bag- lions of sparse features are intuitively considered

of-word pairs inside phrases. In Tillmann and Zhan%rone to overfitting, especially when trained on a

“We split data by document, not by sentence. small development set. However, our algorithm with
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millions of features achieved very significant im-Percy Liang, Alexandre Bouchard-Coté, Dan Klein, and

provements over a conventional method with a small Ben Taskar. 2006. An end-to-end discriminative
approach to machine translation. Rmoc. of COL-

number_ of featu_res. This result |n_d|cates that we ING/ACL 2006, pages 761-768, Sydney, Australia,
can easily experiment many alternative features even July.

with a small data set, but we believe that our ap-

proach can scale well to a larger data set for furthétyan McDonald, Koby Crammer, and Fernando Pereira.

; ; _ 2005. Online large-margin training of dependency
improved performance. Future work involves scal parsers. ItProc. of ACL 2005, pages 91-98, Ann Ar-

ing up to larger data and more features. bor, Michigan, June.

Acknowledgements Franz Josef Och and Hermann Ney. 2003. A system-
_ _ atic comparison of various statistical alignment mod-
We would like to thank reviewers and our colleagues els. Computational Linguistics, 29(1):19-51.
for useful comment and discussion. _
Franz Josef Och and Hermann Ney. 2004. The align-
ment template approach to statistical machine transla-
References tion. Computational Linguistics, 30(4):417-449.

Srinivas Bangalore, Patrick iffaer, and Stephan Kan- Franz Josef Och. 2003. Minimum error rate training in

thak. 2006. Sequence classification for machine trans- Statistical machine translation. Rroc. of ACL 2003,
lation. In Proc. of Interspeech 2006, pages 1157—  Pages 160-167, Sapporo, Japan, July.

1160, Pittsburgh. . N . .
Kishore Papineni, Salim Roukos, Todd Ward, and Wei-

Oliver Bender, Richard Zens, Evgeny Matusov, and Her- Jing Zhu. 2002. BLEU: a method for automatic eval-
mann Ney. 2004. Alignment templates: the RWTH uation of machine translation. Iroc. of ACL 2002,
SMT system”. InProc. of IWSLT 2004, pages 79-84,  Pages 311-318, Philadelphia, Pennsylvania.

Kyoto, Japan. ) ) )
Brian Roark, Murat Saraclar, Michael Collins, and Mark

David Chiang. 2005. A hierarchical phrase-based model Johnson.  2004.  Discriminative language model-
for statistical machine translation. Proc. of ACL ing with conditional random fields and the percep-
2005, pages 263—270, Ann Arbor, Michigan, June. tron algorithm. InProc. of ACL 2004, pages 47-54,

Barcelona, Spain, July.

Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev- o

Shwartz, and Yoram Singer. 2006. Online passiveNobuyuki Shimizu and Andrew Haas. 2006. Exact de-

aggressive algorithmsJournal of Machine Learning coding for jointly labeling and chunking sequences.
Research, 7:551-585, March. In Proc. of the COLING/ACL 2006 Main Conference

Poster Sessions, pages 763—-770, Sydney, Australia,

George Doddington. 2002. Automatic evaluation of ma- July.

chine translation quality using n-gram co-occurrence

statistics. Inn Proc. ARPA Workshop on Human Lan-  Ben Taskar, Dan Klein, Mike Collins, Daphne Koller, and

guage Technology. Christopher Manning. 2004. Max-margin parsing. In
Proc. of EMNLP 2004, pages 1-8, Barcelona, Spain,

Michel Galley, Jonathan Graehl, Kevin Knight, Daniel July.

Marcu, Steve DeNeefe, Wei Wang, and Ignacio _ S
Thayer. 2006. Scalable inference and training o€hristoph Tillmann and Tong Zhang. 2006. A discrimi-

context-rich syntactic translation models. Rroc. native global training algorithm for statistical MT. In
of COLING/ACL 2006, pages 961-968, Sydney, Aus- Proc. of COLING/ACL 2006, pages 721-728, Sydney,
tralia, July. Australia, July.

Philipp Koehn, Franz Josef Och, and Daniel MarcuTaro Watanabe, Jun Suzuki, Hajime Tsukada, and Hideki
2003. Statistical phrase-based translation. Ptoc. Isozaki. 2006a. NTT Statistical Machine Translation
of NAACL 2003, pages 48-54, Edmonton, Canada. for IWSLT 2006. InProc. of IWSLT 2006, pages 95—

102, Kyoto, Japan.

John Ldferty, Andrew McCallum, and Fernando Pereira.

2001. Conditional random fields: Probabilistic modelsTaro Watanabe, Hajime Tsukada, and Hideki Isozaki.

for segmenting and labeling sequence dataPrioc. 2006b. Left-to-right target generation for hierarchi-
18th International Conf. on Machine Learning, pages cal phrase-based translation.Rroc. of COLING/ACL
282-289. Morgan Kaufmann, San Francisco, CA. 2006, pages 777—784, Sydney, Australia, July.

772



Dekai Wu and Hongsing Wong. 1998. Machine transla-
tion with a stochastic grammatical channel. Rroc.

of COLING 98, pages 1408-1415, Montreal, Quebec,
Canada.

Richard Zens and Hermann Ney. 2006. Discriminative
reordering models for statistical machine translation.

In Proc. of WSMT 2006, pages 55-63, New York City,
June.

Andreas Zollmann and Ashish Venugopal. 2006. Syntax
augmented machine translation via chart parsing. In

Proc. of WSMT 2006, pages 138-141, New York City,
June.

773



