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Abstract

We consider the impact Active Learning
(AL) has on effective and efficient text cor-
pus annotation, and report on reduction rates
for annotation efforts ranging up until 72%.
We also address the issue whether a corpus
annotated by means of AL – using a particu-
lar classifier and a particular feature set – can
be re-used to train classifiers different from
the ones employed by AL, supplying alter-
native feature sets as well. We, finally, report
on our experience with the AL paradigm un-
der real-world conditions, i.e., the annota-
tion of large-scale document corpora for the
life sciences.

1 Introduction

The annotation of corpora has become a crucial pre-
requisite for NLP utilities which rely on (semi-) su-
pervised machine learning (ML) techniques. While
stability, by and large, has been reached for tagsets
up until the syntax layer, semantic annotations in
terms of (named) entities, semantic roles, proposi-
tions, events, etc. reveal a high degree of variability
due to the inherent domain-dependence of the under-
lying tagsets. This diversity fuels a continuous need
for creating semantic annotation data anew.

Accordingly, annotation activities will persist and
even increase in number as HLT is expanding on
various technical and scientific domains (e.g., the
life sciences) outside the classical general-language
newspaper genre. Since the provision of annota-
tions is a costly, labor-intensive and error-prone pro-
cess the amount of work and time this activity re-
quires should be minimized to the extent that corpus

data could still be used to effectively train ML-based
NLP components on them. The approach we ad-
vocate does exactly this and yields reduction gains
(compared with standard procedures) ranging be-
tween 48% to 72%, without seriously sacrificing an-
notation quality.

Various techniques to minimize the necessary
amount of annotated training material have al-
ready been investigated. In co-training (Blum and
Mitchell, 1998), e.g., from a small initial set of la-
beled data multiple learners mutually provide new
training material for each other by labeling unseen
examples. Pierce and Cardie (2001) have shown,
however, that for tasks which require large numbers
of labeled examples – such as most NLP tasks – co-
training might be inadequate because it tends to gen-
erate noisy data. Furthermore, a well compiled ini-
tial training set is a crucial prerequisite for success-
ful co-training. As another alternative for minimiz-
ing annotation work, active learning (AL) is based
on the idea to let the learner have control over the ex-
amples to be manually labeled so as to optimize the
prediction accuracy. Accordingly, AL aims at select-
ing those examples with high utility for the model.

AL (as well as semi-supervised methods) is typi-
cally considered as a learning protocol, i.e., to train
a particular classifier. In contrast, we here propose
to employ AL as a corpus annotation method. A
corpus built on these premises must, however, still
be reusable in a flexible way so that, e.g., train-
ing with modified or improved classifiers is feasible
and reasonable on AL-generated corpora. Baldridge
and Osborne (2004) have already argued that this is
a highly critical requirement because the examples
selected by AL are tuned to one particular classi-
fier. The second major contribution of this paper ad-

486



dresses this issue and provides empirical evidence
that corpora built with one type of classifier (based
on Maximum Entropy) can reasonably be reused by
another, methodologically related type of classifier
(based on Conditional Random Fields) without re-
quiring changes of the corpus data. We also show
that feature sets being used for training classifiers
can be enhanced without invalidating corpus annota-
tions generated on the basis of AL and, hence, with
a poorer feature set.

2 Related Work

There are mainly two methodological strands of
AL research,viz. optimization approaches which
aim at selecting those examples that optimize some
(algorithm-dependent) objective function, such as
prediction variance (Cohn et al., 1996), and heuris-
tic methods with uncertainty sampling (Lewis and
Catlett, 1994) and query-by-committee (QBC) (Se-
ung et al., 1992) just to name the most prominent
ones. AL has already been applied to several NLP
tasks, such as document classification (Schohn and
Cohn, 2000), POS tagging (Engelson and Dagan,
1996), chunking (Ngai and Yarowsky, 2000), statis-
tical parsing (Thompson et al., 1999; Hwa, 2000),
and information extraction (Lewis and Catlett, 1994;
Thompson et al., 1999).

In a more recent study, Shen et al. (2004) consider
AL for entity recognition based on Support Vector
Machines. Here, the informativeness of an exam-
ple is estimated by the distance to the hyperplane of
the currently learned SVM. It is assumed that an ex-
ample which lies close to the hyperplane has high
chances to have an effect on training. This approach
is essentially limited to the SVM learning scheme as
it solely relies on SVM-internal selection criteria.

Hachey et al. (2005) propose a committee-based
AL approach where the committee’s classifiers con-
stitute multiple views on the data by employing dif-
ferent feature subsets. The authors focus on (pos-
sible) negative side effects of AL on the annota-
tions. They argue that AL annotations are cogni-
tively more difficult to deal with for the annota-
tors (because of the increased complexity of the se-
lected sentences). Hence, lower annotation quality
and higher per-sentence annotation times might be a
concern.

There are controversial findings on the reusabil-
ity of data annotated by means of AL for the prob-
lem of parse tree selection. Whereas Hwa (2001) re-
ports positive results, Baldridge and Osborne (2004)
argue that AL based on uncertainty sampling may
face serious performance degradation when labeled
data is reused for training a classifier different from
the one employed during AL. For committee-based
AL, however, there is a lack of work on reusabil-
ity. Our experiments of committee-based AL for en-
tity recognition, however, reveal that for this task at
least, reusability can be guaranteed to a very large
extent.

3 AL for Corpus Annotation -
Requirements for Practical Use

AL frameworks for real-world corpus annotation
should meet the following requirements:

fast selection time cycles— AL-based corpus an-
notation is an interactive process in whichb
sentences are selected by the AL engine for hu-
man annotation. Once the annotated data is
supplied, the AL engine retrains its underly-
ing classifier(s) onall available annotations and
then re-classifies all unseen corpus items. After
that the most informative (i.e., deviant)b sen-
tences from the set of newly classified data are
selected for the next iteration round. In this ap-
proach the time needed to select the next exam-
ples (which is the idle time of the human an-
notators) has to be kept at an acceptable limit
of a few minutes only. There are various AL
strategies which – although they yield theoreti-
cally near-optimal sample selection – turn out
to be actually impractible for real-world use
because of excessively high computation times
(cf. Cohn et al. (1996)). Thus, AL-based an-
notation should be based on a computationally
tractable and task-wise feasible and acceptable
selection strategy (even if this might imply a
suboptimal reduction of annotation costs).

reusability — The examples AL selects for man-
ual annotation are dependent on the model be-
ing used, up to a certain extent (Baldridge and
Osborne, 2004). During annotation time, how-
ever, the best model might not be known and
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model tuning (especially the choice of features)
is typically performed once a training corpus
is available. Hence, from a practical point of
view, the resulting corpus should be reusable
with modified classifiers as well.

adaptive stopping criterion — An explicit and
adaptive stopping criterion which is sensitive
towards the already achieved level of quality of
the annotated corpus is clearly preferred over
stopping after ana priori fixed number of an-
notation iterations.

If these requirements, especially the first and the
second one, cannot be guaranteed for a specific an-
notation task one should refrain from using AL. The
efficiency of AL-driven annotation (in terms of the
time needed to compile high quality training mate-
rial) might be worse compared to the annotation of
randomly (or subjectively) selected examples.

4 Framework for AL-based Named Entity
Annotation

For named entity recognition (NER), each change
of the application domain requires a more or less
profound change of the types of semantic categories
(tags) being used for corpus annotation. Hence, one
may encounter a lack of training material for various
relevant (sub)domains. Once this data is available,
however, one might want to modify the features of
the final classifier with respect to the specific entity
types. Thus, a corpus annotated by means of AL has
to provide the flexibility to modify the features of
the final classifier.

To meet the requirements from above under the
constraints of a real-world annotation task, we
decided for QBC-based AL, aheuristic AL ap-
proach, which is computationally less complex and
resource-greedy thanobjective functionAL meth-
ods (the latter explicitly quantify the differences be-
tween the current and an ideal classifier in terms
of some objective function). Accordingly, we ruled
out uncertainty sampling, another heuristic AL ap-
proach, because it was shown before that QBC is
more efficient and robust (Freund et al., 1997).

QBC is based on the idea to select those examples
for manual annotation on which a committee of clas-
sifiers disagree most in their predictions (Engelson

and Dagan, 1996). A committee consists of a num-
ber ofk classifiers of the same type (same learning
algorithm, parameters, and features) but trained on
different subsets of the training data. QBC-based
AL is also iterative. In each AL round the com-
mittee’sk classifiers are trained on the already an-
notated dataC, then a pool of unannotated dataP

is predicted with each classifier resulting inn au-
tomatically labeled versions ofP . These are then
compared according to their labels. Those with the
highest variance are selected for manual annotation.

4.1 Selection Strategy

In each iteration, a batch ofb examples is selected
for manual annotation. The informativeness of an
example is estimated in terms of thedisagreement,
i.e., the uncertainty among the committee’s classi-
fiers on classifying a particular example. This is
measured by thevote entropy(Engelson and Dagan,
1996), i.e., the entropy of the distribution of classi-
fications assigned to an example by the classifiers.
Vote entropy is defined on the token levelt as:

Dtok(t) := −
1

log k

∑

li

V (li, t)

k
log

V (li, t)

k

where V (li,t)
k

is the ratio ofk classifiers where the
label li is assigned to a tokent. As (named) en-
tities often span more than a single text token we
consider complete sentences as a reasonable exam-
ple size unit1 for AL and calculate the disagreement
of a sentenceDsent as the mean vote entropy of
its single tokens. Since the vote entropy is mini-
mal when all classifiers agree in their vote, sentences
with high disagreement are preferred for manual an-
notation. With informed decisions of human anno-
tators made available, the potential for future dis-
agreement of the classifier committee on conflicting
instances should decrease. Thus, each AL iteration
selects theb sentences with the highest disagreement
to focus on the most controversial decision prob-
lems.

Besides informativeness, additional criteria can
be envisaged for the selection of examples, e.g.,di-

1Sentence-level examples are but one conceivable grain size
– lower grains (such as clauses or phrases) as well as higher
grains (e.g., paragraphs or abstracts) are equally possible, with
different implications for the AL process.
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feature class description
orthographical based on regular expressions (e.g.Has-

Dash, IsGreek, ...), token transforma-
tion rule: capital letters replaced by “A”,
lowercase letters by “a”, digits by “0”,
etc. (e.g.,IL2 → AA0, have→ aaaa)

lexical and
morphological

prefix and suffix of length 3, stemmed
version of each token

syntactic the token’s part-of-speech tag
contextual features of neighboring tokens

Table 1: Features used for AL

versityof a batch andrepresentativenessof the re-
spective example (to avoid outliers) (Shen et al.,
2004). We experimented with these more sophis-
ticated selection strategies but preliminary experi-
ments did not reveal any significant improvement of
the AL performance. Engelson and Dagan (1996)
confirm this observation that, in general, different
(and even more refined) selection methods still yield
similar results. Moreover, strategies incorporating
more selection criteria often require more parame-
ters to be set. However, proper parametrization is
hard to achieve in real-world applications. Using
disagreement exclusively for selection requires only
one parameter,viz. the batch sizeb, to be specified.

4.2 Classifier and Features

For our AL framework we decided to employ a Max-
imum Entropy (ME) classifier (Berger et al., 1996).
We employ a rich set of features (see Table 1) which
are general enough to be used in most (sub)domains
for entity recognition. We intentionally avoided us-
ing features such as semantic triggers or external
dictionary look-ups because they depend a lot on
the specific subdomain and entity types being used.
However, one might add them to fin- tune the final
classifier, if needed. ME classifiers outperform their
generative counterparts (e.g., Naı̈ve Bayesian clas-
sifiers) because they can easily handle overlapping,
probably dependent features which might be con-
tained in rich feature sets. We also favored an ME
classifier over an SVM one because the latter is com-
putationally much more complex on rich feature sets
and multiple classes and is thus not so well suited for
an interactive process like AL.

It has been shown thatConditional Random
Fields (CRF) (Lafferty et al., 2001) achieve higher
performance on many NLP tasks, such as NER, but

on the other hand they are computionally more com-
plex than an ME classifier making them also im-
practical for the interactive AL process. Thus, in
our committee we employ ME classifiers to meet re-
quirement 1 (fast selection time cycles). However,
in the end we want to use the annotated corpora to
train a CRF and will thus examine the reusability
of such an ME-annotated AL corpus for CRFs (cf.
Subsection 5.2).

4.3 Stopping Criterion

A question hardly addressed up until now is when to
actually terminate the AL process. Usually, it gets
stopped when the supervized learning performance
of the specific classifier is achieved. The problem
with such an approach is, however, that in prac-
tice one does not know the performance level which
could possibly be achieved on an unannotated cor-
pus.

An apparent way to monitor the progress of the
annotation process is to periodically (e.g., after each
AL iteration) train a classifier on the data annotated
so far and evaluate it against some randomly se-
lected gold standard. When the relative performance
growth of each AL iteration falls below a certain
threshold this might be a good reason to stop the an-
notation. Though this is probably the most reliable
way, it is impractical for many scenarios since as-
sembling and manually annotating a representative
gold standard may already be quite a laborious task.
Thus, a measure from which we canpredict the de-
velopment of the learning curve would be beneficial.

One way to achieve this goal is to monitor the rate
of disagreement among the different classifiers after
each iteration. This rate will descend as the classi-
fiers get more and more robust in their predictions
on unseen data. Thus, an average disagreement ap-
proaching zero can be interpreted as an indication
that additional annotations will not render any fur-
ther improvement. In our experiments, we will show
that this is a valid stopping criterion, indeed.

5 Experiments and Results

For our experiments, we specified the following
three parameters: the batch sizeb (i.e., the num-
ber of sentences to be selected for each AL itera-
tion), the size and composition of the initial train-
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ing set, and the number ofk classifiers in a com-
mittee. The smaller the batch size, the higher the
AL performance turns out to be. In the special case
of batch size ofb = 1 only that example with the
highest disagreement is selected. This is certainly
impractical since after each AL iteration a new com-
mittee of classifiers has to be trained causing unwar-
ranted annotation idle time. We foundb = 20 to
be a good compromise between the annotators’ idle
time and AL performance. The initial training set
also contains20 sentences which are randomly se-
lected though. Our committee consists ofk = 3
classifiers, which is a good trade-off between com-
putational complexity and diversity. Although the
AL iterations were performed on the sentence level,
we report on the number of annotated tokens. Since
sentences may considerably vary in their length the
number of tokens constitutes a better measure for an-
notation costs.

We ran our experiments on two common entity-
annotated corpora from two different domains (see
Table 2). From the general-language newspaper do-
main, we used the English data set of the CoNLL-
2003 shared task (Tjong Kim Sang and De Meul-
der, 2003). It consists of a collection of newswire
articles from the Reuters Corpus,2 which comes
annotated with three entity types:persons, loca-
tions, and organizations. From the sublanguage
biology domain we used the oncology part of the
PENNBIOIE corpus which consists of some 1150
PubMed abstracts. Originally, this corpus contains
gene, variation event, and malignancy entity annota-
tions. Manual annotation after each AL round was
simulated by moving the selected sentences from
the pool of unannotated sentencesP to the train-
ing corpusT . For our simulations, we built two
subcorpora by filtering out entity annotations: the
PENNBIOIE gene corpus (PBgene), including the
three gene entity subtypesgeneric, protein, andrna,
and the PENNBIOIE variation events corpus (PB-
var) corpus including the variation entity subtypes
type, event, location, state-altered, state-generic,
and state-original. We split all three corpora into
two subsets,viz. AL simulation data and gold stan-
dard data on which we evaluate3 a classifier in terms

2http://trec.nist.gov/
3We use a strict evaluation criterion which only counts exact

matches as true positives because annotations having incorrect

corpus data set sentences tokens
CONLL AL 14,040 203,617
3 entities Gold 3,453 46,435
PBGENE AL 10,050 249,490
3 entities Gold 1,114 27,563
PBVAR AL 10,050 249,490
6 entities Gold 1,114 27,563

Table 2: Corpora used in the Experiments

of f-score trained on the annotated corpus after each
AL iteration (learning curve). As far as the CoNLL
corpus is concerned, we have used CoNLL’s training
set for AL and CoNLL’s test set as gold standard. As
for PBgene and PBvar, we randomly split the cor-
pora into 90% for AL and 10% as gold standard.

In the following experiments we will refer to the
classifiers used in the AL committee asselectors,
and the classifier used for evaluation as thetester.

5.1 Efficiency of AL and the Applicability of
the Stopping Criterion

In a first series of experiments, we evaluated whether
AL-based annotations can significantly reduce the
human effort compared to the standard annotation
procedure where sentences are selected randomly
(or subjectively). We also show that disagreement
is an accurate stopping criterion. As described in
Section 4.2, we here employed a committee of ME
classifiers for AL; a CRF was used as tester for both
the AL and the random selection. Figures 1, 2, and 3
depict the learning curves for AL selection and ran-
dom selection (upper two curves) and the respective
disagreement curves (lower curve). The random se-
lection curves contained in these plots are averaged
over three random selection runs.

With AL, we get a maximum f-score of≈ 84.5%
on the CoNLL corpus after about 118,000 tokens. At
about the same number of tokens the disagreement
curve drops down to values of aroundDsent = 0.
Comparing AL and random selection, an f-score of
≈ 84% is reached after 86,000 and 165,000 tokens,
respectively, which means a reduction of annotation
costs of about 48%. On PBgene, the effect of AL is
comparable: a maximum value of 83.5% f-score is
reached first after about 124,000 tokens, a data point
where hardly any disagreement between the com-
mittee’s classifiers occurs. For, e.g., an f-score of

boundaries are insufficient for manual corpus annotation.
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Figure 1:CoNLL Corpus: Learning/Disagreement Curves

Figure 2:PBgene Corpus: Learning/Disagreement Curves

Figure 3:PBvar Corpus: Learning/Disagreement Curves

corpus selection F tokens reduction
CONLL random 84.0 165,000

AL 84.0 86,000 ≈ 48%
PBGENE random 83.0 101,000

AL 83.0 213,000 ≈ 53%
PBVAR random 80.0 56,000

AL 80.0 200,000 ≈ 72%

Table 3: Reduction of Annotation Costs Achieved
with AL-based Annotation

83%, the annotation effort can be reduced by about
53% using AL. On PBvar, an f-score of about 80%
is reached after≈ 56,000 tokens when using AL se-
lection, while 200,000 tokens are needed with ran-
dom selection. For this task, AL reduces the an-
notation effort by of 72%. Here, the disagreement
curve approaches values of zero after approximately
80,000 tokens. At about this point the learning curve
reaches its maximum of about 81% f-score. Ta-
ble 3 summarizes the reduction of annotation costs
achieved on all three corpora.

Comparing both PENNBIOIE simulations, obvi-
ously, the reduction of annotation costs through AL
is much higher for the variation type entities than for
the gene entities. We hypothesize this to be mainly
due to incomparable entity densities. Whereas the
gene entities are quite frequent (about1.3 per sen-
tence on average), the variation entities are rather
sparse (0.62 per sentence on average) making it an
ideal playground for AL-based annotation. Our ex-
periments also reveal that disagreement approaching
values of zero is a valid stopping criterion. This is,
under all circumstances, definitely the point when
AL-based annotationshould stop because then all
classifiers of the committee vote consistently. Any
further selection – even though AL selection is used
– is then, actually, arandomselection. If, due to
reasons whatsoever, further annotations are wanted,
a direct switch to random selection is advisable be-
cause this is computationally less expensive than
AL-based selection.

5.2 Reusability

To evaluate whether the proposed AL framework for
named entity annotation allows for flexible re-use
of the annotated data, we performed experiments
where we varied both the learning algorithms and
the features of the selectors.
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Figure 5: AlgorithmFflexibility on CoNLL

First, we analyzed the effect of different proba-
bilistic classifiers as selectors on the resulting learn-
ing curve of the CRF tester. Figures 4 and 5 show
the learning curves on our original ME committee,
a CRF committee, and also a committee of Naı̈ve
Bayes (NB) classifiers. It is not surprising that self-
reuse (CRF selectors and CRF tester) yields the best
results. Switching from CRF selectors to ME selec-
tors has almost no negative effect. Even with a com-
mittee of NB selectors (an ML approach which is
essentially less well suited for the NER task), AL-
based selection is still substantially more efficient
than random selection on both corpora. This shows
that our approach to use the less complex ME clas-
sifiers for the AL selection process has the positive
effect of fast selection cycle times at almost no costs.
This is especially interesting as the performance of
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Figure 7: Feature Flexibility on ConLL

an ME classifier trained in supervized manner on
the complete corpus is significantly worse (several
percentage points of f-measure) than a CRF. That
means, even though an ME classifier is less well
suited as the final classifier, it works well as a se-
lector for CRFs.4

Second, we ran experiments on selectors with
only some features and our CRF tester with all fea-
tures (cf. Table 1). Feature subset 1 (sub1) contains
all but the syntactic features. In the second subset
(sub2), also morphological and lexical features are
missing. The third set (sub3) only contains ortho-
graphical features. We ran an AL simulation for

4We have also conducted experiments where we varied the
learning algorithms of the tester (we experimented with NB,
ME, MEMM, and CRFs) – with comparable results. In a real-
istic scenario, however, on would rather choose a CRF as final
tester over, e.g., a NB.
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each feature subset with a committee of CRF se-
lectors.5 Figures 6 and 7 show the various learning
curves. Here we see that a corpus that was produced
with AL on sub1can easily be re-used by a tester
with little more features. This is probably the most
realistic scenario: the core features are kept and
only a few specific features (e.g., POS, a dictionary
look-up, chunk information, etc.) are added. When
adding substantially more features to the tester than
were available during AL time, the respective learn-
ing curves drop down towards the learning curve for
random selection. But even with a selector which
has only orthographical features and a tester with
many more features – which is actually quite an ex-
treme example and a rather unrealistic scenario for
a real-world application – AL is more efficient than
random selection. However, the limits of reusability
are taking shape: on PBvar, the AL selection with
sub3converges with the random selection curve af-
ter about 100,000 tokens.

5.3 Findings with Real AL Annotation

We currently perform AL entity mention annotations
for an information extraction project in the biomedi-
cal subdomain of immunogenetics. For this purpose,
we retrieved about 200,000 abstracts (≈ 2,000,000
sentences) as our document pool of unlabeled exam-
ples from PUBMED. By means of random subsam-
pling, only about 40,000 sentences are considered in
each round of AL selection. To regularly monitor
classifier performance, we also perform gold stan-
dard (GS) annotations on 250 randomly chosen ab-
stracts (≈ 2,200 sentences). In all our annotations of
different entity types so far, we found AL learning
curves similar to the ones reported in our simula-
tion experiments, with classifier performance level-
ling off at around 75% - 85% f-score (depending on
the entity type).

Our annotations also reveal that AL is especially
beneficial when entity mentions are very sparse.
Figure 8 shows the cumulated entity density on AL
and gold standard annotations of cytokine receptors
(specialized proteins for which we annotated six dif-
ferent entity subtypes) – very sparse entity types
with less than one entity mention per PUBMED ab-
stract on the average. As can be seen, after 2,000

5Here, we employed CRF instead of ME selectors to isolate
the effect of feature re-usability.
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sentences the entity density in our AL corpus is al-
most 15 times higher than in our GS corpus. Such a
dense corpus may be more appropriate for classifier
training than a sparse one yielded by random or se-
quential annotations, which may just contain lots of
negative training examples. We have observed com-
parable effects with other entity types, too, and thus
conclude that the sparser entity mentions of a spe-
cific type are in texts, the more beneficial AL-based
annotation is. We report on other aspects of AL for
real annotation projects in Tomanek et al. (2007).

6 Discussion and Conclusions

We have shown, for the annotation of (named) en-
tities, that AL is well-suited to speed up annotation
work under realistic conditions. In our simulations
we yielded gains (in the number of tokens) up to
72%. We collected evidence that an average dis-
agreement approaching zero may serve as an adap-
tive stopping criterion for AL-driven annotation and
that a corpus compiled by means of QBC-based AL
is to a large extent reusable by modified classifiers.

These findings stand in contrast to those supplied
by Baldridge and Osborne (2004) who focused on
parse selection. Their research indicates that AL on
selectors with different learning algorithms and fea-
ture sets then used by the tester can easily get worse
than random selection. They conclude that it might
not be be advisable to employ AL in environments
where the final classifier is not very stable.

Our evidence leads us to a re-assessment of AL-
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based annotations. First, we employed a committee-
based (QBC) while Baldridge and Osborne per-
formed uncertainty sampling AL. Committee-based
approaches calculate the uncertainty on an exam-
ple in a more implicit way, i.e., by the disagree-
ment among the committee’s classifiers. With uncer-
tainty sampling, however, the labeling uncertainty
of one classifier is considered directly. In future
work we will directly compare QBC and uncertainty
sampling with respect to data reusability. Second,
whereas Baldridge and Osborne employed AL on a
scoring or ranking problem we focused on classifica-
tion problems. Further research is needed to inves-
tigate whether the problem class (classification with
a fixed and moderate number of classes vs. ranking
large numbers of possible candidates) is responsible
for limited data reusability.

On the basis of our experiments we stipulate that
the proposed AL approach might be applicable with
comparable results to a wider range of corpus anno-
tation tasks, which otherwise would require substan-
tially larger amounts of annotation efforts.
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