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Abstract the superordinate conceptspital (O stock3 and

move upwardD sky rockex frequently appear to-
We present results that show that incorporat-  gether. However, there has been little success in this
ing lexical and structural semantic informa-  grea to date. For example, Xiong et al. (2005) use se-
tion is effective for word sense disambigua-  mantic knowledge to parse Chinese, but gain only a
tion. We evaluated the method by using pre-  marginal improvement. Focusing on WSD, Steven-
cise information from a large treebank and  gon (2003) and others have shown that the use of
an ontology automatically created from dic-  syntactic information (predicate-argument relations)
tionary sentences. Exploiting rich semantic  jmprove the quality of word sense disambiguation
and structural information improves preci- (WSD). McCarthy and Carroll (2003) have shown
sion 2-3%. The most gains are seen with e effectiveness of the selectional preference infor-
verbs, with an improvement of 5.7% over & mation for WSD. However, there is still little work
model using only bag of words and n-gram 4 combining WSD and parse selection.

features. We hypothesize that one of the reasons for the
lack of success is that there has been no resource
annotated with both syntactic (or structural seman-
Recently, significant improvements have been madg information) and lexical semantic information.
in combining symbolic and statistical approache&or English, there is the SemCor corpus (Fellbaum,
to various natural language processing tasks. [098) which is annotated with parse trees and Word-
parsing, for example, symbolic grammars are beNet senses, but it is fairly small, and does not ex-
ing combined with stochastic models (Riezler et alplicitly include any structural semantic information.
2002; Oepen et al., 2002; Malouf and van NoordTherefore, we decided to construct and use a tree-
2004). Statistical techniques have also been shovisank with both syntactic information (e.g. HPSG
to be useful for word sense disambiguation (Stevemarses) and lexical semantic information (e.g. sense
son, 2003). However, to date, there have beemgs): the Hinoki treebank (Bond et al., 2004). This
few combinations of sense information together witltan be used to train word sense disambiguation and
symbolic grammars and statistical models. Kleiparse ranking models using both syntactic and lexi-
and Manning (2003) show that much of the gain irtal semantic features. In this paper, we discuss only
statistical parsing using lexicalized models comeword sense disambiguation. Parse ranking is dis-
from the use of a small set of function words.cussed in Fuijita et al. (2007).

Features based on general relations provide little

improvement, presumably because the data is tgd The Hinoki Corpus

sparse: in the Penn treebank normally used to train

and test statistical parsestcksandskyrockenever The Hinoki corpus consists of the Lexeed Seman-
appear together. They note that this should motivatee Database of Japanese (Kasahara et al., 2004) and
the use of similarity and/or class based approachesorpora annotated with syntactic and semantic infor-
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477

Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational
Natural Language Learning, pp. 477-485, Prague, June 2007. (©2007 Association for Computational Linguistics



mation. Poly- #Mono-
Fam  #Words | semous #WS | semous(%)
65 - 368 182 4.0 | 186 (50.5)

21 Lexeed 6.0- 4,445 | 1002 3.4 | 2,543 (57.2)

Lexeed is a database built from on a dictionary, 55- ~ 9814 | 3502 27 6312 (64.3)
50- 11,430 | 3457 25 | 7,973 (69.8)

which defines word senses used in the Hinoki cor-

pus and has around 49,000 dictionary definition sen-

tences and 46,000 example sentences which are syn-

tactically and semantically annotated. Lexeed con-

sists of all words with a familiarity greater than or2-3 Ontology

equal to five on a scale of one to seven. This giveBhe Hinoki corpus comes with an ontology semi-

a fundamental vocabulary of 28,000 words, dividecdwtomatically constructed from the parse results of

into 46,347 different senses. Each sense has a defefinitions in Lexeed (Nichols and Bond, 2005). The

nition sentence and example sentence written usirgtology includes more than 80 thousand relation-

only these 28,000 familiar words (and some functioships between word senses, e.g. synonym, hyper-

words). Many senses have more than one sentenegm, abbreviation, etc. The hypernym relation for

in the definition: there are 75,000 defining sentenceg iz F untenshu‘chauffeur” is shown in Figure 1.

in all. Hypernym or synonym relations exist for almost all
A (simplified) example of the entry fGE#zF un-  content words.

tenshu‘chauffeur” is given in Figure 1. Each word

contains the word itself, its part of speech (POS) an@4 Thesaurus

lexical type(s) in the grammar, and the familiarityAs part of the ontology verification, all nominal and

score. Each sense then contains definition and exost verbal word senses in Lexeed were linked to

ample sentences, links to other senses in the lexice@mantic classes in the Japanese thesaurus, Nihongo

(such as hypernym), and links to other resource§oi-Taikei (Ikehara et al., 1997). These were then

such as the Goi-Taikei (lkehara et al., 1997) antland verified. Goi-Taikei has about 400,000 words

WordNet (Fellbaum, 1998). Each content word irincluding proper nouns, most nouns are classified

the definition and example sentences is annotatésto about 2,700 semantic classes. These seman-

with sense tags from the same lexicon. tic classes are arranged in a hierarchical structure

. ) ) (11 levels). The Goi-Taikei Semantic Class fér

22 Lexical Semantics Annotation #: F untenshu“chauffeur” is shown in Figure 1:

The lexical semantic annotation uses the sense ifc292:driver) at level 9 which is subordinate to

ventory from Lexeed. All words in the fundamental(C4 : person).

vocabulary are tagged with their sense. For example, ) )

the word % v\ ookii “big” (in ookiku naru‘grow 2 Syntactic and Structural Semantics

up”) is tagged as sense 5 in the example sentence Annotation

(Figure 1), with the meaning “elder, older”. Syntactic annotation is done by selecting the best
Each word was annotated by five annotators. Wearse (or parses) from the full analyses derived by

use the majority choice in case of disagreements broad-coverage precision grammar. The gram-

(Tanaka et al., 2006). Inter-annotator agreementear is an HPSG implementation (JACY: Siegel and

among the five annotators range from 78.7% t&ender, 2002), which provides a high level of de-

83.3%: the lowest agreement is for the Lexeed defail, marking not only dependency and constituent

inition sentences and the highest is for Kyoto corstructure but also detailed semantic relations. As the

pus (newspaper text). These agreements reflect tgeammar is based on a monostratal theory of gram-

difficulties in disambiguating word sense over eacimar (HPSG: Pollard and Sag, 1994) it is possible

corpus and can be considered as the upper boundtofsimultaneously annotate syntactic and semantic

Table 1: Word Senses in Lexeed

precision for WSD. structure without overburdening the annotator. Us-
Table 1 shows the distribution of word senses adgng a grammar enforces treebank consistency — all
cording to the word familiarity in Lexeed. sentences annotated are guaranteed to have well-
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[INDEX EEEF  untenshu
POS noun
LEX-TYPE noun-lex
FAMILIARITY 6.2[1-7] & 5)

°Y

DEFINITION [%El R H#E)E, # &z, 75 Aga  aperson who drives trains and c}ér

KEL5 %7265 EH) DERF (CKbe DHF3 TT .
EXAMPLE . . . .
SENSEL | dream of growing up and becoming a train driver
HYPERNYM A4 hito “person”
SEM. CLASS (292:driver) (C (4:person))
| WORDNET  motorman |
Figure 1: Dictionary Entry foi#z; F1 untenshu‘chauffeur”
formed parses. The flip side to this is that any sen- UTTERANCE
tences which the parser cannot parse remain unan- . /NP ~_ .
notated, at least unless we were to fall back on full T~

manual mark-up of their analyses. The actual anno- PP v
tation process uses the same tools as the Redwoods _ e \ / \
treebank of English (Oepen et al., 2002). PP \

There were 4 parses for the definition sentence N  CONJ N CASE-P V v
shown in Figure 1. The correct parse, shown as a®% *® H#i# ¥ & 5 A
phrase structure tree, is shown in Figure 2. The twodfrgisnha e J'dc(;lfha nee gmen dsur”persho'fqo
sources of ambiguity are the conjunction and the rel-
ative clause. The parser also allows the conjunction
to join to ¥ denshaand A hito. In Japanese, rel- gy e - Syntactic View of the Definition gz
f'mve clauses can have ga_pped and non—gapp_ed regg? untenshuchauffeur”
ings. In the gapped reading (selected hepehito
is the subject ofE#; unten“drive”. In the non-
gapped reading there is some underspecified relation
between the thing and the verb phrase. This is sim- The semantic view shows some ambiguity has
ilar to the difference in the two readings thfe day been resolved that is not visible in the purely syn-
he knewin English: “the day that he knew about” tactic view.

(9apped) vs “the day on which he knew (some- The semantic view can be further simplified into a

thing) (non-gappgd). Such semant!c qmb@mty ISélependency representation, further abstracting away
resolved by selecting the correct derivation tree that e R
. . . . rom quantification, as shown in Figure 4. One of
includes the applied rules in building the tree.

) ) the advantages of the HPSG sign is that it contains
The parse results can be automatically given by, g information, making it possible to extract the

the HPSG parser PET (Calimeier, 2000) with theyaricylar view needed. In order to make linking to
Japanese grammar JACY. The current parse rankiiige resources (such as the sense annotation) easier,

model has an accuracy of 70%: the correct tree |5 jicates are labeled with pointers back to their po-
ranked first 70% of the time (for Lexeed deflnlt'onsition in the original surface string. For example, the

sentences) (Fujita et al., 2007). N predicatedensha n_1 links to the surface characters
The full parse is an HPSG sign, containing botlhetween positions 0 and & &.

syntactic and semantic information. A view of the

semantic information is given in Figuré.3

&z F4 “chauffeur”: “a person who drives a train or car”

1The specific meaning representation language used #ACY is Minimal Recursion Semantics (Copestake et al., 2005
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[TEXT @HLHBHELEET LA

ToP hl
. s udef_rel _ya_p
propositionnrel] funknownrel) r yonpyy) e h8 | |TBL hil
ARGO e2 ARGO €2 LBL h6 ARGO X7 ARGO  x13
MARG h3 ARG X5 ARGO X7 RSTR h9 L-INDEX X7
- BODY h10] [R-INDEX Xx12
[udef_rel udef_rel
LBL hl5| |_jidoushan| |LBL h19

RELS ARGO x12| |LBL h18 ARGO x12
RSTR h16| [ ARGO x12 RSTR h20
| BODY h17 BODY h21
[-unten_s udef_rel s 1
LBL h22 -hiton LBL h25 E;prﬁ#Igggim_re
ARGO e23tense=presen{ |[LBL h24| [ARGO x5 ARGO e23tense=presen
ARG1 x5 ARGO x5 RSTR h26 MARG h28
|l ARG2 Xx13 BoDY h27

Hcons {h3gegh4,h9 gegh6,h16geqhl1 h20qeqh18 h26 geqh24 h28qeqh22}

LING  {h24ing h1000%}

Figure 3: Semantic View of the Definition ¢z, untenshu'chauffeur”

_l:proposition_m<0:13>[MARG e2:unknown]

e2:unknown<0:13>[ARG x5:_hito_n]

x7 :udef<0:3>[]

x7:densha_n_1<0:3>

x12:udef<4:7>[]

x12:_jidousha_n<4:7>

x13:_ya_p_conj<0:4>[L—INDEX x7:_densha_n_1, R-INDEX x12:_jidousha_n]
e23:_unten_s_2<8:10>[ARG1 x5:_hito_n, ARG2 x13:_ya_p_conj]
x5:udef<12:13>[]

_2:proposition_m<0:13>[MARG e23:_unten_s_2]

Figure 4: Dependency View of the Definition 3%z F, untenshu'chauffeur”

3 Task for various words, however, features for a word are

discriminated from those for other words so that the

Senses irrelevant to a target word are not selected.

For example, an n-gram feature following a target
ord “has-a-tail” fordogis distinct from that forcat

We define the task in this paper as “allocating th
word sense tags for all content words included i
Lexeed as headwords, in each input sentence”. T
task is a kind of all-words task, however, a unique

point is that we focus on fundamental vocabulary In the remainder of this section, we describe the
(basic words) in Lexeed and ignore other words. Weeatures used in the word sense disambiguation.
use Lexeed as the sense inventory. There are tkd'st we used simple n-gram collocations, then a bag
problems in resolving the task: how to build theof words of all words occurring in the sentence. This
model and how to assign the word sense by usingas then enhanced by using ontological information
the model for disambiguating the senses. We d&nd predicate argument relations.

scribe the word sense selection model we use in sec-

tion 4 and the method of word sense assignment in

section 5. 4.1 Word Collocations

4 Word Sense Selection Model
Word collocations \WORD-Col) are basic and effec-

All content words (i.e. basic words) in Lexeed ardive cues for WSD. They can be modelled by n-
classified into six groups by part-of-speech: nourgram and bag of words features, which are easily
verb, verbal noun, adjective, adverb, others. Wextracted from a corpus. We used all unigrams, bi-
treat the first five groups as targets of disambiguagrams and trigrams which precede and follow the
ing senses. We build five words sense models correarget words N-gram) and all content words in the
sponding to these groups. A model contains sensesntences where the target words oceany).
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# sample features #

samplefeatures for &4 %1

C1 {COLWS:\g) D1 (PRED:&#z¥ %, ARGL:A)
C2 (COLWSg(c:C33:0ther person) D1 (PRED:&#xz3 %, ARG2:EH)
C3 (COLWSpyp: Aff1) D1 (PRED:##xd %, ARG2: =)
C4 (COLWSHypsc:Ch:person)
D2 (PRED:&#d %, ARGL: A4)
Cl (COLWS:@y) D2 (PRED:lliEY %, ARG2: @)
C2 (COLWSg(:C988:1and vehicle) D2 (PRED:&#:z3 %, ARG2: H#)H 1)
C3 <COLWSHYPZ$fLﬁ1>
C4 (COLWSHypsc:C988:1and vehicle) D3 (PRED:&#z3 %, ARGlgc:C33)
D3 (PRED:##z3 %, ARG25¢:C988)
C1l (COLWS:E@h,)
C2 (COLWSsc:C988:1and vehicle) D4 (PRED:&#:9 %, ARG2gyN:E— 2 —7 —1)
C3 <COLWSHyp:$2>
C4 <COLWSHYPS(:ZC988Zland vehicle} D5 <PREDJ§$ﬁ¢%, ARG].HYP:)\FEE]])
D5 <PREDi§$1—§T%>, ARG2HYPZ$ﬁ1>
Table 2: Example semantic collocation feature®5 (PRED:&i#xd %, ARG2yvp:E2)
(SEM-Col) extra_ct_ed from the word sense _tag_geq COlz6 (PREDSEH:4 %, ARGLyypsc:C5)
pus and the dictionary (Lexeed and GoiTaikei) anthe (PRED:&#:9 2, ARG2ypsc:C988)
the ontology which have the word senses and the se—1 (PRED:HET 5, ARGL A, ARG2EHE)
i H : . : , ‘A, &
mantic classes linked to the semantic tags. The f!l%iz (PREDJE#:9 %, ARGL- As, ARG2:E 1)
column numbers the feature template corresponding3 (PRED:&#:3 %, ARG1: A4, ARG2:C1460 )
to each example. .
D24 (PRED:&#:9 %, ARGL: kg, ARG2gyN:E—% — 7 —1)
. D32 (PRED:&#:9 5, ARGL:C5, ARG2:&H,)
4.2 Semantic Features D33 (PRED:E#: %, ARG1:C5, ARG2:C988)
We use the semantic mformgmon (sense tags and s (PREDSENE+ %, ARGLyyp: ATt ARG24yp: i)
tologies) in two ways. One is to enhance the colld®se (PRED:&E#:d 2, ARGLyyp: AR, ARG2ypsc:C988)
cations and the other is to enhance dependency réb@5 (PRED:&#xd %, ARGlhypsc:C5 , ARG2yp:Hili1)
tions. D322 (PRED:C2003, ARGL: A4, ARG2: &5 ,)

4.2.1 Semantic Collocations Table 3: Example semantic features extracted from
Word surface features likal-gram and BOW in-  the dependency tree in Figure 4. The first column
evitably suffer from data sparseness, therefore, weimbers the feature template corresponding to each

generalize them to more abstract words or concepéxample.

and also consider words having the same mean-

ings. We used the ontology described in Sec- _ _

tion 2.3 to get hypernyms and synonyms and thiidousha-wo unten suru hitta person who drives a
Goi-Taikei thesaurus to abstract the words to the s/@in Or car’ given in Figure 4. The predicate-
mantic classes. The superordinate classes at lefgft drive”, has two argumentsirG1 hito “person”

3, 4 and 5 are also added in addition to the origindtNd ARG2 ya “or”. The coordinate conjunction is
semantic class. For example & densha“train” exp'anded 9ut into its chlldrep, givVimRG2 densha
and {1 & & jidousha“automobile” are both gener- ain” andjidousha*automobile”.

alized to the semantic clagg988:1and vehicle) From these, we produce several features, a sam-

(level 7). The superordinate classes are also usgdl€ of them are shown in Table 3. One has all argu-
(C706:inanimate) (level 3), (C760:artifact) Mentsand their labels (D11). We also produce var-

(level 4) and(C986: vehicle) (level 5). ious back offs, for example the predicate with only
one argument at a time (D1-D3). Each combination
4.2.2 Semantic Dependencies of predicate and its related argument(s) becomes a
The semantic dependency features are based t@ature.
a predicate and its arguments taken from the ele- For the next class of features, we used the sense
mentary dependencies. For example, consider tihformation from the corpus combined with the se-
semantic dependency representationdensha ya mantic classes in the dictionary to replace each pred-
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icate by its disambiguated sense, its hypernym, its The algorithm is described as follows. For a pol-

synonym (if any) and its semantic class. The semagsemous word set in an input senteqea, ..., Wy},

tic classes fogg #, and 5 #)H 1 are both(988:1and  ty iS the k-th word sense of wordy;, W is a set

vehicle), while ;&#z; is (2003:motion) and A4 having words to be disambiguatel,is a list of re-

iS (4:human). We also expandd #) 5 into its syn- solved word senses. A search nddeés defined as

onym ¥ — % — 7 —, motaka “motor car”. [W,T] and a score of a nodd, s(N) is defined as
The semantic class features provide a semathie probability that the word sense Setoccurs in

tic smoothing, as words are binned into the 2,70¢he context. The beam search can be done as fol-

classes. The hypernym/synonym features providews (beam width i$):

T e e oot ok . reate an i ol ~ ] (o~ [,

or. Wo = {}) and insert the node into an initial

queueQo.
4.3 Domain 2. For each nodd! in the queud, do the follow-
Domain information is a simple and sometimes  ing steps.
strong cue for disambiguating the target words e For eachw; (€ W), createW’ by picking
(Gliozzo et al., 2005). For instance, the sense of outw; fromWw

the word ‘tecord’ is likey to be different in the mu- e Create new listd7, ..., T/ by adding one

sical context, which is recalled by domain-specific of word sense carﬁaidéttla,ﬁl ot fOrw;

words like “orchestrd, “ guitar”, than in the sport- toT ' '

ing context. We use 12 domain categories like “cul- P P

ture/art”, “sport”, etc. which are similar to ones used * ﬁ:]rseea:ﬁr?:r\g ir:](t)g?ﬁ\e/i ’quj)(]a’ L@, W, 7] and

in directory search web sites. About 6,000 words

are automatically classified into one of 12 domain 3. Sort the nodes i by the scores(N)

categories by distributions in web sites (Hashimoto . .

and Kurohashi, 2007) and 10% of them are manually 4 If the top nodeW in the queueQ’ is empty,
adoptT as the combination of word senses and

checked. Polysemous words which belong to multi- i h ) ok h q
ple domains and neutral words are not classified into  t€'Minate. Otherwise, pick out the tomodes
from Q' and insert them into new que@ then

any domain.
go back to 2

5 Search Algorithm 6 Evaluation

The conditional probability of the word sense forWe trained and tested on the Lexeed Dictionary Def-
each word is given by the word sense selectioimition (LXD-DEF) and Example sectionsXD-EX) of
model described in Section 4. In the initial statethe Hinoki corpus (Bond et al., 2007). These have
some of the semantic features, e.g. semantic cabout 75,000 definition and 46,000 example sen-
locations $EM-Col) and word sense extensions fortences respectively. Some 54,000 and 36,000 sen-
semantic dependenciesE(1-Dep) are not available, tences of them are treebanked, i.e., they have the
since no word senses for polysemous words hawgntactic trees and structural semantic information.
been determined. Itis not practical to count all comWe used these sentences with the complete informa-
binations of word senses for target words, thereforéion and selected 1,000 sentences out of each sen-
we first try to decide the sense for that word whichence class as test SetXp-DEF cst, LXD-EXtest), @and
is most plausible among all the ambiguous wordshe remainder is combined and used as a training
then, disambiguate the next word by using the sensset { XD-ALL). We also tested 1,000 sentences from
We use the beam search algorithm, which is sinthe Kyoto Corpus of newspaper teXY(OTOxest).
ilar to that used for decoder in statistical machind hese sentences have between B@{EX;es:) — 5.2
translation (Watanabe, 2004), for finding the plausitKYOTO..s:) polysemous words per sentence on av-
ble combination of word sense tags. erage.
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We use amaximum entropy / minimum diver- collocation features/qORD-Col) give a vast improve-
gence(MEMD) modeler to train the word sense se-ment. Extending this by using the ontological in-
lection model. We use the open-sourgeximun formation (-SEM-Col) gives a further improvement
Entropy Modeling Toolkit? for training, determining over thewORD-Col. Adding the predicate-argument
best-performing convergence thresholds and prigelationships {SEM-Dep) improves the results even
sizes experimentally. The models for five differ-more.
ent POSs were trained with each training sets: the Table 6 shows the statistics of the target corpora.
base model is word collocation mod&V@QRD-Col), The best result ofXD-DEF..: (80.7%) surpasses the
and the semantic models built by semantic collocdnter-annotator agreement (78.7%) in building the
tion (SEM-Col), semantic dependencgEM-Dep) or  Hinoki Sensebank. However, there is a wide gap
domain withWORD-Col (+SEM-Col, +SEM-Dep and between the best results B¥OTO...: (60.4%) and

+DOMAIN). the inter-annotator agreement (83.3%), this suggests
other information such as the semantic classes for
09 named entities (including proper nouns and multi-

word expressions (MWE)) and broader contexts are
required. However, a model built on dictionary sen-
tences lacks these features. Even, so there is some

08 ———

0.7

g
9 improvement.

2 s The domain features-OOMAIN) give small con-

O o tribution to the precision, since only intra-sentence
8 context is counted in this experiment. Unfortunately

03

dictiory definition and example sentences do not re-
ally have a useful context. We expect broader con-
0. text should make the domain features more effective
0 ‘ ‘ : ., for the newspaper text (e.g. as in Stevenson (2003)),
L . S 5 Table 5 shows comparison of results of different
size of training corpus POSs. The semantic featuressEM-Col and +SEM-
(partition) Dep) are particularly effective for verb and also give
moderate improvements on the results of the other
Figure 5: Learning Curve POSs.
Figure 5 shows the precisions DKD-DEFi.s: in
changing the size of a training corpus, which is di-
7 Resultsand Discussion vided into five partitions. The precision is saturated
using four partitions (264,000 tokens).
These results of the dictionary sentences are close

0.2

Table 4 shows the precision as the results of the word

;izszngliir;téfu(iggnAfS tr}i;ﬂ;ggﬁff%g&b d to the best published results for the SENSEVAL-2
. e task (79.3% by Murata et al. (2003) using a com-

selects the senses occurring most frequently in trbe . .
. g ination of simple Bayes learners). However, we
training corpus. Each row indicates the results us-

. . : are using a different sense inventory (Lexeed not
ing the baseline, word collocatiomvORD-Col), the AN . .

o Iwanami (Nishio et al., 1994)) and testing over a dif-
combinations ofwORD-Col and one of the seman-

. ferent corpus, so the results are not directly compa-
tic features {SEM-Col, +SEM-Dep and +-DOMAIN), .

. . rable. In future work, we will test over SENSEVAL-
e.g,+SEM-Col gives the results usinggORD-Col and

SEM-Col, and all featuresryiLL). 2 data so that we can compare directly.

I : None of the SENSEVAL-2 systems used onto-
There are significant improvements over the bas?—

line and the other results on all corora. Basic w rfPgical information, despite the fact that the dic-
€a € other resufts on afl corpora. basic wo lonary definition sentences were made available,

2nttp://homepages. inf .ed.ac . uk/s0450736/ and there are_ several_algorlthms describing how to
maxent_toolkit.html extract such information from MRDs (Tsurumaru
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Model Test Baseline | WORD-Col | +SEM-Col +SEM-Dep +DOMAIN | FULL
LXD-ALL LXD-DEFest 72.8 78.4 79.8 80.2 78.1 80.7
LXD-EXtest 70.4 75.6 78.7 77.9 76.0 78.8
KYOTOrest 55.6 58.5 60.0 58.8 59.8 60.4

Table 4: The Precision of WSD

POS | Baseline | WORD-Col | +SEM-Col +SEM-Dep +DOMAIN | FULL
Noun 65.5 68.7 69.6 69.4 68.9 69.8
Verb 60.3 66.9 71.0 70.6 67.7 72.6
VN 72.6 76.2 77T 74.6 77.6 77.5
Adj 59.9 67.2 69.5 68.9 68.9 69.5
Adv 74.4 78.6 79.8 79.2 78.6 79.8

Table 5: The Precision of WSD (per Part-of-Speech)

etal., 1991; Wilkes et al., 1996; Nichols et al., 2005). Language Processing (IJCNLP-Q4)ages 554-559. Hainan
We hypothesize that this is partly due to the way the !sland.

task is presented' there was not enough time to eg[ancis Bond, Sanae Fujita, and Takaaki Tanaka. 2007. The Hi
) noki syntactic and semantic treebank of Japankearguage

tract and debug an ontology as well as build a dis- resources and EvaluatiotSpecial issue on Asian language
ambiguation system, and there was no ontology dis- technology).

tributed. The CRL system (Murata et al., 2003) usedlrich Callmeier. 2000. PET - a platform for experimentatio
a syntactic dependency parser as one source of fea—W'th efficient HPSG processing techniqueblatural Lan-
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