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Abstract

We present results that show that incorporat-
ing lexical and structural semantic informa-
tion is effective for word sense disambigua-
tion. We evaluated the method by using pre-
cise information from a large treebank and
an ontology automatically created from dic-
tionary sentences. Exploiting rich semantic
and structural information improves preci-
sion 2–3%. The most gains are seen with
verbs, with an improvement of 5.7% over a
model using only bag of words and n-gram
features.

1 Introduction

Recently, significant improvements have been made
in combining symbolic and statistical approaches
to various natural language processing tasks. In
parsing, for example, symbolic grammars are be-
ing combined with stochastic models (Riezler et al.,
2002; Oepen et al., 2002; Malouf and van Noord,
2004). Statistical techniques have also been shown
to be useful for word sense disambiguation (Steven-
son, 2003). However, to date, there have been
few combinations of sense information together with
symbolic grammars and statistical models. Klein
and Manning (2003) show that much of the gain in
statistical parsing using lexicalized models comes
from the use of a small set of function words.
Features based on general relations provide little
improvement, presumably because the data is too
sparse: in the Penn treebank normally used to train
and test statistical parsersstocksandskyrocketnever
appear together. They note that this should motivate
the use of similarity and/or class based approaches:

the superordinate conceptscapital (⊃ stocks) and
move upward(⊃ sky rocket) frequently appear to-
gether. However, there has been little success in this
area to date. For example, Xiong et al. (2005) use se-
mantic knowledge to parse Chinese, but gain only a
marginal improvement. Focusing on WSD, Steven-
son (2003) and others have shown that the use of
syntactic information (predicate-argument relations)
improve the quality of word sense disambiguation
(WSD). McCarthy and Carroll (2003) have shown
the effectiveness of the selectional preference infor-
mation for WSD. However, there is still little work
on combining WSD and parse selection.

We hypothesize that one of the reasons for the
lack of success is that there has been no resource
annotated with both syntactic (or structural seman-
tic information) and lexical semantic information.
For English, there is the SemCor corpus (Fellbaum,
1998) which is annotated with parse trees and Word-
Net senses, but it is fairly small, and does not ex-
plicitly include any structural semantic information.
Therefore, we decided to construct and use a tree-
bank with both syntactic information (e.g. HPSG
parses) and lexical semantic information (e.g. sense
tags): the Hinoki treebank (Bond et al., 2004). This
can be used to train word sense disambiguation and
parse ranking models using both syntactic and lexi-
cal semantic features. In this paper, we discuss only
word sense disambiguation. Parse ranking is dis-
cussed in Fujita et al. (2007).

2 The Hinoki Corpus

The Hinoki corpus consists of the Lexeed Seman-
tic Database of Japanese (Kasahara et al., 2004) and
corpora annotated with syntactic and semantic infor-
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mation.

2.1 Lexeed

Lexeed is a database built from on a dictionary,
which defines word senses used in the Hinoki cor-
pus and has around 49,000 dictionary definition sen-
tences and 46,000 example sentences which are syn-
tactically and semantically annotated. Lexeed con-
sists of all words with a familiarity greater than or
equal to five on a scale of one to seven. This gives
a fundamental vocabulary of 28,000 words, divided
into 46,347 different senses. Each sense has a defi-
nition sentence and example sentence written using
only these 28,000 familiar words (and some function
words). Many senses have more than one sentence
in the definition: there are 75,000 defining sentences
in all.

A (simplified) example of the entry forþU3 un-
tenshu“chauffeur” is given in Figure 1. Each word
contains the word itself, its part of speech (POS) and
lexical type(s) in the grammar, and the familiarity
score. Each sense then contains definition and ex-
ample sentences, links to other senses in the lexicon
(such as hypernym), and links to other resources,
such as the Goi-Taikei (Ikehara et al., 1997) and
WordNet (Fellbaum, 1998). Each content word in
the definition and example sentences is annotated
with sense tags from the same lexicon.

2.2 Lexical Semantics Annotation

The lexical semantic annotation uses the sense in-
ventory from Lexeed. All words in the fundamental
vocabulary are tagged with their sense. For example,
the wordd&� ookii “big” (in ookiku naru“grow
up”) is tagged as sense 5 in the example sentence
(Figure 1), with the meaning “elder, older”.

Each word was annotated by five annotators. We
use the majority choice in case of disagreements
(Tanaka et al., 2006). Inter-annotator agreements
among the five annotators range from 78.7% to
83.3%: the lowest agreement is for the Lexeed def-
inition sentences and the highest is for Kyoto cor-
pus (newspaper text). These agreements reflect the
difficulties in disambiguating word sense over each
corpus and can be considered as the upper bound of
precision for WSD.

Table 1 shows the distribution of word senses ac-
cording to the word familiarity in Lexeed.

Fam #Words
Poly-

semous #WS

#Mono-

semous(%)
6.5 - 368 182 4.0 186 (50.5)
6.0 - 4,445 1,902 3.4 2,543 (57.2)
5.5 - 9,814 3,502 2.7 6,312 (64.3)
5.0 - 11,430 3,457 2.5 7,973 (69.8)

Table 1: Word Senses in Lexeed

2.3 Ontology

The Hinoki corpus comes with an ontology semi-
automatically constructed from the parse results of
definitions in Lexeed (Nichols and Bond, 2005). The
ontology includes more than 80 thousand relation-
ships between word senses, e.g. synonym, hyper-
nym, abbreviation, etc. The hypernym relation forþU3 untenshu“chauffeur” is shown in Figure 1.
Hypernym or synonym relations exist for almost all
content words.

2.4 Thesaurus

As part of the ontology verification, all nominal and
most verbal word senses in Lexeed were linked to
semantic classes in the Japanese thesaurus, Nihongo
Goi-Taikei (Ikehara et al., 1997). These were then
hand verified. Goi-Taikei has about 400,000 words
including proper nouns, most nouns are classified
into about 2,700 semantic classes. These seman-
tic classes are arranged in a hierarchical structure
(11 levels). The Goi-Taikei Semantic Class forþU3 untenshu“chauffeur” is shown in Figure 1:
〈C292:driver〉 at level 9 which is subordinate to
〈C4:person〉.

2.5 Syntactic and Structural Semantics
Annotation

Syntactic annotation is done by selecting the best
parse (or parses) from the full analyses derived by
a broad-coverage precision grammar. The gram-
mar is an HPSG implementation (JACY: Siegel and
Bender, 2002), which provides a high level of de-
tail, marking not only dependency and constituent
structure but also detailed semantic relations. As the
grammar is based on a monostratal theory of gram-
mar (HPSG: Pollard and Sag, 1994) it is possible
to simultaneously annotate syntactic and semantic
structure without overburdening the annotator. Us-
ing a grammar enforces treebank consistency — all
sentences annotated are guaranteed to have well-
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]
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Figure 1: Dictionary Entry forþU31 untenshu“chauffeur”

formed parses. The flip side to this is that any sen-
tences which the parser cannot parse remain unan-
notated, at least unless we were to fall back on full
manual mark-up of their analyses. The actual anno-
tation process uses the same tools as the Redwoods
treebank of English (Oepen et al., 2002).

There were 4 parses for the definition sentence
shown in Figure 1. The correct parse, shown as a
phrase structure tree, is shown in Figure 2. The two
sources of ambiguity are the conjunction and the rel-
ative clause. The parser also allows the conjunction
to join to\� denshaand0 hito. In Japanese, rel-
ative clauses can have gapped and non-gapped read-
ings. In the gapped reading (selected here),0 hito
is the subject ofþU unten “drive”. In the non-
gapped reading there is some underspecified relation
between the thing and the verb phrase. This is sim-
ilar to the difference in the two readings ofthe day
he knewin English: “the day that he knew about”
(gapped) vs “the day on which he knew (some-
thing)” (non-gapped). Such semantic ambiguity is
resolved by selecting the correct derivation tree that
includes the applied rules in building the tree.

The parse results can be automatically given by
the HPSG parser PET (Callmeier, 2000) with the
Japanese grammar JACY. The current parse ranking
model has an accuracy of 70%: the correct tree is
ranked first 70% of the time (for Lexeed definition
sentences) (Fujita et al., 2007).

The full parse is an HPSG sign, containing both
syntactic and semantic information. A view of the
semantic information is given in Figure 31.

1The specific meaning representation language used in

UTTERANCE

NP

VP N

PP V

NP

PP

N CONJ N CASE-P V V\\\��� ℄℄℄ ���¥¥¥��� kkk þþþUUU 222ddd 000
densha ya jidousha o unten suru hito
train or car ACC drive do personþU31 “chauffeur”: “a person who drives a train or car”

Figure 2: Syntactic View of the Definition ofþU31 untenshu“chauffeur”

The semantic view shows some ambiguity has
been resolved that is not visible in the purely syn-
tactic view.

The semantic view can be further simplified into a
dependency representation, further abstracting away
from quantification, as shown in Figure 4. One of
the advantages of the HPSG sign is that it contains
all this information, making it possible to extract the
particular view needed. In order to make linking to
other resources (such as the sense annotation) easier,
predicates are labeled with pointers back to their po-
sition in the original surface string. For example, the
predicatedensha n 1 links to the surface characters
between positions 0 and 3:\�.

JACY is Minimal Recursion Semantics (Copestake et al., 2005).
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Figure 3: Semantic View of the Definition ofþU31 untenshu“chauffeur”

_1:proposition_m<0:13>[MARG e2:unknown]
e2:unknown<0:13>[ARG x5:_hito_n]
x7:udef<0:3>[]
x7:densha_n_1<0:3>
x12:udef<4:7>[]
x12:_jidousha_n<4:7>
x13:_ya_p_conj<0:4>[L-INDEX x7:_densha_n_1, R-INDEX x12:_jidousha_n]
e23:_unten_s_2<8:10>[ARG1 x5:_hito_n, ARG2 x13:_ya_p_conj]
x5:udef<12:13>[]
_2:proposition_m<0:13>[MARG e23:_unten_s_2]

Figure 4: Dependency View of the Definition ofþU31 untenshu“chauffeur”

3 Task

We define the task in this paper as “allocating the
word sense tags for all content words included in
Lexeed as headwords, in each input sentence”. This
task is a kind of all-words task, however, a unique
point is that we focus on fundamental vocabulary
(basic words) in Lexeed and ignore other words. We
use Lexeed as the sense inventory. There are two
problems in resolving the task: how to build the
model and how to assign the word sense by using
the model for disambiguating the senses. We de-
scribe the word sense selection model we use in sec-
tion 4 and the method of word sense assignment in
section 5.

4 Word Sense Selection Model

All content words (i.e. basic words) in Lexeed are
classified into six groups by part-of-speech: noun,
verb, verbal noun, adjective, adverb, others. We
treat the first five groups as targets of disambiguat-
ing senses. We build five words sense models corre-
sponding to these groups. A model contains senses

for various words, however, features for a word are
discriminated from those for other words so that the
senses irrelevant to a target word are not selected.
For example, an n-gram feature following a target
word “has-a-tail” fordogis distinct from that forcat.

In the remainder of this section, we describe the
features used in the word sense disambiguation.
First we used simple n-gram collocations, then a bag
of words of all words occurring in the sentence. This
was then enhanced by using ontological information
and predicate argument relations.

4.1 Word Collocations

Word collocations (WORD-Col) are basic and effec-
tive cues for WSD. They can be modelled by n-
gram and bag of words features, which are easily
extracted from a corpus. We used all unigrams, bi-
grams and trigrams which precede and follow the
target words (N-gram) and all content words in the
sentences where the target words occur (BOW).
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# sample features
C1 〈COLWS:04〉
C2 〈COLWSSC:C33:other person〉
C3 〈COLWSHYP:0/1〉
C4 〈COLWSHYPSC:C5:person〉

C1 〈COLWS:\�1〉
C2 〈COLWSSC:C988:land vehicle〉
C3 〈COLWSHYP:�£1〉
C4 〈COLWSHYPSC:C988:land vehicle〉

C1 〈COLWS:�¥�1〉
C2 〈COLWSSC:C988:land vehicle〉
C3 〈COLWSHYP:�2〉
C4 〈COLWSHYPSC:C988:land vehicle〉

Table 2: Example semantic collocation features
(SEM-Col) extracted from the word sense tagged cor-
pus and the dictionary (Lexeed and GoiTaikei) and
the ontology which have the word senses and the se-
mantic classes linked to the semantic tags. The first
column numbers the feature template corresponding
to each example.

4.2 Semantic Features

We use the semantic information (sense tags and on-
tologies) in two ways. One is to enhance the collo-
cations and the other is to enhance dependency rela-
tions.

4.2.1 Semantic Collocations

Word surface features likeN-gram and BOW in-
evitably suffer from data sparseness, therefore, we
generalize them to more abstract words or concepts
and also consider words having the same mean-
ings. We used the ontology described in Sec-
tion 2.3 to get hypernyms and synonyms and the
Goi-Taikei thesaurus to abstract the words to the se-
mantic classes. The superordinate classes at level
3, 4 and 5 are also added in addition to the original
semantic class. For example,\� densha“train”
and�¥� jidousha “automobile” are both gener-
alized to the semantic class〈C988:land vehicle〉
(level 7). The superordinate classes are also used:
〈C706:inanimate〉 (level 3), 〈C760:artifact〉
(level 4) and〈C986:vehicle〉 (level 5).

4.2.2 Semantic Dependencies

The semantic dependency features are based on
a predicate and its arguments taken from the ele-
mentary dependencies. For example, consider the
semantic dependency representation fordensha ya

# sample features forþþþUUU222ddd1
D1 〈PRED:þU2d, ARG1:0〉
D1 〈PRED:þU2d, ARG2:\�〉
D1 〈PRED:þU2d, ARG2:�¥�〉
D2 〈PRED:þU2d, ARG1:04〉
D2 〈PRED:þU2d, ARG2:\�1〉
D2 〈PRED:þU2d, ARG2:�¥�1〉

D3 〈PRED:þU2d, ARG1SC:C33〉
D3 〈PRED:þU2d, ARG2SC:C988〉

D4 〈PRED:þU2d, ARG2SYN:¹�����1〉

D5 〈PRED:þU2d, ARG1HYP:0/1〉
D5 〈PRED:þU2d, ARG2HYP:�£1〉
D5 〈PRED:þU2d, ARG2HYP:�2〉

D6 〈PRED:þU2d, ARG1HYPSC:C5〉
D6 〈PRED:þU2d, ARG2HYPSC:C988〉

D11 〈PRED:þU2d, ARG1:0, ARG2:\�〉
D22 〈PRED:þU2d, ARG1:04, ARG2:\�1〉
D23 〈PRED:þU2d, ARG1:04, ARG2:C1460 〉

D24 〈PRED:þU2d, ARG1:04, ARG2SYN:¹�����1〉

D32 〈PRED:þU2d, ARG1:C5, ARG2:\�1〉
D33 〈PRED:þU2d, ARG1:C5, ARG2:C988〉

D55 〈PRED:þU2d, ARG1HYP:0/4, ARG2HYP:�£1〉
D56 〈PRED:þU2d, ARG1HYP:0/4, ARG2HYPSC:C988〉
D65 〈PRED:þU2d, ARG1HYPSC:C5 , ARG2HYP:�£1〉

D322 〈PRED:C2003, ARG1:04, ARG2:\�1〉

Table 3: Example semantic features extracted from
the dependency tree in Figure 4. The first column
numbers the feature template corresponding to each
example.

jidousha-wo unten suru hito“a person who drives a
train or car” given in Figure 4. The predicateun-
ten“drive”, has two arguments:ARG1 hito “person”
and ARG2 ya “or”. The coordinate conjunction is
expanded out into its children, givingARG2 densha
“train” and jidousha“automobile”.

From these, we produce several features, a sam-
ple of them are shown in Table 3. One has all argu-
ments and their labels (D11). We also produce var-
ious back offs, for example the predicate with only
one argument at a time (D1-D3). Each combination
of predicate and its related argument(s) becomes a
feature.

For the next class of features, we used the sense
information from the corpus combined with the se-
mantic classes in the dictionary to replace each pred-
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icate by its disambiguated sense, its hypernym, its
synonym (if any) and its semantic class. The seman-
tic classes for\�1 and�¥�1 are both〈988:land
vehicle〉, whileþU1 is 〈2003:motion〉 and04

is 〈4:human〉. We also expand�¥�1 into its syn-
onym¹�����1 mōtākā “motor car”.

The semantic class features provide a seman-
tic smoothing, as words are binned into the 2,700
classes. The hypernym/synonym features provide
even more smoothing. Both have the effect of mak-
ing more training data available for the disambigua-
tor.

4.3 Domain

Domain information is a simple and sometimes
strong cue for disambiguating the target words
(Gliozzo et al., 2005). For instance, the sense of
the word “record” is likey to be different in the mu-
sical context, which is recalled by domain-specific
words like “orchestra”, “ guitar”, than in the sport-
ing context. We use 12 domain categories like “cul-
ture/art”, “sport”, etc. which are similar to ones used
in directory search web sites. About 6,000 words
are automatically classified into one of 12 domain
categories by distributions in web sites (Hashimoto
and Kurohashi, 2007) and 10% of them are manually
checked. Polysemous words which belong to multi-
ple domains and neutral words are not classified into
any domain.

5 Search Algorithm

The conditional probability of the word sense for
each word is given by the word sense selection
model described in Section 4. In the initial state,
some of the semantic features, e.g. semantic col-
locations (SEM-Col) and word sense extensions for
semantic dependencies (SEM-Dep) are not available,
since no word senses for polysemous words have
been determined. It is not practical to count all com-
binations of word senses for target words, therefore,
we first try to decide the sense for that word which
is most plausible among all the ambiguous words,
then, disambiguate the next word by using the sense.

We use the beam search algorithm, which is sim-
ilar to that used for decoder in statistical machine
translation (Watanabe, 2004), for finding the plausi-
ble combination of word sense tags.

The algorithm is described as follows. For a pol-
ysemous word set in an input sentence{w1, . . . ,wn},
twik is the k-th word sense of wordwi , W is a set
having words to be disambiguated,T is a list of re-
solved word senses. A search nodeN is defined as
[W,T ] and a score of a nodeN, s(N) is defined as
the probability that the word sense setT occurs in
the context. The beam search can be done as fol-
lows (beam width isb):

1. Create an initial nodeN0 = [T0,W0] (T0 = {},
W0 = {}) and insert the node into an initial
queueQ0.

2. For each nodeN in the queueQ, do the follow-
ing steps.

• For eachwi (∈W), createW′
i by picking

out wi from W
• Create new listsT ′

1, . . . ,T
′

l by adding one
of word sense candidatestwi1,. . . ,twi l for wi

to T
• Create new nodes[W′

i ,T
′
0], . . . ,[W′

i ,T
′
l ] and

insert them into the queueQ′

3. Sort the nodes inQ′ by the scores(N)

4. If the top nodeW in the queueQ′ is empty,
adoptT as the combination of word senses and
terminate. Otherwise, pick out the topb nodes
from Q′ and insert them into new queueQ, then
go back to 2

6 Evaluation

We trained and tested on the Lexeed Dictionary Def-
inition (LXD-DEF) and Example sections (LXD-EX) of
the Hinoki corpus (Bond et al., 2007). These have
about 75,000 definition and 46,000 example sen-
tences respectively. Some 54,000 and 36,000 sen-
tences of them are treebanked, i.e., they have the
syntactic trees and structural semantic information.
We used these sentences with the complete informa-
tion and selected 1,000 sentences out of each sen-
tence class as test sets (LXD-DEFtest, LXD-EXtest), and
the remainder is combined and used as a training
set (LXD-ALL). We also tested 1,000 sentences from
the Kyoto Corpus of newspaper text (KYOTOtest).
These sentences have between 3.4 (LXD-EXtest) – 5.2
(KYOTOtest) polysemous words per sentence on av-
erage.
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We use amaximum entropy / minimum diver-
gence(MEMD) modeler to train the word sense se-
lection model. We use the open-sourceMaximun

Entropy Modeling Toolkit2 for training, determining
best-performing convergence thresholds and prior
sizes experimentally. The models for five differ-
ent POSs were trained with each training sets: the
base model is word collocation model (WORD-Col),
and the semantic models built by semantic colloca-
tion (SEM-Col), semantic dependency (SEM-Dep) or
domain withWORD-Col (+SEM-Col, +SEM-Dep and
+DOMAIN).

Figure 5: Learning Curve

7 Results and Discussion

Table 4 shows the precision as the results of the word
sense disambiguation on the combination ofLXD-

DEF and LXD-EX (LXD-ALL). The baseline method
selects the senses occurring most frequently in the
training corpus. Each row indicates the results us-
ing the baseline, word collocation (WORD-Col), the
combinations ofWORD-Col and one of the seman-
tic features (+SEM-Col, +SEM-Dep and +DOMAIN),
e.g,+SEM-Col gives the results usingWORD-Col and
SEM-Col, and all features (FULL).

There are significant improvements over the base-
line and the other results on all corpora. Basic word

2http://homepages.inf.ed.ac.uk/s0450736/
maxent_toolkit.html

collocation features (WORD-Col) give a vast improve-
ment. Extending this by using the ontological in-
formation (+SEM-Col) gives a further improvement
over theWORD-Col. Adding the predicate-argument
relationships (+SEM-Dep) improves the results even
more.

Table 6 shows the statistics of the target corpora.
The best result ofLXD-DEFtest (80.7%) surpasses the
inter-annotator agreement (78.7%) in building the
Hinoki Sensebank. However, there is a wide gap
between the best results ofKYOTOtest (60.4%) and
the inter-annotator agreement (83.3%), this suggests
other information such as the semantic classes for
named entities (including proper nouns and multi-
word expressions (MWE)) and broader contexts are
required. However, a model built on dictionary sen-
tences lacks these features. Even, so there is some
improvement.

The domain features (+DOMAIN) give small con-
tribution to the precision, since only intra-sentence
context is counted in this experiment. Unfortunately
dictiory definition and example sentences do not re-
ally have a useful context. We expect broader con-
text should make the domain features more effective
for the newspaper text (e.g. as in Stevenson (2003)),

Table 5 shows comparison of results of different
POSs. The semantic features (+SEM-Col and+SEM-

Dep) are particularly effective for verb and also give
moderate improvements on the results of the other
POSs.

Figure 5 shows the precisions ofLXD-DEFtest in
changing the size of a training corpus, which is di-
vided into five partitions. The precision is saturated
in using four partitions (264,000 tokens).

These results of the dictionary sentences are close
to the best published results for the SENSEVAL-2
task (79.3% by Murata et al. (2003) using a com-
bination of simple Bayes learners). However, we
are using a different sense inventory (Lexeed not
Iwanami (Nishio et al., 1994)) and testing over a dif-
ferent corpus, so the results are not directly compa-
rable. In future work, we will test over SENSEVAL-
2 data so that we can compare directly.

None of the SENSEVAL-2 systems used onto-
logical information, despite the fact that the dic-
tionary definition sentences were made available,
and there are several algorithms describing how to
extract such information from MRDs (Tsurumaru
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Model Test Baseline WORD-Col +SEM-Col +SEM-Dep +DOMAIN FULL
LXD-ALL LXD-DEFtest 72.8 78.4 79.8 80.2 78.1 80.7

LXD-EXtest 70.4 75.6 78.7 77.9 76.0 78.8
KYOTOtest 55.6 58.5 60.0 58.8 59.8 60.4

Table 4: The Precision of WSD

POS Baseline WORD-Col +SEM-Col +SEM-Dep +DOMAIN FULL
Noun 65.5 68.7 69.6 69.4 68.9 69.8
Verb 60.3 66.9 71.0 70.6 67.7 72.6
VN 72.6 76.2 77.7 74.6 77.6 77.5
Adj 59.9 67.2 69.5 68.9 68.9 69.5
Adv 74.4 78.6 79.8 79.2 78.6 79.8

Table 5: The Precision of WSD (per Part-of-Speech)

et al., 1991; Wilkes et al., 1996; Nichols et al., 2005).
We hypothesize that this is partly due to the way the
task is presented: there was not enough time to ex-
tract and debug an ontology as well as build a dis-
ambiguation system, and there was no ontology dis-
tributed. The CRL system (Murata et al., 2003) used
a syntactic dependency parser as one source of fea-
tures (KNP: Kurohashi and Nagao (2003)), remov-
ing it decreased performance by around 0.6%.

8 Conclusions

We used the Hinoki corpus to test the importance of
lexical and structural information in word sense dis-
ambiguation. We found that basic n-gram features
and collocations provided a great deal of useful in-
formation, but that better results could be gained by
using ontological information and semantic depen-
dencies.
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