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A substantial number of linguistic phenomena suc
as topicalisation, relativisation, coordination an
raising & control constructions, permit a constitue
in one position to bear the grammatical role asso-
ciated with another position.
are referred to Non-Local Dependencies (NLDs)
where the surface location of the constituent is
called “antecederit, and the site where the an-
tecedent should be interpreted semantically is callet
“trace” . Capturing non-local dependencies is cru-
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Abstract

To date, work on Non-Local Dependencies
(NLDs) has focused almost exclusively on
English and it is an open research question
how well these approaches migrate to other
languages. This paper surveys non-local de-
pendency constructions in Chinese as repre-
sented in the Penn Chinese Treebank (CTB)
and provides an approach for generating
proper predicate-argument-modifier struc-
tures including NLDs from surface context-
free phrase structure trees. Our approach re-
covers non-local dependencies at the level
of Lexical-Functional Grammar f-structures,
using automatically acquired subcategorisa-
tion frames and f-structure paths linking an-
tecedents and traces in NLDs. Currently our
algorithm achieves 92.2% f-score for trace
insertion and 84.3% for antecedent recovery
evaluating on gold-standard CTB trees, and
64.7% and 54.7%, respectively, on CTB-
trained state-of-the-art parser output trees.

I ntroduction

These relationship

However, with few exceptions (Model 3 of
Collins, 1999; Schmid, 2006), output trees pro-
duced by state-of-the-art broad coverage statistical
parsers (Charniak, 2000; Bikel, 2004) are only sur-
face context-free phrase structure trees (CFG-trees)
without empty categories and coindexation to repre-
sent displaced constituents. Because of the impor-
tance of non-local dependencies in the proper de-
termination of predicate-argument structures, recent
years have witnessed a considerable amount of re-
search on reconstructing such hidden relationships
in CFG-trees. Three strategies have been proposed:
(i) post-processing parser output with pattern match-
ers (Johnson, 2002), linguistic principles (Campbell,
2004) or machine learning methods (Higgins, 2003;
Levy and Manning, 2004; Gabbard et al., 2006) to
recover empty nodes and identify their antecedénts;
(i) integrating non-local dependency recovery into
the parser by enriching a simple PCFG model with
GPSG-style gap features (Collins, 1999; Schmid,
2006); (iii) pre-processing the input sentence with
a finite-state trace tagger which detects empty nodes
before parsing, and identify the antecedents on the
parser output with the gap information (Dienes and
ﬁ)ubey, 2003a; Dienes and Dubey, 2003b).

In addition to CFG-oriented approaches, a num-

cgjer of richer treebank-based grammar acquisition

and parsing methods based on HPSG (Miyao et
l., 2003), CCG (Clark and Hockenmaier, 2002),

FG (Riezler et al., 2002; Cahill et al., 2004) and

ependency Grammar (Nivre and Nilsson, 2005)
incorporate non-local dependencies into their deep
ntactic or semantic representations.

A common characteristic of all these approaches

cial to the accurate and complete determination ef———— i . )
(Jijkoun, 2003; Jijkoun and Rijke, 2004) also describe post

semantic mterpretaﬂon in the form of predmat(_a'processing methods to recover NLDs, which are applied te syn
argument-maodifier structures or deep dependenciasctic dependency structures converted from CFG-trees.
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is that, to date, the research has focused almosft) 4° Kt Kl kA7 8 1 B fF%
not want look-for train have potential DE new writer

entirely on Englist¥, despite the disparity in type ‘(People) don't want to look for and train new writers who
and frequency of non-local dependencies for vari-  have potential’

ous languages. In this paper, we address recover-

ing non-local dependencies for Chinese, a Ianguage/\

drastically different from English and whose spe-" ;">
NONE-

cial features such as lack of morphological inflection™| aove VP

make NLD recovery more challenging. Inspired by ™ 40 > Som

(Canhill et al., 2004)’'s methodology which was origi- o /\

nally designed for English and Penn-II treebank, our vant NP-S8Y

approach to Chinese non-local dependency recovery NONE /l\\

is based on Lexical-Functional Grammar (LFG), a PRO/\ /\

formalism that involves both phrase structure trees W NP|°B . NP-OBJ-2

and predicate-argument structures. NLDs are re- losketor NOFE Jffl*.”

covered in LFG f-structures using automatically ac- T Ct:m AP NP

quired subcategorisation frames and finite approxi- P 1, Ny

mations of functional uncertainty equations describ- - e

ing NLD paths at the level of f-structures. v NEow bECnew witer
The paper is structured as follows: in Section 2 we \ *OP*NP|SBJ v

outline the distinguishing features of Chinese non- NONE: o

local dependencies compared to English. In Section hoT hi"ve NlN

3 we review (Cahill et al., 2004)’'s method for recov- )

potential

ering English NLDs in treebank-based LFG approx-

imations. In Section 4, we describe how we modrigure 1: Example of non-local annotations in CTB,
|fy and SubStantIally extend the previous metho%cluding dropped Subject (*pro*), control Subject

to recover all types of NLDs for Chinese data(pRO*), relative clause (*T*), and coordination
We present experiments and provide a dependengy¥rRNR*).

based evaluation in Section 5. Finally we conclude

and summarise future work. . . :
istics of Chinese non-local dependencies, we ex-

2 Non-Local Dependenciesin Chinese tracted all empty categories together with coindexed
antecedents from the Penn Chinese Treebank ver-
In the Penn Chinese Treebank (CTB) (Xue et alsion 5.1 (CTB5.1). Table 1 gives a breakdown of the
2002) non-local dependencies are represented rimost frequent types of empty categories and their
terms of empty categories (ECs) and (for some aintecedents, which account for 43,791 of the total
them) coindexation with antecedents, as exemplifiedi3,954 (99.6%) ECs in CTB53L.
in Figure 1. Following previous work for English  According to their different linguistics properties,
and the CTB annotation scheme, we usSaon- we divide the empty nodes listed in Table 1 into
local dependencié€sas a cover term for all miss- three major types: null relative pronouns, locally
ing or dislocated elements represented in the CTBiediated dependencies, and long-distance depen-
as an empty category (with or without coindexadencies.
tion/antecedent), and our use of the term remains aﬁl Il Relative Pronouns (lines 2, 7) themselves

nostic about fine-grained distinctions between non-
are local dependencies, and thus are not coindexed
local dependencies drawn in the theoretical linguis

with an antecedent. But they mediate non-local de-
tics literature.
pendencies by functioning as antecedents for the dis-
In order to give an overview on the character-

- 3An extensive description of the types of empty categories
2 (Levy and Manning, 2004) is the only approach we areand the use of coindexation in CTB can be found in Section VI
aware of that has been applied to both English and German. of the bracketing guidelines.
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| | Antecedent POS Label  Count | Description |

1 WHNP NP *T* 11670 | WH trace (e.g. *OP"1 [H/Chinak §f/launch T* [f)/DE [Li/satellite)

2 WHNP  *OP* 11621 | Empty relative pronouns (e.OP* 1 [E/Chinak il /launch)/DE 1. /satellite)
3 NP *PRO* 10946 | Control constructions (e.gx H/herefs/noti’f/allow* PRO* filifl/smoke)

4 NP *pro* 7481 | Pro-drop situations (e.dpro* A~/noti /evers £l/encounteft)/DE ] iEi/problem)
5 IP IP *T* 575 Topicalisation (e.g&fl lwefit/cami/win, fli/heiii/say T*)

6 WHPP PP *T* 337 | WH trace (e.g. *OP*\ [1l/populatiorf T* % £E/densét: [X /area)

7 WHPP *OP* 337 | Empty relative pronouns (e.OP* A [l/populatiori %/densétt [X /area)

8 NP NP * 291 | Raising & passive constructions (e #.1l //weti/BEIHFi:/excludé 7t 4Moutside)
9 NP NP *RNR* 258 | Coordinations (e.géfili/encourageRNR* fll/andsz #/support %t /investmeny
10 CLP CLP *RNR* 182 | Coordinations (e.g/i/five* RNR* 43/to+/tenfZ/hundred millioryt./Yuan)

11 NP NP *T* 93 Topicalisation (e.g#i/K/salary&li/all f/use T* >K/for5= fi/pleasure)

Table 1. The distribution of the most frequent types of engatiegories and their antecedents in CTB5.1.
The types with frequency less than 30 are ignored.

located constituent inside a relative cladse. Coordination is divided into two groups: right
node raising of an NP phrase which is an argument

L ocally Med_lated Dependenqes_ are -nonllocal as shared by the coordinate predicates (line 9); and the
they are projected through a third lexical item (such o o :
- . coordination of quantifier phrases (line 10) and ver-

as a control or raising verb) which involves a des . .
: bal phrases (3), in which the antecedent and trace

pendency between two adjacent levels and they are . . :
. 7 .are both predicates and possibly take their own ar-

therefore bounded. This type encompasses: (line

- . ) .~ gquments or adjuncts.
8) raising constructions, and short-bei constructlon% J

(passivisation); (line 3) control constructions, which (3) & 1 b 4371 2 Al 1 *RNR* PR
includes two different types: a generic *PRO* with I and he respectively go to company and *RNR* hospital

. . . ‘I went to the company and he went to the hospital re-
an arbitrary reading (approximately equals to unex-  gpectively.

pressed subjects td-infinitive and gerund verbs in

English); and a *PRO* with definite reference (subPro-drop situations (line 4) are prominent in

ject or object controlf. Chinese because subject and object are only seman-
] ] ] tically but not syntactically required. Nevertheless

Long-Distance  Dependencies (LDDs) differ \yq a150 treat pro-drop as a long-distance depen-

from locally mediated dependencies, in that th%ency as in principle the dropped subjects can be

path linking the antecedent and trace might betermined from the general (often inter-sentential)
unbounded (also called unbounded, long-rangg,niext.

dependencies). LDDs include the following

phenomena: Table 2 gives a quantitative comparison of NLDs

Wh-traces in relative clauses, where an argumenbetween Chinese data in CTB5.1 and English in
(line 1) or adjunct (line 6) “moves” and is coin- Penn-Il. The data reveals that: first, NLDs in Chi-
dexed with the “extractiori” site. nese are much more frequent than in English (by

L _ _ . nearly 1.5 times); and moreover 69% are not explic-
Topicalisation  (lines 5, 11) is one of the typical jyy |inked to an antecedent, compared to 43% for

LDDs in English, whereas in Chinese not all tc’pic%nglish, due to the high prevalence of pro-drop in
involve displacement, for instance (2).

Chinese.
(2 dbx R W
Beijing autumn most beautiful # of # of # of #non- % non-
‘Autumn is the most beautiful in Beijing.” sent EC EC/sent coindex coindgx

- Chinese| 18,804 43,954 2.34 30,429 69.23
“Null relative pronouns used in the CTB annotation are to| English | 49,207 79,245 1.61 34,455 43.48
distinguish relative clauses in which an argument or adjohc
the embedded verb is*missing” from complement (apposi- Table 2: Comparison of NLDs between Chinese data
tive) clauses which do not involve non-local dependencies. . CTB5.1 and Endglish in P N
SHowever in this case the CTB annotation doesn’t coinde>|p Lan nglish in Fenn-it-.
the locus (trace) with its controller (antecedent).
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(4) B BT >k =IR
money we use to please
‘Money, we use for pleasure.’

P P [PRED ’Jl](SUBJ, OBJ, XCOMP)’
GLOSS 'use’
[PRED 4%
TOPIC  fo : ) }
_ NP-TPC-1 NP-SBJ vP NP-TPC NP-SBJ VP | 6L0ss money [£]
SN N N [1Toric=l]  [Tsusx=l] (=11 [preD T
N|N P|N Ve o [TTomc,:Tlcomp*oBJ] PlN /\ ; SUBY  f3 1| 5i0ss e
\ 1 L
OB Al N NN [1=1] W VP oBJ 1
\money we VW NP-OBJ NP_Q\VP (1211 | (=1 [Txcomp=]]
AN NONE | PN I AN |  [TsuBXTXxComP:SUBJ [PRED 'ZE/R(SUBJ)’
LJJISJe ) | ~ -NONE- MISP V|V % we GLOSS 'please’
g | o money use MSp Y XCOMP  f4 :
*T*.l PRO* K IR [Tmsp=k1 [1=1] SUBJ
) to please | u-l % I [mMsp R
o to please

(a) (b) ()

Figure 2: (a) the CTB tree; (b) LFG c-structure with funcbequations; (c) corresponding f-structure.
(1) in the functional annotation refers to the f-structureoaged with the mother node ang) (o that of
the local node.

3 NLD Recovery in LFG Approximations  token identical with the value of the finalsJ argu-
_ _ ment along a path through the immediately enclos-

3.1 Lexical Functional Grammar ing f-structure along zero or moEoOMP attributes.
Lexical Functional Grammar (Kaplan and Bres- In addition to FU equations, subcategorisation in-
nan, 1982) is a constraint-based grammar formaformation is also a significant ingredient in LFG's
ism which minimally involves two levels of syn- account of non-local dependencies. Subcategorisa-
tactic representation: c(onstituent)-structure anton frames (subcat frames) specify the governable
f(unctional)-structure. C-structure takes the form oframmatical functions (i.e. arguments) required by
CFG-trees and captures surface grammatical config-particular predicate. In Figure 2(c) each predicate
urations. F-structure encodes more abstract grarm-the f-structure is followed by its subcat frame.
matical functions (GFs) such agBJect),oBJ(ect),
comp(lement), ADJ(unct) andToPIC etc., in the 32 F-StructureBased NLD Recovery
form of Attribute Value Matrices which approxi- (Cahill et al., 2004) presented a NLD recovery al-
mate to basic predicate-argument-adjunct structurg®rithm operating at LFG f-structure for treebank-
or dependency relations. C-structures are related based LFG approximations. The method automati-
f-structures by functional annotations (cf. Figure Zally converts Penn-II treebank trees with traces and
(b) & (€)). coindexation into proper f-structures where traces

In LFG, non-local dependencies are captured @nd coindexation in treebank trees (Figure 2(a))
f-structure level in terms of reentrancies, indicatedre represented as corresponding reentrances in f-
for the topicalisation an@for the control con- structures (Figure 2(c)), and from the f-structures
struction in Figure 2(c) obviating the need for tracesiutomatically extracts subcat frames by collecting
and coindexation in the c-structure (Figure 2(b)), unall arguments of the local predicate at each level of
like in CTB trees (Figure 2(a)). LFG uses func-the f-structures, and further acquires finite approxi-
tional uncertainty (FU) equations (regular expresmations of FU equations by extracting paths linking
sions) to specify paths in f-structures between théne reentracies occurring in the f-structures.
trace and its antecedent. To account for the reen- (Cahill et al., 2004)'s approach for English re-
trancy in the f-structure, a FU equation of thesolves three LDD types in parser output trees with-
form TToPIC=TCOMP*OBJis required (as the length out traces and coindexation (Figure 2(b)), i.e. topi-
of the dependency might be unbounded). The equealisation fopPIC), wh-movement in relative clauses
tion states that the value of theopic attribute is (TOPIC_.REL) and interrogatives focuy. Given
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a set of subcat frames for lemmaw with prob- 4. All the functional equations are collected and
abilities P(s|w), a set of pathsp linking reen- then passed to a constraint solver to generate
trancies conditioned on the triggering antecedent f-structures.
(TOPIC, TOPIC_.REL or FOCcU9 with probabilities _ _
P(pla), the core algorithm recursively traverses af-2 Adaptation to Chinese
f-structuref to: (Cahill et al., 2004)’s algorithm (Section 3.2) only
- find aTOPIC|TOPIC_REL|FOCUSg pair; resolves certain NLDs with known types of an-
- traversef along patly to the sub-f-structuré; ~ €cedents TOPIC, TOPIC.REL and Focug at f-
. . . structures. However, as illustrated in Section 2, ex-
- retrieve the locaPREDw ath, and inseriy to h . . .
i cept for relative clauses, the antecedents in Chinese
e NLDs do not systematically correspond to types of
* all GFs specified in the subcat framex- . yste y P yp
grammatical function. Furthermore nearly 70% of
ceptg are present dt (completeness con- . : .
dition) all empty categories are not coindexed with an an-
. tecedent. In order to resolve all Chinese NLDs rep-
no other governable GFs present/atire  osanted in the CTB, we modify and substantially
specified ins (coherence condition) extend the (Cahill et al., 2004) (henceforth C04 for
- rank resolution candidates according to thghort) algorithm as follows:
product of subcat frame and NLD path prob- Given the set of subcat framesor the worduw,
abilities (Eq. 1). and a set of paths for the tracet, the algorithm
P(s|w) x P(p|a) (1) traverses the f-structurgto:

- predict a dislocated argumerntat a sub-f-
structureh by comparing the locabREDw to
4.1 Automatic F-Structure Generation w’s subcat frames

Our NLD recovery is done at the level of LFG f- - t can be inserted at if h together witht is
structures. Inspired by (Cabhill et al., 2004; Burke et ~ complete and coherent relative to subcat frame
al., 2004), we have implemented an f-structure anno- s
tation algorithm to automatically obtain f-structures - traversef starting fromt along the pathp
from CFG-trees in the CTB5.1. The f-structure an-
notation algorithm, described below, is applied both
to the original CTB trees providing functional tags,
traces and coindexation to generate the training cor-
pus, and to the parser output trees without traces
and coindexation to provide the f-structure input foin the modified algorithm, we condition the proba-
NLD recovery. bility of NLD path p (including the empty path with-

1. The CFG-trees are head-lexicalised by headut an antecedent) on the GF associated of the trace

finding rules similar to (Collins, 1999), adaptedt rather than the antecedemtas in C04. The path

4 NLD Recovery Algorithm for Chinese

- link ¢ to it's antecedent: if p's ending GFa
exists in a sub-f-structure withifi; or leavet
without an antecedent if an empty path fax-
ists

to CTB. probability P(p|t) is estimated as:

2. Each local subtree of depth one is partitioned count(p, )
by the head into left and right context. Left- P(plt) = =5 pt’ — 2
right context rules exploiting configurational, 2 i1 count(pi, t)

categorial and CTB functional tag information | contrast even to English, Chinese has very lit-
are used to assign each left and right constituee morphological information. As a result, every
with appropriate functional equations. word in Chinese has a unique form regardless of its

3. Empty nodes and coindexation in the CTB treesyntactic distribution. For this reason we use more
are automatically captured into correspondingyntactic features _feats in addition to word form
reentrances at f-structure via functional equato discriminate between appropriate subcat frames
tions. For a given wordv, w_feats include:
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- w_pos: the part-of-speech af coordination, can not be recovered by the algorithm.
- w_gf: the grammatical function af Table 3 shows the types of NLD that can be recov-
ered by C04 and by the algorithm presented in Sec
P(s|lw,w_feats) replaces CO4'P(s|w) as lexical tion 4.2. Table 3 shows that a hybrid methodology
subcat frame probability and is estimated as: is required to resolve all types of NLDs in the CTB.
The hybrid method involves four strategies:

count(s,w,w_feats)

P(s|w, w_feats) = (3) o Applying a few simple heuristic rules to insert

the emptyPRED for coordinations and null rel-

As more conditioning features may cause sever ative pronouns for relative constructions. The
sparse-data problems, in order to increase the cov- former is done by comparing the part-of-speech
erage of the automatically acquired subcat frames, of the local predicates and their arguments in
the subcat frame frequenciesunt(s,w, w_feats) each coordinate; and the latter is triggered by
are smoothed by backing off to’s part-of-speech GF ADJUNCT_REL in our system.
w_pos according to Eq. (4). P(s|w_pos) is esti-
mated according to Eqg. (5) and weighted by a param-
eter®. The lexical subcat frame probabilities are es-
timated from the smoothed frequencies as shown in

S, count(s;, w, w_feats)

e Inserting an empty node with GBuBJ for
short-bei construction, control and raising con-
structions, and relate it to the upper-level
suBJor 0BJ accordingly.

B (9). e Exploiting the C04 algorithm to resolve the wh-
county, (s, w,w_feats) = count(s,w,w_feats) (4) trace in relativisation, including ungovernable
+OP(s|lw_pos) GFsTOPICandADJUNCT.
P(s|w_pos) = count (s, w_pos, w-g f) 5 ° Using our modifi(_ao_l algorithm _(Section 4_1.2) to
Sor | count(s;, w_pos,w-gf) resolve the remaining types, viz. long-distance
Por(s|w, w_feats) = ncountbkt(s,w,w_feats) t ©) dependencies in Chinese.
iz count(si, w, w-feats) Antecedent Trace
Finally, NLD resolutions are ranked according to: Topic.Rel | Other | Null | Argument| Adjunct
C04 v v Y
Ours v v v v

Py (s|w,w_feats) x HP(p]tj) (7)

— Table 3: Comparison of the ability of NLD recovery
J:

for Chinese between C04 and our algorithm

As, apart from the maximum number of arguments
in a subcat frame, there is no a priori limit on5 Experimentsand Evaluation
the number of dislocated arguments in a local f-

structure, we rank resolutions with the product of O @ll our experiments, we used the first 760
the path probabilities of each (af) missing argu- articles (chtb001.fid to chtt_)931.f|d, 10,384 sen-
ment(s). tences) of CTB5.1, from which 75 double-annotated

files (chth001.fid to chth043.fid and cht®00.fid
4.3 A Hybrid Fine-Grained Strategy to chth.931.fid, 1,046 sentences) were used as test

As described in Section 2, there are three typélata? 75 files (chtb306.fid to chth325.fid and
of NLDs in the CTB. and their different lin- chth.400.fid to chth454.fid, 1,082 sentences) were

guistic properties may require fine-grained recoy€ld out as development data, while the other 610
ery strategies. Furthermore, as the NLD recoViles (8,256 sentences) were used as training data.

ery method described in Section 4.2 is triggeregxperiments were carried out on two different kinds
by “missing’ subcategorisable grammatical funcOf input: firston CTB gold standard trees stripped of

tions, a few cases of NLDs in which the trace is noftll €Mpty nodes and coindexation information; and
an arg_ument !n the f-structure, e.g. '@DJ_UNCT or ®The complete list of double-annotated files can be found in
TOPIC in relative clauses or an nWRED in verbal  the documentation of CTB5.1.
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second, on the output trees of Bikel's parser (Bikelsubcat frames and 178 paths linking traces and an-
2004). tecedents for NLD recovery. Tables 5 & 6 show
The evaluation metric adopted by most previousome examples of the automatically extracted sub-
work used the label and string position of the traceat frames and NLD paths respectively.
and its antecedent (Johnson, 2002). As pointed
out by (Campbell, 2004), this metric is insensitive — : <
to the correct attachment of the EC into the parse gg :‘;{iwjgﬂg:g{:ﬂgﬁ)obﬂ) o195
tree, and more importantly it is not clear whether B137.:VV-adj_rel([subj,xcomp]) 0.0337
it adequately measures performance in predicate- | - - o
argument structure recovery. Therefore, we use gﬂ:j"iwzgggﬁggzﬂgﬁ;’bﬂ) 8_‘53712
a predicate-argument based evaluation method in- | ...
stead. The NLD recovery is represented as a triple in 177:VV-top([subj, obj]) 0.5247
the form ofREL(PRED : loc, GF : loc), whererEL is &17:vv-top(subj.comp]) 0.2077
the relation between the dislocatedand theePRED. ~ —
In the evaluation for insertion of traces, tlka is Table 5: Examples of subcat frames
represented by the empty category, and in the eval-

| Word:POS-GF(Subcat Frames)  Prob. |

. . . [ Trace (Path) Prob. ]
uation for antecedent recovery, tGe is realised by . —— -

. adjunct(up-adjunct:down-topirel) 0.9018
the predicate of the antecedent, e@pJ(/fl/use:3, adjunct(up-adjunct:up-coord:down-topiel)  0.0192
£/money:1) in Figure 2(c). The antecedent and | adjunct(NULL) 0.0128
PRED are both numbered with their string position obi(up-obj:down-topicrel) 07915

in the input sentence. Precision, recall and f-score| obj(up-obj:up-coord:down-coord:down-obj) ~ 0.1108
are calculated for the evaluation. | -

subj(NULL) 6'_3903

51 CTB-Based F-Structureand NLD subj(up-subj:down-topicel) 02092
Resources Acquisition ~ ——
511 Automatically Acquired F-Structures Table 6: Examples of NLD paths

As described in Section 4.1, we automatically )

generate LFG f-structures from the CTB trees to ob5'2 The Basic Model

tain the training data and generate f-structures frorhhe basic algorithm described in Section 4.2 can
the parser output trees, on which the NLDs will bébe used to indiscriminately resolve almost all NLD
recovered. To evaluate the performance of the auttypes for Chinese including locally mediated de-
matic f-structure annotation algorithm, we randomlypendencies with few exceptions (traces with modi-
selected 200 sentences from the test set and mdier GFs, which accounts for about 1.5% of all NLDs
ually annotated the f-structures to generate a gold CTB5.1). Table 7 shows the results of the basic al-
standard. The evaluation metric is the same as f@orithm for trace insertion and antecedent recovery
NLD recovery in terms of predicate-argument relaon both stripped CTB trees and parser output trees.
tions. Table 4 reports the results against the 20@=or comparison, we implemented the C04 algorithm
sentence gold standard given the original CTB treea our data and evaluated the result. Since the ba-
and trees output by Bikel's parser. sic algorithm focus on argument traces, results for

| Dependencies | Precision Recall F-Scorg arguments only are given separately.. .

S TBTroos =60 TN _Table 7_ s_hows that the C04 algorithm achieves a
Parser Output|  74.37 7315  73.75 high precision but as expected a low recall due to
its limitation to certain types of NLDs. By con-

Table 4: Evaluation of f-structure annotation  trast, our basic algorithm scored higher recall but
lower precision, which is understandable as the C04

5.1.2 Acquiring Subcat Framesand NLD Paths  |gorithm identifies the trace given a known an-

From the automatically generated f-structureaecedent, whereas our algorithm tries to identify
training data, we extract 144,119 different lexicaboth the trace and antecedent. Compared to trace
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Insertion Recovery
CTB Trees Par ser Output CTB Trees Par ser Output
Prec. Rec. F | Prec. Rec. F Prec. Rec. F | Prec. Rec. F
(Cahill et al., 2004)
overall 9598 57.86 72.20] 73.00 40.28 51.91]| 90.16 54.35 67.82] 6554 36.16 46.61
argsonly || 98.64 42.03 58.94| 8269 30.54 44.60| 86.36 36.80 51.61| 66.08 24.40 35.64
Basic Mode
overall 9244 91.28 91.85 | 63.87 62.15 63.00 || 63.12 62.33 62.77 42.69 4154 42.10
argsonly || 89.42 9295 9115 | 60.89 63.45 6215 || 47.92 49.81 48.84 31.41 32.73 32.06
Basic Model with Subject Path Constraint
overall 92.16 9136 91.76| 63.72 6220 62.95] 75.96 7530 75.63 | 50.82 49.61 50.21
argsonly || 89.04 93.08 91.02| 60.69 6352 62.07| 66.15 69.15 67.62 | 42.77 4476 44.76

Table 7: Evaluation of trace insertion and antecedent exgdior C04 algorithm, our basic algorithm and
basic algorithm with the subject path constraint.

Insertion Recovery
Basic Modd Hybrid Modd Basic Modd Hybrid Mode
Prec. Rec. F | Prec. Rec. F Prec. Rec. F | Prec. Rec. F
Overall 92.16 91.36 91.7 9286 9145 9215 || 75.96 75.30 75.63 84.92 83.64 84.28
SUBJ 9295 9781 9532 9438 97.81 96.06| 66.93 70.42 68.63 81.61 84.57 83.0§
0BJ 65.28 64.98 65.13 7895 55.30 65.04| 61.57 61.29 61.43 75.66 53.00 62.33
ADJUNCT 0.0 0.0 0.0 | 38.24 25.49 30.59| 0.0 0.0 0.0 | 38.24 2549 30.59
TOPIC 0.0 0.0 0.0 | 33.33 3514 34.21| 0.0 0.0 0.0 | 33.33 3514 34.21
TOPICREL || 99.85 99.39 99.62 99.85 99.39 99.67| 99.85 99.39 99.67 99.85 99.39 99.62
COORD 90.00 100.00 94.74 90.00 100.00 94.74| 90.00 100.00 94.74 90.00 100.00 94.74

Table 8: Breakdown of trace insertion and antecedent regaesults on stripped CTB trees for the hybrid
model by major grammatical functions.

insertion, the general results for antecedent identifalso combine our basic algorithm (Section 4.2) with
cation are rather poor. Examining the developmer{Cabhill et al., 2004)’s algorithm in order to resolve
data, we found that most recovery errors were dubte modifier-function traces. The two algorithms
to wrongly treating missinguBxs as a PRO (using may conflict due to (i) inserting the same trace at
empty NLD paths). Since the subject in Chinese habe same site but related to different antecedents or
a very strong tendency to be omitted if it can be in{ii) resolving the same antecedent to different traces.
ferred from context, the empty NLD path (withoutWe keep the traces inserted by the C04 algorithm
any antecedent) has the greatest probability in alind abandon those inserted by our algorithm in case
resolution paths conditioned ®uBJy, and prevents of conflict, as the results in Section 5.2 suggest that
the susJfrom finding a proper antecedent in certainC04 has a higher precision than ours. Table 8 re-
cases. To test the effect of the empty pathsare,  ports the results of trace insertion and antecedent re-
we weighted non-empty paths feuBJso as to sup- covery, respectively, on stripped CTB trees, broken
press the empty path. After testing on the develogown by major GFs.

ment set, the optimal weight was found to be 1.9. ] ) )

The subject path constraint model shows a dramatic 1 '€ fine-grained hybrid model allows us to re-
improvement of 12.9% and 8.1% for the overall recover NLDs with traces with modifier functions and,

sult of antecedent recovery on CTB trees and parsBi°re importantly it is sensitive to particular linguis-
output trees. tic properties of different NLD types. As the hybrid

model separates the locally mediated dependencies
from other long-distance dependencies, it increases
the f-score by 8.7% for antecedent recovery com-
As proposed in Section 4.3, we implemented a mongared with the basic model. Table 9 reports the
fine-grained strategy to capture specific linguisticesults of the hybrid model on parser output trees,
properties of different NLD types in the CTB. Wewhich shows an increase of 3.6% for antecedent re-

5.3 TheHybrid Fine-Grained M od€l
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covery (compared with Table 7). each part in turn with the parser trained on the re-
_ maining 9 parts. The reparsed training data are more
Insertion Recovery similar to the test data than the original perfect CTB
Prec. Rec. F | Prec. Rec. F .
[overall] 64.07 62.37 6321 5453 5308 53.70 _trees. We then cqnyerted both th(_e reparsed train-
ing data and the original CTB trees into f-structures,
Table 9: Evaluation of hybrid model for trace inser-and by comparing with the f-structures generated
tion and antecedent recovery on parser output treeom the original CTB trees, we recovered the empty
nodes and coindexation on the f-structures gener-
ated from the reparsed training data. We used parser
Our experiments show that although our NLD recoveutput based f-structures to train our NLD recovery
ery algorithm performs well on stripped CTB treesmodel and recovered NLDs for parser output trees
it is sensitive to the noise in parser output trees, witfrom the test data. Table 10 presents the results
a performance drop of about 30%. This is in confor trace insertion and antecedent recovery on parser
trast to English data, on which (Johnson, 2002) resutput trees using the improved training method,
ports a drop of 7-9% moving from treebank trees tavhich shows a clear increase in precision and almost
parser output trees. No doubt this is partially due tthe same recall over the normal training (Table 9).
the poor performance of the parser on Chinese datg :
. . . . . Insertion Recovery
It is widely accepted that parsing Chinese is more Prec. Rec. E T Prec. Rec. E
difficult than parsing other more configurational Or [overall] 67.29 62.33 64.71] 56.88 52.69 54.71

richer morphological languages, such as Endlish. . . .
Our NLD recovery algorithm runs on automaticallyTable 10: Evaluation of hybrid model for trace inser-

generated LFG f-structures. The f-structure annotdlon and antecedent recovery on parser output trees
tion algorithm is highly tailored to the CTB brack- With better training.
eting_scheme (_using cqnfigurational, categoriql and conclusion
functional tag information), and suffers consider-
ably from errors produced by the parser. Table ¥Ve have presented an algorithm for recovering non-
shows that performance of the f-structure annotatioi@cal dependencies for Chinese. Our method revises
decreases sharply (about 22%) for the parser outpafid considerably extends the approach of (Cahill et
trees and this contributes to the eventual trace insetl, 2004) originally designed for English, and, to
tion and antecedent recovery performance drop. the best of our knowledge, is the first NLD recov-
Since the f-structures automatically generate@8y algorithm for Chinese. The evaluation shows
from parser output trees are substantially differeripat our algorithm considerably outperforms (Cahill
from those generated from the original CTB treestt al., 2004)’s with respect to Chinese data.
our method to obtain the NLD resolution training I future work, we will refine and extend the con-
data suffers from a serious drawback: the trainingitioning features in our models to discriminate sub-
data come from perfect CTB trees, whereas test dafiat frames and explore the possibilities to use the
are derived from imperfect parser output trees. Thighinese Propbank and Hownet to supplement our
constitutes a serious drawback for machine learnir@itomatically acquired subcat frames. We will in-
based approaches, such as ours: ideally, instancé@stigate ways of closing the gap between the per-
seen during training should be similar to unseen tefrmance of gold-standard and parer output trees,
data. To make training examples more similar to tegfcluding improving parsing result for Chinese. We
instances, we reparse the training set to obtain beilso plan to adapt other NLD recovery methods (Ji-
ter training data. To avoid running the parser on thikoun and Rijke, 2004; Schmid, 2006) to Chinese
training data, we carried out 10-fold-cross training@nd compare them with the current results.
dividing the training data into 10 parts and parsm%cknowledgements

5.4 Better Training for Parser Output

(Bikel, 2004) reports 89% f-score for English parsing of, . . . .
Penn-II treebank data and 79% f-score for Chinese parsing (;lr_'lms research is funded by Science Foundation Ire-
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