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Abstract

Inclusions from other languages can be a
significant source of errors for monolin-
gual parsers. We show this for English in-
clusions, which are sufficiently frequent to
present a problem when parsing German.
We describe an annotation-free approach for
accurately detecting such inclusions, and de-
velop two methods for interfacing this ap-
proach with a state-of-the-art parser for Ger-
man. An evaluation on the TIGER cor-
pus shows that our inclusion entity model
achieves a performance gain of 4.3 points in
F-score over a baseline of no inclusion de-
tection, and even outperforms a parser with
access to gold standard part-of-speech tags.

1 Introduction

The status of English as a global language means
that English words and phrases are frequently bor-
rowed by other languages, especially in domains
such as science and technology, commerce, adver-
tising, and current affairs. This is an instance oflan-
guage mixing, whereby inclusions from other lan-
guages appear in an otherwise monolingual text.
While the processing of foreign inclusions has re-
ceived some attention in the text-to-speech (TTS) lit-
erature (see Section 2), the natural language process-
ing (NLP) community has paid little attention both
to the problem of inclusion detection, and to poten-
tial applications thereof. Also the extent to which
inclusions pose a problem to existing NLP methods
has not been investigated.

In this paper, we address this challenge. We focus
on English inclusions in German text. Anglicisms

and other borrowings from English form by far the
most frequent foreign inclusions in German. In spe-
cific domains, up to 6.4% of the tokens of a Ger-
man text can be English inclusions. Even in regular
newspaper text as used for many NLP applications,
English inclusions can be found in up to 7.4% of all
sentences (see Section 3 for both figures).

Virtually all existing NLP algorithms assume that
the input is monolingual, and does not contain for-
eign inclusions. It is possible that this is a safe
assumption, and inclusions can be dealt with ac-
curately by existing methods, without resorting to
specialized mechanisms. The alternative hypothe-
sis, however, seems more plausible: foreign inclu-
sions pose a problem for existing approaches, and
sentences containing them are processed less ac-
curately. A parser, for example, is likely to have
problems with inclusions – most of the time, they
are unknown words, and as they originate from
another language, standard methods for unknown
words guessing (suffix stripping, etc.) are unlikely to
be successful. Furthermore, the fact that inclusions
are often multiword expressions (e.g., named enti-
ties) means that simply part-of-speech (POS) tag-
ging them accurately is not sufficient: if the parser
posits a phrase boundary within an inclusion this is
likely to severely decrease parsing accuracy.

In this paper, we focus on the impact of En-
glish inclusions on the parsing of German text. We
describe an annotation-free method that accurately
recognizes English inclusions, and demonstrate that
inclusion detection improves the performance of a
state-of-the-art parser for German. We show that the
way of interfacing the inclusion detection and the
parser is crucial, and propose a method for modify-
ing the underlying probabilistic grammar in order to
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enable the parser to process inclusions accurately.
This paper is organized as follows. We review re-

lated work in Section 2, and present the English in-
clusion classifier in Section 3. Section 4 describes
our results on interfacing inclusion detection with
parsing, and Section 5 presents an error analysis.
Discussion and conclusion follow in Section 6.

2 Related Work

Previous work on inclusion detection exists in the
TTS literature. Here, the aim is to design a sys-
tem that recognizes foreign inclusions on the word
and sentence level and functions at the front-end to
a polyglot TTS synthesizer. Pfister and Romsdor-
fer (2003) propose morpho-syntactic analysis com-
bined with lexicon lookup to identify foreign words
in mixed-lingual text. While they state that their sys-
tem is precise at detecting the language of tokens
and determining the sentence structure, it is not eval-
uated on real mixed-lingual text. A further approach
to inclusion detection is that of Marcadet et. al
(2005). They present experiments with a dictionary-
driven transformation-based learning method and a
corpus-based n-gram approach and show that a com-
bination of both methods yields the best results.
Evaluated on three mixed-lingual test sets in differ-
ent languages, the combined approach yields word-
based language identification error rates (i.e. the per-
centage of tokens for which the language is identi-
fied incorrectly) of 0.78% on the French data, 1.33%
on the German data and 0.84% on the Spanish data.
Consisting of 50 sentences or less for each language,
their test sets are very small and appear to be se-
lected specifically for evaluation purposes. It would
therefore be interesting to determine the system’s
performance on random and unseen data and exam-
ine how it scales up to larger data sets.

Andersen (2005), noting the importance of rec-
ognizing anglicisms to lexicographers, tests algo-
rithms based on lexicon lookup, character n-grams
and regular expressions and a combination thereof to
automatically extract anglicisms in Norwegian text.
On a 10,000 word subset of the neologism archive
(Wangensteen, 2002), the best method of combin-
ing character n-grams and regular expression match-
ing yields an accuracy of 96.32% and an F-score of
59.4 (P = 75.8%, R = 48.8%). This result is unsur-

prisingly low as no differentiation is made between
full-word anglicisms and tokens with mixed-lingual
morphemes in the gold standard.

In the context of parsing, Forst and Kaplan (2006)
have observed that the failure to properly deal with
foreign inclusions is detrimental to a parser’s accu-
racy. However, they do not substantiate this claim
using numeric results.

3 English Inclusion Detection

Previous work reported by Alex (2006; 2005) has
focused on devising a classifier that detects angli-
cisms and other English inclusions in text written in
other languages, namely German and French. This
inclusion classifier is based on a lexicon and search
engine lookup as well as a post-processing step.

The lexicon lookup is performed for tokens
tagged as noun (NN ), named entity (NE), foreign
material (FM ) or adjective (ADJA/ADJD) using the
German and English CELEX lexicons. Tokens only
found in the English lexicon are classified as En-
glish. Tokens found in neither lexicon are passed
to the search engine module. Tokens found in
both databases are classified by the post-processing
module. The search engine module performs lan-
guage classification based on the maximum nor-
malised score of the number of hits returned for two
searches per token, one for each language (Alex,
2005). This score is determined by weighting the
number of hits, i.e. the “absolute frequency” by the
estimated size of the accessible Web corpus for that
language (Alex, 2006). Finally, the rule-based post-
processing module classifies single-character tokens
and resolves language classification ambiguities for
interlingual homographs, English function words,
names of currencies and units of measurement. A
further post-processing step relates language infor-
mation between abbreviations or acronyms and their
definitions in combination with an abbreviation ex-
traction algorithm (Schwartz and Hearst, 2003). Fi-
nally, a set of rules disambiguates English inclusions
from person names (Alex, 2006).

For German, the classifier has been evaluated
on test sets in three different domains: newspaper
articles, selected from the Frankfurter Allgemeine
Zeitung, on internet and telecoms, space travel and
European Union related topics. Table 1 presents an
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Domain EI tokens EI types EI TTR Accuracy Precision Recall F

Internet 6.4% 5.9% 0.25 98.13% 91.58% 78.92% 84.78
Space 2.8% 3.5% 0.33 98.97% 84.02% 85.31% 84.66
EU 1.1% 2.1% 0.50 99.65% 82.16% 87.36% 84.68

Table 1: English inclusion (EI) token and type statistics, EI type-token-ratios (TTR) as well as accuracy,
precision, recall and F-scores for the unseen German test sets.

overview of the percentages of English inclusion to-
kens and types within the gold standard annotation
of each test set, and illustrates how well the English
inclusion classifier is able to detect them in terms
of F-score. The figures show that the frequency of
English inclusions varies considerably depending on
the domain but that the classifier is able to detect
them equally well with an F-score approaching 85
for each domain.

The recognition of English inclusions bears sim-
ilarity to classification tasks such as named en-
tity recognition, for which various machine learning
(ML) techniques have proved successful. In order to
compare the performance of the English inclusion
classifier against a trained ML classifier, we pooled
the annotated English inclusion evaluation data for
all three domains. As the English inclusion classifier
does not rely on annotated data, it can be tested and
evaluated once for the entire corpus. The ML classi-
fier used for this experiment is a conditional Markov
model tagger which is designed for, and proved suc-
cessful in, named entity recognition in newspaper
and biomedical text (Klein et al., 2003; Finkel et al.,
2005). It can be trained to perform similar informa-
tion extraction tasks such as English inclusion detec-
tion. To determine the tagger’s performance over the
entire set and to investigate the effect of the amount
of annotated training data available, a 10-fold cross-
validation test was conducted whereby increasing
sub-parts of the training data are provided when test-
ing on each fold. The resulting learning curves in
Figure 1 show that the English inclusion classifier
has an advantage over the supervised ML approach,
despite the fact the latter requires expensive hand-
annotated data. A large training set of 80,000 tokens
is required to yield a performance that approximates
that of our annotation-free inclusion classifier. This
system has been shown to perform similarly well on
unseen texts in different domains, plus it is easily
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Figure 1: Learning curve of a ML classifier versus
the English inclusion classifier’s performance.

extendable to a new language (Alex, 2006).

4 Experiments

The primary focus of this paper is to apply the En-
glish inclusion classifier to the German TIGER tree-
bank (Brants et al., 2002) and to evaluate the clas-
sifier on a standard NLP task, namely parsing. The
aim is to investigate the occurrence of English in-
clusions in more general newspaper text, and to ex-
amine if the detection of English inclusions can im-
prove parsing performance.

The TIGER treebank is a bracketed corpus con-
sisting of 40,020 sentences of newspaper text. The
English inclusion classifier was run once over the
entire TIGER corpus. In total, the system detected
English inclusions in 2,948 of 40,020 sentences
(7.4%), 596 of which contained at least one multi-
word inclusion. This subset of 596 sentences is the
focus of the work reported in the remainder of this
paper, and will be referred to as the inclusion set.

A gold standard parse tree for a sentence contain-
ing a typical multi-word English inclusion is illus-
trated in Figure 2. The tree is relatively flat, which
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is a trait trait of TIGER treebank annotation (Brants
et al., 2002). The non-terminal nodes of the tree rep-
resent the phrase categories, and the edge labels the
grammatical functions. In the example sentence, the
English inclusion is contained in a proper noun (PN)
phrase with a grammatical function of type noun
kernel element (NK ). Each terminal node is POS-
tagged as a named entity (NE) with the grammatical
function ot type proper noun component (PNC).

4.1 Data

Two different data sets are used in the experiments:
(1) the inclusion set, i.e., the sentences containing
multi-word English inclusions recognized by the in-
clusion classifier, and (2) a stratified sample of sen-
tences randomly extracted from the TIGER corpus,
with strata for different sentence lengths. The strata
were chosen so that the sentence length distribution
of the random set matches that of the inclusion set.
The average sentence length of this random set and
the inclusion set is therefore the same at 28.4 tokens.
This type of sampling is necessary as the inclusion
set has a higher average sentence length than a ran-
dom sample of sentences from TIGER, and because
parsing accuracy is correlated with sentence length.
Both the inclusion set and the random set consist of
596 sentences and do not overlap.

4.2 Parser

The parsing experiments were performed with a
state-of-the-art parser trained on the TIGER corpus
which returns both phrase categories and grammati-
cal functions (Dubey, 2005b). Following Klein and
Manning (2003), the parser uses an unlexicalized
probabilistic context-free grammar (PCFG) and re-
lies on treebank transformations to increase parsing
accuracy. Crucially, these transformations make use
of TIGER’s grammatical functions to relay pertinent
lexical information from lexical elements up into the
tree.

The parser also makes use of suffix analysis.
However, beam search or smoothing are not em-
ployed. Based upon an evaluation on the NEGRA
treebank (Skut et al., 1998), using a 90%-5%-5%
training-development-test split, the parser performs
with an accuracy of 73.1 F-score on labelled brack-
ets with a coverage of 99.1% (Dubey, 2005b). These
figures were derived on a test set limited to sentences

containing 40 tokens or less. In the data set used
in this paper, however, sentence length is not lim-
ited. Moreover, the average sentence length of our
test sets is considerably higher than that of the NE-
GRA test set. Consequently, a slightly lower perfor-
mance and/or coverage is anticipated, albeit the type
and domain as well as the annotation of both the NE-
GRA and the TIGER treebanks are very similar. The
minor annotation differences that do exist between
NEGRA and TIGER are explained in Brants et. al
(2002).

4.3 Parser Modifications

We test several variations of the parser. Thebaseline
parser does not treat foreign inclusions in any spe-
cial way: the parser attempts to guess the POS tag
and grammatical function labels of the word using
the same suffix analysis as for rare or unseen Ger-
man words. The additional versions of the parser
are inspired by the hypothesis that inclusions make
parsing difficult, and this difficulty arises primarily
because the parser cannot detect inclusions prop-
erly. Therefore, a suitable upper bound is to give
the parserperfect tagging information. Two further
versions interface with our inclusion classifier and
treat words marked as inclusions differently from
native words. The first version does so on aword-
by-word basis. In contrast, theinclusion entity ap-
proach attempts to group inclusions, even if a group-
ing is not posited by phrase structure rules. We now
describe each version in more detail.

In the TIGER annotation, preterminals include
both POS tags and grammatical function labels.
For example, rather than a preterminal node hav-
ing the categoryPRELS (personal pronoun), it is
given the categoryPRELS-OA(accusative personal
pronoun). Due to these grammatical function tags,
the perfect tagging parser may disambiguate more
syntactic information than provided with POS tags
alone. Therefore, to make this model more realistic,
the parser is required to guess grammatical functions
(allowing it to, for example, mistakenly tag an ac-
cusative pronoun as nominative, dative or genitive).
This gives the parser information about the POS tags
of English inclusions (along with other words), but
does not give any additional hints about the syntax
of the sentence.

The two remaining models both take advantage
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Figure 2: Example parse tree of a German TIGER sentence containing an English inclusion. Translation:
The nicest road movie came from Switzerland.

NE FM NN KON CARD ADJD APPR
1185 512 44 8 8 1 1

Table 2: POS tags of foreign inclusions.

PN

FOM

. . .

FOM

. . .
(a) Whenever aFOM is encoun-
tered...

PN

FP

FOM

. . .

FOM

. . .
(b) ...a newFP category is cre-
ated

Figure 3: Tree transformation employed in thein-
clusion entityparser.

of information from the inclusion detector. To inter-
face the detector with the parser, we simply mark
any inclusion with a specialFOM (foreign mate-
rial) tag. The word-by-word parser attempts to guess
POS tags itself, much like the baseline. However,
whenever it encounters aFOM tag, it restricts itself
to the set of POS tags observed in inclusions during
training (the tags listed in Table 2). When aFOM is
detected, these and only these POS tags are guessed;
all other aspects of the parser remain the same.

The word-by-word parser fails to take advantage
of one important trend in the data: that foreign in-
clusion tokens tend to be adjacent, and these adja-
cent words usually refer to the same entity. There
is nothing stopping the word-by-word parser from
positing a constituent boundary between two adja-
cent foreign inclusions. The inclusion entity model
was developed to restrict such spurious bracketing.
It does so by way of another tree transformation.
The new categoryFP (foreign phrase) is added be-
low any node dominating at least one token marked
FOM during training. For example, when encoun-
tering aFOM sequence dominated byPN as in Fig-
ure 3(a), the tree is modified so that it is theFP rule
which generates theFOM tokens. Figure 3(b) shows
the modified tree. In all cases, a unary rulePN→FP
is introduced. As this extra rule decreases the proba-
bility of the entire tree, the parser has a bias to intro-
duce as few of these rules as possible – thus limiting
the number of categories which expand toFOMs.
Once a candidate parse is created during testing, the
inverse operation is applied, removing theFP node.

4.4 Method

For all experiments reported in this paper, the parser
is trained on the TIGER treebank. As the inclusion
and random sets are drawn from the whole TIGER
treebank, it is necessary to ensure that the data used
to train the parser does not overlap with these test
sentences. The experiments are therefore designed
as multifold cross-validation tests. Using 5 folds,
each model is trained on 80% of the data while the
remaining 20% are held out. The held out set is then
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Data P R F Dep. Cov. AvgCB 0CB ≤2CB

Baseline model

Inclusion set 56.1 62.6 59.2 74.9 99.2 2.1 34.0 69.0
Random set 63.3 67.3 65.2 81.1 99.2 1.6 40.4 75.1

Perfect tagging model

Inclusion set 61.3 63.0 62.2 75.1 92.7 1.7 41.5 72.6
Random set 65.8 68.9 67.3 82.4 97.7 1.4 45.9 77.1

Word-by-word model

Inclusion set 55.6 62.8 59.0 73.1 99.2 2.1 34.2 70.2
Random set 63.3 67.3 65.2 81.1 99.2 1.6 40.4 75.1

Inclusion entity model

Inclusion set 61.3 65.9 63.5 78.3 99.0 1.7 42.4 77.1
Random set 63.4 67.5 65.4 80.8 99.2 1.6 40.1 75.7

Table 3: Baseline and perfect tagging for inclusion and random sets andresults for the word-by-word and
the inclusion entity models.

intersected with the inclusion set (or, respectively,
the random set). The evaluation metrics are calcu-
lated on this subset of the inclusion set (or random
set), using the parser trained on the corresponding
training data. This process ensures that the test sen-
tences are not contained in the training data.

The overall performance metrics of the parser are
calculated on the aggregated totals of the five held
out test sets. For each experiment, we report pars-
ing performance in terms of the standard PARSE-
VAL scores (Abney et al., 1991), including cov-
erage (Cov), labeled precision (P) and recall (R),
F-score, the average number of crossing brackets
(AvgCB), and the percentage of sentences parsed
with zero and with two or fewer crossing brack-
ets (0CB and≤2CB). In addition, we also report
dependency accuracy (Dep), calculated using the
approach described in Lin (1995), using the head-
picking method used by Dubey (2005a). The la-
beled bracketing figures (P, R and F), and the de-
pendency score are calculated on all sentences, with
those which are out-of-coverage getting zero nodes.
The crossing bracket scores are calculated only on
those sentences which are successfully parsed.

4.5 Baseline and Perfect Tagging

The baseline, for which the unmodified parser is
used, achieves a high coverage at over 99% for both
the inclusion and the random sets (see Table 3).

However, scores differ for the bracketing measures.
Using stratified shuffling1, we performed at-test on
precision and recall, and found both to be signif-
icantly worse in the inclusion condition. Overall,
the harmonic mean (F) of precision and recall was
65.2 on the random set, 6 points better than 59.2
F observed on the inclusion set. Similarly, depen-
dency and cross-bracketing scores are higher on the
random test set. This result strongly indicates that
sentences containing English inclusions present dif-
ficulty for the parser, compared to length-matched
sentences without inclusions.

When providing the parser with perfect tagging
information, scores improve both for the inclusion
and the random TIGER samples, resulting in F-
scores of 62.2 and 67.3, respectively. However, the
coverage for the inclusion set decreases to 92.7%
whereas the coverage for the random set is 97.7%.
In both cases, the lower coverage is caused by the
parser being forced to use infrequent tag sequences,
with the much lower coverage of the inclusion set
likely due to infrequent tags (notableFM ), solely
associated with inclusions. While perfect tagging
increases overall accuracy, a difference of 5.1 in F-
score remains between the random and inclusion test
sets. Although smaller than that of the baseline runs,
this difference shows that even with perfect tagging,

1This approach to statistical testing is described in:http:
//www.cis.upenn.edu/˜dbikel/software.html
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parsing English inclusions is harder than parsing
monolingual data.

So far, we have shown that the English inclusion
classifier is able to detect sentences that are difficult
to parse. We have also shown that perfect tagging
helps to improve parsing performance but is insuffi-
cient when it comes to parsing sentences containing
English inclusions. In the next section, we will ex-
amine how the knowledge provided by the English
inclusion classifier can be exploited to improve pars-
ing performance for such sentences.

4.6 Word-by-word Model

The word-by-word model achieves the same cover-
age on the inclusion set as the baseline but with a
slightly lower F of 59.0. All other scores, includ-
ing dependency accuracy and cross bracketing re-
sults are similar to those of the baseline (see Ta-
ble 3). This shows that limiting the parser’s choice
of POS tags to those encountered for English inclu-
sions is not sufficient to deal with such constructions
correctly. In the error analysis presented in Sec-
tion 5, we report that the difficulty in parsing multi-
word English inclusions is recognizing them as con-
stituents, rather than recognizing their POS tags. We
attempt to overcome this problem with the inclusion
entity model.

4.7 Inclusion Entity Model

The inclusion entity parser attains a coverage of
99.0% on the inclusion set, similiar to the cover-
age of 99.2% obtained by the baseline model on
the same data. On all other measures, the inclu-
sion entity model exceeds the performance of the
baseline, with a precision of 61.3% (5.2% higher
than the baseline), a recall of 65.9% (3.3% higher),
an F of 63.5 (4.3 higher) and a dependency accu-
racy of 78.3% (3.4% higher). The average number
of crossing brackets is 1.7 (0.4 lower), with 42.4%
of the parsed sentences having no crossing brack-
ets (8.2% higher), and 77.1% having two or fewer
crossing brackets (8.1% higher). When testing the
inclusion entity model on the random set, the per-
formance is very similar to the baseline model on
this data. While coverage is the same, F and cross-
brackting scores are marginally improved, and the
dependency score is marginally deteriorated. This
shows that the inclusion entity model does not harm
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Figure 4: Average relative token frequencies for sen-
tences of equal length.

the parsing accuracy of sentences that do not actu-
ally contain foreign inclusions.

Not only did the inclusion entity parser perform
above the baseline on every metric for the inclusion
set, its performance also exceeds that of the perfect
tagging model on all measures except precision and
average crossing brackets, where both models are
tied. These results clearly indicate that the inclusion
entity model is able to leverage the additional infor-
mation about English inclusions provided by our in-
clusion classifier. However, it is also important to
note that the performance of this model on the in-
clusion set is still consistently lower than that of all
models on the random set. This demonstrates that
sentences with inclusions are more difficult to parse
than monolingual sentences, even in the presence of
information about the inclusions that the parser can
exploit.

Comparing the inclusion set to the length-
matched random set is arguably not entirely fair as
the latter may not contain as many infrequent tokens
as the inclusion set. Figure 4 shows the average rel-
ative token frequencies for sentences of equal length
for both sets. The frequency profiles of the two data
sets are broadly similar (the difference in means of
both groups is only 0.000676), albeit significantly
different according to a pairedt-test (p≤ 0.05). This
is one reason why the inclusion entity model’s per-
formance on the inclusion set does not reach the up-
per limit set by the random sample.
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Phrase cat. Frequency Example

PN 91 The Independent
CH 10 Made in Germany
NP 4 Peace Enforcement

CNP 2 Botts and Company
– 2 Chief Executives

Table 4: Gold phrase categories of inclusions.

5 Error Analysis

The error analysis is limited to 100 sentences se-
lected from the inclusion set parsed with both the
baseline and the inclusion entity model. This sam-
ple contains 109 English inclusions, five of which
are false positives, i.e., the output of the English in-
clusion classifier is incorrect. The precision of the
classifier in recognizing multi-word English inclu-
sions is therefore 95.4% for this TIGER sample.

Table 4 illustrates that the majority of multi-word
English inclusions are contained in a proper noun
(PN) phrase, including names of companies, politi-
cal parties, organizations, films, newspapers, etc. A
less frequent phrasal category is chunk (CH) which
tends to be used for slogans, quotes or expressions
like Made in Germany. Even in this small sam-
ple, annotations of inclusions as eitherPN or CH,
and not the other, can be misleading. For example,
the organizationFriends of the Earthis annotated
as aPN, whereas another organizationInternational
Union for the Conservation of Natureis marked as
a CH in the gold standard. This suggests that the
annotation guidelines on foreign inclusions could be
improved when differentiating between phrase cate-
gories containing foreign material.

For the majority of sentences (62%), the baseline
model predicts more brackets than are present in the
gold standard parse tree (see Table 5). This number
decreases by 11% to 51% when parsing with the in-
clusion entity model. This suggests that the baseline
parser does not recognize English inclusions as con-
stituents, and instead parses their individual tokens
as separate phrases. Provided with additional infor-
mation of multi-word English inclusions in the train-
ing data, the parser is able to overcome this problem.

We now turn our attention to how accurately the
various parsers are at predicting both phrase brack-
eting and phrase categories (see Table 6). For 46

Phrase bracket (PB) frequency BL IE

PBPRED> PBGOLD 62% 51%
PBPRED< PBGOLD 11% 13%
PBPRED= PBGOLD 27% 36%

Table 5: Bracket frequency of the predicted baseline
(BL) and inclusion entity (IE) model output com-
pared to the gold standard.

(42.2%) of inclusions, the baseline model makes an
error with a negative effect on performance. In 39
cases (35.8%), the phrase bracketing and phrase cat-
egory are incorrect, and constituent boundaries oc-
cur within the inclusion, as illustrated in Figure 5(a).
Such errors also have a detrimental effect on the
parsing of the remainder of the sentence. Overall,
the baseline model predicts the correct phrase brack-
eting and phrase category for 63 inclusions (57.8%).
Conversely, the inclusion entity model, which is
given information on tag consistency within inclu-
sions via theFOM tags, is able to determine the
correct phrase bracketing and phrase category for
67.9% inclusions (10.1% more), e.g. see Figure 5(b).
Both the phrase bracketing and phrase category are
predicted incorrectly in only 6 cases (5.5%). The
inclusion entity model’s improved phrase boundary
prediction for 31 inclusions (28.4% more correct) is
likely to have an overall positive effect on the pars-
ing decisions made for the context which they ap-
pear in. Nevertheless, the inclusion entity parser still
has difficulty determining the correct phrase cate-
gory in 25 cases (22.9%). The main confusion lies
between assigning the categoriesPN, CH andNP,
the most frequent phrase categories of multi-word
English inclusions. This is also partially due to the
ambiguity between these phrases in the gold stan-
dard. Finally, few parsing errors (4) are caused by
the inclusion entity parser due to the markup of false
positive inclusions (mainly boundary errors).

6 Discussion and Conclusion

This paper has argued that English inclusions in
German text is an increasingly pervasive instance
of language mixing. Starting with the hypothesis
that such inclusions can be a significant source of
errors for monolingual parsers, we found evidence
that an unmodified state-of-the-art parser for Ger-
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(a) Partial parsing output of the baseline model with a con-
stiuent boundary in the English inclusion.
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(b) Partial parsing output of the inclusion en-
tity model with the English inclusion parsed cor-
rectly.

Figure 5: Comparing baseline model output to inclusion entity model output.

Errors No. of inclusions (in %)

Parser: baseline model, data: inclusion set
Incorrect PB and PC 39 (35.8%)
Incorrect PC 5 (4.6%)
Incorrect PB 2 (1.8%)
Correct PB and PC 63 (57.8%)

Parser: inclusion entity model, data: inclusion set
Incorrect PB and PC 6 (5.5%)
Incorrect PC 25 (22.9%)
Incorrect PB 4 (3.7%)
Correct PB and PC 74 (67.9%)

Table 6: Baseline and inclusion entity model errors
for inclusions with respect to their phrase bracketing
(PB) and phrase category (PC).

man performs substantially worse on a set of sen-
tences with English inclusions compared to a set of
length-matched sentences randomly sampled from
the same corpus. The lower performance on the
inclusion set persisted even when the parser when
given gold standard POS tags in the input.

To overcome the poor accuracy of parsing inclu-
sions, we developed two methods for interfacing the
parser with an existing annotation-free inclusion de-
tection system. The first method restricts the POS
tags for inclusions that the parser can assign to those
found in the data. The second method applies tree
transformations to ensure that inclusions are treated
as phrases. An evaluation on the TIGER corpus
shows that the second method yields a performance

gain of 4.3 in F-score over a baseline of no inclusion
detection, and even outperforms a model involving
perfect POS tagging of inclusions.

To summarize, we have shown that foreign inclu-
sions present a problem for a monolingual parser.
We also demonstrated that it is insufficient to know
where inclusions are or even what their parts of
speech are. Parsing performance only improves if
the parser also has knowledge about the structure of
the inclusions. It is particularly important to know
when adjacent foreign words are likely to be part of
the same phrase. As our error analysis showed, this
prevents cascading errors further up in the parse tree.

Finally, our results indicate that future work could
improve parsing performance for inclusions further:
we found that parsing the inclusion set is still harder
than parsing a randomly sampled test set, even for
our best-performing model. This provides an up-
per bound on the performance we can expect from
a parser that uses inclusion detection. Future work
will also involve determining the English inclusion
classifier’s merit when applied to rule-based parsing.
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