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Abstract 
There exist several methods of calculating a similar- 
ity curve, or a sequence of similarity values, repre- 
senting the lexical cohesion of successive text con- 
stituents, e.g., paragraphs. Methods for deciding 
the locations of fragment boundaries are, however, 
scarce. We propose a fragmentation method based 
on dynamic programming. The method is theoret- 
ically sound and guaranteed to provide an optimal 
splitting on the basis of a similarity curve, a pre- 
ferred fragment length, and a cost function defined. 
The method is especially useful when control on 
fragment size is of importance. 

1 Introduction 
Electronic full-text documents and digital libraries 
make the utilization of texts much more effective 
than before; yet, they pose new problems and re- 
quirements. For example, document retrieval based 
on string searches typically returns either the whole 
document or just the occurrences of the searched 
words. What the user often is after, however, is mi- 
crodocument: a part of the document that contains 
the occurrences and is reasonably self-contained. 

Microdocuments can be created by utilizing lex- 
ical cohesion (term repetition and semantic rela- 
tions) present in the text. There exist several meth- 
ods of calculating a similarity curve, or a sequence 
of similarity values, representing the lexical cohe- 
sion of successive constituents (such as paragraphs) 
of text (see, e.g., (Hearst, 1994; Hearst, 1997; Koz- 
ima, 1993; Morris and Hirst, 1991; Yaari, 1997; 
Youmans, 1991)). Methods for deciding the loca- 
tions of fragment boundaries are, however, not that 
common, and those that exist are often rather heuris- 
tic in nature. 

To evaluate our fragmentation method, to be ex- 
plained in Section 2, we calculate the paragraph 
similarities as follows. We employ stemming, re- 
move stopwords, and count the frequencies of the 

remaining words, i.e., terms. Then we take a pre- 
defined number, e.g., 50, of the most frequent terms 
to represent the paragraph, and count the similar- 
ity using the cosine coefficient (see, e.g., (Salton, 
1989)). Furthermore, we have applied a sliding win- 
dow method: instead of just one paragraph, sev- 
eral paragraphs on both sides of each paragraph 
boundary are considered. The paragraph vectors are 
weighted based on their distance from the boundary 
in question with immediate paragraphs having the 
highest weight. The benefit of using a larger win- 
dow is that we can smooth the effect of short para- 
graphs and such, perhaps example-type, paragraphs 
that interrupt a chain of coherent paragraphs. 

2 Fragmentation by Dynamic 
Programming 

Fragmentation is a problem of choosing the para- 
graph boundaries that make the best fragment 
boundaries. The local minima of the similarity 
curve are the points of low lexical cohesion and thus 
the natural candidates. To get reasonably-sized mi- 
crodocuments, the similarity information alone is 
not enough; also the lengths of the created frag- 
ments have to be considered. In this section, we de- 
scribe an approach that performs the fragmentation 
by using both the similarities and the length infor- 
mation in a robust manner. The method is based on 
a programming paradigm called dynamic program- 
ming (see, e.g., (Cormen et al., 1990)). Dynamic 
programming as a method guarantees the optimal- 
ity of the result with respect to the input and the 
parameters. 

The idea of the fragmentation algorithm is as fol- 
lows (see also Fig. 1). We start from the first bound- 
ary and calculate a cost for it as if the first paragraph 
was a single fragment. Then we take the second 
boundary and attach to it the minimum of the two 
available possibilities: the cost of the first two para- 
graphs as if they were a single fragment and the cost 
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fragmentation(n, p, h, len[1..n], sim[1..n - 1]) 
/* n no. of pars, p preferred flag length, h scaling */ 
/* len[1..n] par lengths, sim[1..n - 1] similarities */ 
{ 

sire[O] := 0.0; cost[O] := 0.0; B := q~; 
for par := 1 to n { 

/ensure := 0;/* cumulative fragment length */ 
C m i  n :~-~ MAXREAL; 
fori  := par to I { 

lensum := len.~um + len[i]; 
C := Clen(le~sum, p, h); 
if c > cmi, {/* optimization */ 

exit the innermost for loop; 
} 
c := c + cost[i - 1] + sim[i - 1]; 
if  c < Cmi n { 

C m i  n : - -~  C ;  lOt-train : =  i - 1; 
} 

} 
cost[par] := Cmi,,; linkprev[par] := loc-cmin; 

} 
j := n; 
while linkprev[j] > 0 { 

/3 := /3  U linkprev[j]; j := linkprev[j]; 
} 
return(B);/* set of chosen fragment boundaries */ 

} 

Figure 1: The dynamic programming algorithm for 
fragment boundary detection. 

of the second paragraph as a separate fragment. In 
tile following steps, the evaluation moves on by one 
paragraph at each time, and all the possible loca- 
tions of the previous breakpoint are considered. We 
continue this procedure till the end of the text, and 
finally we can generate a list of breakpoints that in- 
dicate the fragmentation, 

The cost at each boundary is a combination of 
three components: the cost of fragment length Clen, 
and the cost cost[.] and similarity sim[.] of some 
previous boundary. The cost function Cle n gives the 
lowest cost for the preferred fragment length given 
by the user, say, e.g., 500 words. A fragment which 
is either shorter or longer gets a higher cost, i.e., is 
punished for its length. We have experimented with 
two families of cost functions, a family of second 
degree functions (parabolas), 

Clen(X,p,]t) = h(pl  x2 _ p'2"/; -it- 1), 

and V-shape linear functions, 

: Ih(  - 1)1, 

1485 

Mars.  chapter  U. Section L 

l 0.6 
0.5 
0.4 
0.3 " " x /  

0.2 
0.1 

O 3~LILL~. I[ 
l o00  

...... ÷-4 

l l l l l  
2OOO 

..d 

i :1 i i [ iI ~ 
3O00 

"W6ClinHO,25L" 
"W6ClinH0.SL" 

[ "W6ClinH0.75L" 

t t -woc , ,%~:  ...... 

I.:/'\1 

40OO 5 O O O  6 O O O  7O00 
word¢ounl 

(a) 
Mars.  Chapter IL Section L 

"E 
= °6il i 0.5 

0.3 - " ' x -  l ' 

0.2 
01  

O [ d L  11 
10130 2000 

] 

300O 

• "W6C rHO 25L" 
.W6C[~ap~rHO 5L • 

Zl "W6C rH0 75L" 
" W 6 ~ a r H  I .OL" 

• "WgCp~rH 1.25L" 
"W6CparH 1.5L" 

/ / ^  

[ l l ' l J  II El , 
4000 50O0 80O11 7000 

wordeount 

(b) 

Figure 2: Similarity curve and detected fragment 
boundaries with different cost functions. (a) Lin- 
ear. (b) Parabola. p is 600 words in both (a) & (b). 
"H0.25", etc., indicates the value of h. Vertical bars 
indicate fragment boundaries while short bars below 
horizontal axis indicate paragraph boundaries. 

where x is the actual fragment length, p is the pre- 
ferred fragment length given by the user, and h is a 
scaling parameter that allows us to adjust the weight 
given to fragment length. The smaller the value of 
h, the less weight is given to the preferred fragment 
length in comparison with the similarity measure. 

3 E x p e r i m e n t s  

As test data we used Mars  by Percival Lowell, 1895. 
As an illustrative example, we present the analysis 
of Section I. Evidence o f  it of Chapter II. Atmo-  
sphere. The  length of the section is approximately 
6600 words and it contains 55 paragraphs. The fi'ag- 
ments found with different parameter settings can 
be seen in Figure 2. One of the most interesting is 
the one with parabola cost function and h = .5. In 
this case the fragment length adjusts nicely accord- 
ing to the similarity curve. Looking at the text, most 
fragments have an easily identifiable topic, like at- 
mospheric chemistry ill fragment 7. Fragments 2 
and 3 seem to have roughly the same topic: measur- 
ing the diameter of the planet Mars. The tact that 
they do not form a single fragment can be explained 
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lav~ lmin /max  dav$ 
1096.1 501 3101  476.5 
706.4 501 1328  110.5 
635.7 515 835 60.1 
635.7 515 835 59.5 
635.7 515 835 59.5 
635.7 515 835 57.6 
908.2 501 1236  269.4 
691.0 319 1020  126.0 
676.3 371 922 105.8 
662.2 371 866 94.2 
648.7 466 835 82.4 
635.7 473 835 69.9 

Table 1: Variation of fragment length. Columns: 
lavg, /rain, lmax average, minimum, and maximum 
fragment length; and davg average deviation. 

by the preferred fragment length requirement. 
Table 1 summarizes the effect of the scaling fac- 

tor h in relation to the fragment length variation 
with the two cost functions over those 8 sections 
of Mars that have a length of at least 20 para- 
graphs. The average deviation davg with respect 
to the preferred fragment length p is defined as 
davg : ( ~ = 1  Ip - li])/rr~ where li is the length of 
fragment i, and rn is the number of fragments. The 
parametric cost function chosen affects the result a 
lot. As expected, the second degree cost function 
allows more variation than the linear one but roles 
change with a small h. Although the experiment is 
insufficient, we can see that in this example a factor 
h > 1.0 is unsuitable with the linear cost function 
(and h = 1.5 with the parabola) since in these cases 
so much weight is given to the fragment length that 
fragment boundaries can appear very close to quite 
strong local maxima of the similarity curve. 

4 Conclusions 

In this article, we presented a method for detect- 
ing fragment boundaries in text. The fragmentation 
method is based on dynamic programming and is 
guaranteed to give an optimal solution with respect 
to a similarity curve, a preferred fragment length, 
and a parametric fragment-length cost function de- 
fined. The method is independent of the similarity 
calculation. This means that any method, not nec- 
essarily based on lexical cohesion, producing a suit- 
able sequence of similarities can be used prior to 
our fragmentation method. For example, the lexical 
cohesion profile (Kozima, 1993) should be perfectly 
usable with our fragmentation method. 
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The method is especially useful when control 
over fragment size is required. This is the case 
in passage retrieval since windows of 1000 bytes 
(Wilkinson and Zobel, 1995) or some hundred 
words (Callan, 1994) have been proposed as best 
passage sizes. Furthermore, we believe that frag- 
ments of reasonably similar size are beneficial in 
our intended purpose of document assembly. 
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