
Transforming Lattices into Non-deterministic Automata with
Optional Null Arcs

Mark Seligman, Christian Boitet, Boubaker Meddeb-Hamrouni
Univcrsit6 Joseph Fourier

GETA, CLIPS, IMAG-campus, BP 53
150, rue de la Chimie

38041 Grenoble Cedex 9, France
seligman@cerf, net,

{Christian. Boitet, Boubaker. Meddeb-Hamrouni } @ imag. fr

Abstract
The problem of transforming a lattice into a
non-deterministic finite state automaton is
non-trivial. We present a transformation al-
gorithm which tracks, for each node of an
automaton under construction, the lares
which it reflects and the lattice nodes at their
origins and extremities. An extension of the
algorithm permits the inclusion of null, or
epsilon, arcs in the output automaton. The
algorithm has been successfully applied to
lattices derived from dictionaries, i.e. very
large corpora of strings.

Introduction
Linguistic data -- grammars, speech recognition
results, etc. -- arc sometimes represented as lat-
tices, and sometimes as equivalent finite state
automata. While the transIormation of automata
into lattices is straightforward, we know of no
algorithm in the current literature for trans-
forming a lattice into a non-deterministic finite
state automaton. (See e.g. Hopcroft et al (1979),
Aho et al (1982).)

We describe such an algorithm here. Its main
feature is the maintenance of complete records
of the relationships between objects in the input
lattice and their images on all automaton as these
are added during transformation. An extension
of the algorithm permits the inclusion of null, or
epsilon, arcs in the output automaton.

Tile method we present is somewhat complex,
but we have thus far been unable to discover a
simpler one. One suggestion illustrates the diffi-
culties: this proposal was simply to slide lattice
node labels leftward onto their incoming arcs,
and then, starting with the final lattice node, to
merge nodes with identical outgoing arc sets.

This strategy does successfully transform many
lattices, but fails on lattices like this one:

F i g u r e 1

For this lattice, tile sliding strategy fails to pro-
duce either of the following acceptable solu-
tions. To produce the epsilon arc of 2a or the
bifurcation of I:igure 2b, more elaborate meas-
ures seem to be needed.

a.

a

b. ~ Figure 2

We present our datastructures in Section 1; our
basic algorithm in Section 2; and the modifica-
tions which enable inclusion of epsilon automa-
ton arcs in Section 3. Before concluding, we
provide an extended example of the algorithm
in operation in Section 4. Complete pseudocode
and source code (in Common Lisp) are available
from the authors.

1 Structures and terms

We begin with datastructures and terminology. A
lattice structure contains lists of Inodes (lattice
nodes), lares (lattice arcs), and pointers to the
in|tlal.lnode and finai.lnode. All inode has a
label and lists of incoming.lares and outgo-
ing.lares. It also has a list of a-ares (automaton

1205

arcs) which reflect it. A larc has an or ig in and
extremity. Similarly, an au toma ton structure
has anodes (automaton nodes), a-arcs, and
pointers to the initial.anode and final .anode.
An anode has a label, a list of lares which it re-
flects, and lists of incoming.a-arcs and outgo-
lng.a-ares Finally, an a-are has a pointer to its
lnode, origin, extremity, and label.

We said that an anode has a pointer to the list of
lares which it reflects. However, as will be seen,
we must also partition these lares according to
their shared origins and extremities in the lattice.
For this purpose, we include the field
la rc .or tg in .groups in each anode. Its value is
structured as follows: (((larc larc ...) lnode)
((larc larc ...) lnode) ...) Each group (sublist)
within larc .or igin .groups consists of (I) a list of
lares sharing an origin and (2) that origin lnode
itself Likewise, the la rc .ext remi ty .groups field
partitions reflected lares according to their
shared extremities

During lattice-to-automaton transformation, it is
sometimes necessary to propose the merging of
several anodes. The merged anode contains the
union of the lares reflected by the mergees.
When merging, however, we must avoid the gen-
eration of strings not in the language of the in-
put lattice, or parasites. An anode which would
permit parasites is said to be ill-formed An
anode is ill-formed if any larc list in an origin
group (that is, any list of reflected lares sharing
an origin) fails to intersect with the larc list of
every extremity group (that is, with each list of
reflected larcs sharing an extremity), Such an ill-
formed anode would purport to be an image of
lattice paths which do not in fact exist, thus giv-
ing rise to parasites,

2 The bas ic a l g o r i t h m

We now describe our basic transformation pro-
cedures Modifications permitting the creation
of epsilon arcs will be discussed below

Lattice.to.automaton, our top-level procedure,
initializes two global variables and creates and
initializes the new automaton The variables are
candidate.a-arcs (a-arcs created to represent
the current lnode) and *unconnectable.a-arcs*
(a-arcs which could not be connected when
processing previous lnodes) During automaton
initialization, an initial.anode is created and
supplied with a full set of lares: all ou tgoing
lares of the initial lnode are included We then
visit every lnode in the lattice in topological or-

der, and for each lnode execute our central pro-
cedure, handie .cur rent.inode.

handle.cnrrent . lnode: This procedure creates an
a-arc to represent the current lnode and connects
it (and any pending a-arcs previously uncon-
nectable) to the automaton under construction.
We proceed as follows: (I) If current . lnode is
the initial lattice node, do nothing and exit. (2)
Otherwise, check whether any a-arcs remain on
unconnectable.a-arcs from previous proc-
essing. If so, push them onto *candidate.a-
arcs*. (3) Create a candidate automaton arc, or
candidate.a-arc, and push it onto *candidate.a-
ares*. 1 (4) Loop until *cand ida te . a -a rcs* is
exhausted. On each loop, pop a candidate.a-arc
and try to connect it to the automaton as follows:
Seek potential connect ing.anodes on tile
au tomaton If none are found, push candi-
da te .a -a rc onto *unconnectable.a-arcs*; oth-
erwise, try to merge the set of connect-
lng.anodes. (Whether or not the merge succeeds,
the result will be an updated set of connect-
ing.anodes.) Finally, execute l ink.candidate
(below) to connect candidate.a-arc to connect-
ing.anodes

Two aspects of this procedure require clarifica-
tion.

First, what is the criterion for seeking potential
connecing.anodes for candidate.a-arc? These
are nodes already on the automaton whose re-
flected lares intersect with those of the origin of
candidate.a-arc.

Second, what is the final criterion for the snccess
or failure of an attempted merge among con-
nect ing.anodes? The resulting anode must not
be ill-formed in the sense already outlined
above A good merge indicates that the a-arcs
leading to the merged anode compose a legiti-
mate set of common prefixes for candidate.a-
arc.

link.candidate: The final procedure to be ex-
plained has the following purpose: Given a can-
d ida te .a -are and its connecting.anodes (the an-
odes, already merged so far as possible, whose

1 The new a-arc receives file label of fl~e lnode which it
reflects. Its origin points to all of that lnode's incoming
lares, and its extlemity points to all of its outgoing
larcs La re .o r ig in .g roups and l a rc . ex t r emi ty .
groups are compnted for each new anode None of the
new automaton objects arc entered on the automaton
yet.

1206

lares intersect with the lares of the a-arc origin),
seek a final connect ing.anode, an anode to
which the candidate.a-arc can attach (see be-
low) If there is no such anode, it will be neces-
sary to split the candida te .a -a rc using the pro-
cedure split.a-arc. If there is such an anode, a
we connect to it, possibly after one or more ap-
plications of split .anode to split the connect-
ing.anode.

A connecting.anode is one whose reflected lares
are a superset of those of the candldate.a-arc's
origin. This condition assures that all of the
lncxles to be reflected as incoming a-arcs of the
connectable anode have outgoing larcs leading
to the lnode to be reflected as candidate.a-arc

Before stepping through the l ink.candidate pro-
cedure in detail, let us preview split.a-are and
split .anode, the subprocedures which split can-
d idate .a-arc or connecting.anodes, and their
significance.

split.a-arc: This subroutine is needed when (1)
the origin of candidate.a-arc contains both ini-
tial and non-initial lares, or (2) no connect-
ing.anode can be found whose larcs were a su-
perset of the lares of the origin of candidate .a-
a r c In either case, we must split the current
candidate.a-arc into several new candidate .a-
arcs, each of which can eventually connect to a
connecting.anode. In preparation, we sort the
larcs of the current cand ida te . a -a rc ' s origin
according to the connecting.anodes which con-
tain them. ~ c h grouping of larcs then serves as
the larcs set of the origin of a new candidate .a-
arc , now guaranteed to (eventually) connect. We
create and return these candidate.a-arcs in a list,
to be pushed onto *candlda te .a -a rcs* . The
original candidate.a-arc is discarded.

split .anode. This subroutine splits connect-
ing.anode when either (1) it contains both final
and non-final lares or (2) the attempted con-
nection between the origin of candidate.a-arc
and connecting.anode would give rise to an ill-
formed anode In case (1), we separate final
from non-final lares, and establish a new splittee
anode for each partition. The splittee containing
only non-final larcs becomes the con-
necing.anode for further processing. In case (2),
some larc origin groups in the attempted merge
do not intersect with all larc extremity g roups
We separate the larcs in the non-intersecting ori-
gin groups from those in the intersecting origin
groups and establish a splittee anode for each
partition. The splittee with only intersecting ori-

gin groups can now be connected to candi-
da te .a -a rc with no further problems,

In either case, the original anode is discarded,
and both splittees are (re)connected to the a-arcs
of the automaton. (See available pseudocode for
details.)

We now describe l ink.candidate in detail The
procedure is as follows: Test whether connect-
ing.anode contains both initial and non-initial
lares; if so, using split .a-arc, we split candi-
date .a-arc , and push the splittees onto
candidate.a-arcs. Otherwise, seek a connect-
ing .anode whose lares are a superset of the
larcs of the origin o f a - a r c If there is none,
then no connection is l×)ssible during the cur-
rent procedure call. Split candidate.a-arc, push
all splittee a-arcs onto *candidate.a-arcs*, and
exit. If there is a connect ing.anode, then a con-
nection can be made, possibly after one or more
applications of spl i t .anode Check whether con-
nect ing.anode contains both final and non-final
lares If not, no splitting will be necessary, so
connect candidate.a-arc to connecting.anode.
But if so, split connect ing.anode, separating final
from non-final lares The splitting procedure
returns the splittee anode having only non-final
lares, and this anode becomes the connect-
ing.anode. Now attempt to connect candi-
da te .a -a rc to connectlng.anode. If the merged
anode at the connection point would be ill-
tormed, then split connect ing.anode (a second
time, if necessary) In this case, split.anode re-
turns a connectable anode as connecting.anode,
and we connect cand ida te .a -a rc to it,

A final detail in our description of lat-
t ice . to .automaton concerns tile special handling
of the flnal.lnode. For this last stage of the pro-
cedure, the subroutine which makes a new can-
d ida te .a -arc makes a dummy a-arc whose (real)
origin is the final .anode, This anode is stocked
with lares reflecting all of the final lares The
dummy candidate.a-arc can then be processed
as usual. When its origin has been connected to
the automaton, it becomes the f inal .anode, with
all final a-arcs as its incoming a-arcs, and the
automaton is complete.

3 Epsi lon (null) t rans i t ions

Tile basic algorithm described thus far does not
permit the creation of epsilon transitions, and
thus yields automata which are not minimal.
However, epsilon arcs can be enabled by varying
the current procedure split .a-arc, which breaks

1207

an unconnectable candidate.a-arc into several
eventually connectable a-arcs and pushes them
onto *candidate.a-arcs*.

In the splitting procedure described thus far, the
a-arc is split by dividing its origin; its label and
extremity are duplicated. In the variant
(proposed by the third author) which enables
epsilon a-arcs, however, if the antecedence con-
dition (below) is verified for a given splittee a-
arc, then its label is instead ~ (epsilon); and its
extremity instead contains the lares of a sibling
splittee's origin. This procedure insures that the
sibling's origin will eventually connect with the
epsilon a-arc's extremity. Splittee a-arcs with
epsilon labels are placed at the top of the list
pushed onto *candidate.a-ares* to ensure that
they will be connected before sibling splittees.

What is the antecedence condition? Recall that
during the present tests for split.a-are, we parti-
tion the a-arc's origin larcs. The antecedence
condition obtains when one such larc partition is
antecedent to another partition. Partition P1 is
antecedent to P2 if evelT larc in P1 is antecedent
to every larc in P2. And larcl is antecedent to
late2 if, moving leftward in the lattice from
larc2, one can arrive at an lnode where larcl is
an outgoing larc.

A final detail: the revised procedure can create
duplicate epsilon a-arcs. We eliminate such re-
dundancy at connection time: duplicate epsilon
a-arcs are discarded, thus aborting the connec-
tion procedure.

4 E x t e n d e d e x a m p l e

We now step through an extended example
showing the complete procedure in action. Sev-
eral epsilon arcs will be formed.

We show anodes containing numbers indicating
their reflected lares We show lare.origin.
groups on the left side of anodes when relevant,
and lare.extremlty.groups on the right

Consider tile lattice of Arabic forms shown in
Figure 3. After initializing a new automaton, we
proceed as follows:

• Visit lnode W, constructing this candi-
date.a-are:

The a-arc is connected to the initial anode

Visit lnode F, constn~cting
dale.a-are:

fg

this eandi-

The only connecting.anode is that con-
taining tile label of the initial Inode, >.
After connection, we obtain:

W 1

Visit lnode L, constructing
date.a-are:

this candi-

Anodes 1 and 2 in the automaton are con-
necting.anodes. We try to merge them,
and get:

The tentative merged anode is well-formed, and
the merge is completed. Thus, before connec-
tion, the automaton appears as follows. (For
graphic economy, we show two a-arcs with
common terminals as a single a-arc with two
labels.)

1208

w F @ l i LQ
Now, in link.candidate, we split candidate.a-are
so as to separate inital lares from other larcs. The
split yields two candidate.a-arcs: the first con-
tains arc 9, since it departs from the origin
lnode; and the second contains the other arcs.

@L@
@ L ©

Following our basic procedure, the connection
of these two arcs would give the following
automaton:

However, the augmented procedure will instead
create one epsilou and one labeled transition.
Why? Our split separated larc 9 and larcs (3, 13)
ill the candidate.a-arc. But larc 9 is antecedent
to larcs 3 and 13. So the splittee candidate.a-arc
whose origin contains larc 9 becomes an epsilon
a-arc, which connects to the automaton at the
initial anode. The sibling splittee -- the a-arc
whose origin contains (3, 13) -- is processed as
usual. Because the epsilon a-arc's extremity was
given the lares of this sibling's origin, connec-
tion of the sibling will bring about a merge be-
tween that extremity and anode 1. The result is
as follows:

2

L . ~)

• Visit lnode S, constructing this candidate,a-
a r c :

@s©
Anode I is the tentative connection point for the
candidate.a-arc, since its larc set has the inter-
section (4. 14) with that of candida te .a -ar t ' s
origin.

Once again, we split candidate.a-are, since it
contains larc 10, one of the lares of the initial
node. But larc 10 is an antecedent of arcs 4 and
14. We thus create an epsilon a-arc with larc 10
in its origin which would connect to the initial
anode, Its extremity will contain lares 4 and 14,
and would again merge with anode 1 during the
connection of the sibling splittee, ttowever, the
epsilon a-arc is recognized as redundant, and
eliminated at connection time. The sibling a-arc
labeled S connects, to anode 1, giving

2

0 1 L

3

Visit lnode A, constructing this candidate.a-
a r c

The two connecting.anodes for tile candidate.a-
a rc are 2 and 3. Their merge succeeds, yielding:

We now split the candidate.a-arc, since it finds
no anode containing a superset of its origin's
larcs: larcs (12, 19, 21) do not appear in the
merged connecting.anode. Three splittee candi-

1209

date automaton arcs are produced, with three
larc sets in their origins: (5, 18), (12, 19), and
(21). But larcs 12 and 19 are antecedents of
larcs 5 and 18. Thus one of the splittees will be-
come an epsilon a-arc which will, after all sib-
lings have been connected, span from anode 1 to
anode 2. And since (21) is also antecedent to (5,
18) a second sibling will become an epsilon a-
arc from the initial anode to anode 2. The third
sibling splittee connects to the same anode, giv-
ing Figure 4.

Visit lnode N, constructing this candidate.a-
arc:

The connecting.anode is anode 2. Once again, a
split is required, since this anode does not con-
tain arcs 11, 16, and 22. Again, three candi-
date,a-arcs are composed, with larc sets (6, 17),
(11, 16) and (22). But the last two sets are ante-
cedent to the first set. Two epsilon arcs would
thus be created, but both already exist. After
connection of the third sibling splittee, the
automaton of Figure 5 is obtained.

Visit lnode K, constructing this candidate.a-
are'.

K o

We find and successfully merge connect-
ing.anodes (3 and 4). For reasons already dis-
cussed, the candidate.a-are is split into two sib-
lings. The first, with an origin containing lares
(15, 16), will require our first application of
split,anode to divide anode 1. The division is
necessary because the connecting merge would
be ill-formed, and connection would create the
parasite path KTB. The split creates anode 4 (not
shown) as the extremity of a new pair of a-arcs
W, F - - a second a-arc pair departing the initial
anode with this same label set.

The second splittee larc contains in its origin
state lares 7 and 8. It connects to both anode 3
and anode 4, which successfully merge, giving

the automaton of Figure 6.

Visit lnode T, constructing this candidate.a-
arc:

The arc connects to the automaton at anode 5.

Visit lnode B, making this candidate.a-arc:

The arc connects to anode 6, giving the final
automaton of Figure 7.

C o n c l u s i o n a n d P l a n s

The algorithm for transforming lattices into
non-deterministic finite state automata which we
have presented here has been successfully ap-
plied to lattices derived from dictionaries, i.e.
very large corpora of strings (Meddeb-
ttamrouni (1996), pages 205-217).

Applications of the algorithm to the parsing of
speech recognition results are also planned: lat-
tices of phones or words produced by speech
recognizers can be converted into initialized
charts suitable for chart parsing.

R e f e r e n c e s

Aho, A., .I.E. Hopcroft, and J.D. Ullman. 1982.
Data Structures and Algorithms. Addison-
Wesley hlblishing, 419 p.

tIopcroft, J.E. and J.D. Ullman. 1979. Introduc-
tion to Automata Theory, Languages, and
Computation. Addison-Wesley Publishing,
418 p.

Meddeb-Hamrouni, Boubaker. 1996. MFthods et
algorithmes de reprFsentation et de compres-
sion de grands dictionnaires de formes. Doc-
toral thesis, GETA, Laboratoire CLIPS,
Fdderation IMAG (UJF, CNRS, INPG), Univer-
sit6 Joseph Fourier, Grenoble, France.

1210

1 5

Figure 3

Figure 4

~ F '~ ~ L , ~ 3 Figure 5

0~W, i= ~ ~ ~ 2 4

~ , ~ . / Figure 7

1211

