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Abstract 
The problem of transforming a lattice into a 
non-deterministic finite state automaton is 
non-trivial. We present a transformation al- 
gorithm which tracks, for each node of an 
automaton under construction, the lares 
which it reflects and the lattice nodes at their 
origins and extremities. An extension of the 
algorithm permits the inclusion of null, or 
epsilon, arcs in the output automaton. The 
algorithm has been successfully applied to 
lattices derived from dictionaries, i.e. very 
large corpora of strings. 

Introduction 
Linguistic data -- grammars, speech recognition 
results, etc. -- arc sometimes represented as lat- 
tices, and sometimes as equivalent finite state 
automata. While the transIormation of automata 
into lattices is straightforward, we know of no 
algorithm in the current literature for trans- 
forming a lattice into a non-deterministic finite 
state automaton. (See e.g. Hopcroft et al (1979), 
Aho et al (1982).) 

We describe such an algorithm here. Its main 
feature is the maintenance of complete records 
of the relationships between objects in the input 
lattice and their images on all automaton as these 
are added during transformation. An extension 
of the algorithm permits the inclusion of null, or 
epsilon, arcs in the output automaton. 

Tile method we present is somewhat complex, 
but we have thus far been unable to discover a 
simpler one. One suggestion illustrates the diffi- 
culties: this proposal was simply to slide lattice 
node labels leftward onto their incoming arcs, 
and then, starting with the final lattice node, to 
merge nodes with identical outgoing arc sets. 

This strategy does successfully transform many 
lattices, but fails on lattices like this one: 

F i g u r e  1 

For this lattice, tile sliding strategy fails to pro- 
duce either of the following acceptable solu- 
tions. To produce the epsilon arc of 2a or the 
bifurcation of I:igure 2b, more elaborate meas- 
ures seem to be needed. 

a.  

a 

b. ~ Figure 2 

We present our datastructures in Section 1; our 
basic algorithm in Section 2; and the modifica- 
tions which enable inclusion of epsilon automa- 
ton arcs in Section 3. Before concluding, we 
provide an extended example of the algorithm 
in operation in Section 4. Complete pseudocode 
and source code (in Common Lisp) are available 
from the authors. 

1 Structures and terms 

We begin with datastructures and terminology. A 
lattice structure contains lists of Inodes (lattice 
nodes), lares (lattice arcs), and pointers to the 
in|tlal.lnode and finai.lnode. All inode has a 
label and lists of incoming.lares and outgo- 
ing.lares. It also has a list of a-ares (automaton 
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arcs) which reflect it. A larc has an or ig in  and 
extremity. Similarly, an au toma ton  structure 
has anodes (automaton nodes), a-arcs, and 
pointers to the initial.anode and final .anode. 
An anode has a label, a list of lares which it re- 
flects, and lists of incoming.a-arcs and outgo- 
lng.a-ares Finally, an a-are has a pointer to its 
lnode, origin, extremity, and label. 

We said that an anode has a pointer to the list of  
lares which it reflects. However, as will be seen, 
we must also partition these lares according to 
their shared origins and extremities in the lattice. 
For this purpose, we include the field 
la rc .or tg in .groups  in each anode.  Its value is 
structured as follows: (((larc larc ...) lnode) 
((larc larc ...) lnode) ...) Each group (sublist) 
within larc .or igin .groups consists of (I) a list of  
lares sharing an origin and (2) that origin lnode 
itself Likewise, the la rc .ext remi ty .groups  field 
partitions reflected lares according to their 
shared extremities 

During lattice-to-automaton transformation, it is 
sometimes necessary to propose the merging of  
several anodes. The merged anode contains the 
union of the lares reflected by the mergees. 
When merging, however, we must avoid the gen- 
eration of strings not in the language of the in- 
put lattice, or parasites. An anode which would 
permit parasites is said to be ill-formed An 
anode is ill-formed if any larc list in an origin 
group (that is, any list of reflected lares sharing 
an origin) fails to intersect with the larc list of  
every extremity group (that is, with each list of  
reflected larcs sharing an extremity), Such an ill- 
formed anode would purport to be an image of  
lattice paths which do not in fact exist, thus giv- 
ing rise to parasites, 

2 The  bas ic  a l g o r i t h m  

We now describe our basic transformation pro- 
cedures  Modifications permitting the creation 
of epsilon arcs will be discussed below 

Lattice.to.automaton, our top-level procedure, 
initializes two global variables and creates and 
initializes the new automaton  The variables are 
*candidate.a-arcs* (a-arcs created to represent 
the current lnode) and *unconnectable.a-arcs* 
(a-arcs which could not be connected when 
processing previous lnodes)  During automaton 
initialization, an initial.anode is created and 
supplied with a full set of lares: all ou tgoing  
lares of the initial lnode are included We then 
visit every lnode in the lattice in topological or- 

der, and for each lnode execute our central pro- 
cedure, handie .cur  rent.inode. 

handle.cnrrent . lnode:  This procedure creates an 
a-arc to represent the current lnode and connects 
it (and any pending a-arcs previously uncon- 
nectable) to the automaton under construction. 
We proceed as follows: (I) If current . lnode  is 
the initial lattice node, do nothing and exit. (2) 
Otherwise, check whether any a-arcs remain on 
*unconnectable.a-arcs* from previous proc- 
essing. If so, push them onto *candidate.a- 
arcs*. (3) Create a candidate automaton arc, or 
candidate.a-arc, and push it onto *candidate.a- 
ares*. 1 (4) Loop until *cand ida te . a -a rcs*  is 
exhausted. On each loop, pop a candidate.a-arc 
and try to connect it to the automaton as follows: 
Seek potential connect ing.anodes on tile 
au tomaton  If none are found, push candi-  
da te .a -a rc  onto *unconnectable.a-arcs*; oth- 
erwise, try to merge the set of connect-  
lng.anodes. (Whether or not the merge succeeds, 
the result will be an updated set of connect- 
ing.anodes.) Finally, execute l ink.candidate  
(below) to connect candidate.a-arc to connect- 
ing.anodes 

Two aspects of this procedure require clarifica- 
tion. 

First, what is the criterion for seeking potential 
connecing.anodes for candidate.a-arc? These 
are nodes already on the automaton whose re- 
flected lares intersect with those of the origin of 
candidate.a-arc. 

Second, what is the final criterion for the snccess 
or failure of an attempted merge among con- 
nect ing.anodes? The resulting anode must not 
be ill-formed in the sense already outlined 
above A good merge indicates that the a-arcs 
leading to the merged anode compose a legiti- 
mate set of common prefixes for candidate.a- 
arc. 

link.candidate: The final procedure to be ex- 
plained has the following purpose: Given a can- 
d ida te .a -are  and its connecting.anodes (the an- 
odes, already merged so far as possible, whose 

1 The new a-arc receives file label of fl~e lnode which it 
reflects. Its origin points to all of that lnode's incoming 
lares, and its extlemity points to all of its outgoing 
larcs La re .o r ig in .g roups  and l a rc . ex t r emi ty .  
groups are compnted for each new anode None of the 
new automaton objects arc entered on the automaton 
yet. 
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lares intersect with the lares of the a-arc origin), 
seek a final connect ing.anode,  an anode to 
which the candidate.a-arc can attach (see be- 
low) If there is no such anode, it will be neces- 
sary to split the candida te .a -a rc  using the pro- 
cedure split.a-arc. If there is such an anode, a 
we connect to it, possibly after one or more ap- 
plications of split .anode to split the connect- 
ing.anode. 

A connecting.anode is one whose reflected lares 
are a superset of those of the candldate.a-arc's 
origin. This condition assures that all of the 
lncxles to be reflected as incoming a-arcs of the 
connectable anode have outgoing larcs leading 
to the lnode to be reflected as candidate.a-arc 

Before stepping through the l ink.candidate  pro- 
cedure in detail, let us preview split.a-are and 
split .anode, the subprocedures which split can- 
d idate .a-arc  or connecting.anodes, and their 
significance. 

split.a-arc: This subroutine is needed when (1) 
the origin of candidate.a-arc contains both ini- 
tial and non-initial lares, or (2) no connect- 
ing.anode can be found whose larcs were a su- 
perset of the lares of the origin of candidate .a-  
a r c  In either case, we must split the current 
candidate.a-arc into several new candidate .a-  
arcs, each of which can eventually connect to a 
connecting.anode. In preparation, we sort the 
larcs of the current cand ida te . a -a rc ' s  origin 
according to the connecting.anodes which con- 
tain them. ~ c h  grouping of larcs then serves as 
the larcs set of the origin of a new candidate .a-  
arc ,  now guaranteed to (eventually) connect. We 
create and return these candidate.a-arcs in a list, 
to be pushed onto *candlda te .a -a rcs* .  The 
original candidate.a-arc is discarded. 

split .anode. This subroutine splits connect- 
ing.anode when either (1) it contains both final 
and non-final lares or (2) the attempted con- 
nection between the origin of candidate.a-arc 
and connecting.anode would give rise to an ill- 
formed anode  In case (1), we separate final 
from non-final lares, and establish a new splittee 
anode for each partition. The splittee containing 
only non-final larcs becomes the con- 
necing.anode for further processing. In case (2), 
some larc origin groups in the attempted merge 
do not intersect with all larc extremity g roups  
We separate the larcs in the non-intersecting ori- 
gin groups from those in the intersecting origin 
groups and establish a splittee anode for each 
partition. The splittee with only intersecting ori- 

gin groups can now be connected to candi-  
da te .a -a rc  with no further problems, 

In either case, the original anode is discarded, 
and both splittees are (re)connected to the a-arcs 
of the automaton. (See available pseudocode for 
details.) 

We now describe l ink.candidate  in detail  The 
procedure is as follows: Test whether connect- 
ing.anode contains both initial and non-initial 
lares; if so, using split .a-arc, we split candi-  
date .a-arc ,  and push the splittees onto 
*candidate.a-arcs*. Otherwise, seek a connect-  
ing .anode  whose lares are a superset of the 
larcs of the origin o f  a - a r c  If there is none, 
then no connection is l×)ssible during the cur- 
rent procedure call. Split candidate.a-arc, push 
all splittee a-arcs onto *candidate.a-arcs*, and 
exit. If there is a connect ing.anode,  then a con- 
nection can be made, possibly after one or more 
applications of spl i t .anode Check whether con- 
nect ing.anode contains both final and non-final 
lares If not, no splitting will be necessary, so 
connect candidate.a-arc to connecting.anode. 
But if so, split connect ing.anode,  separating final 
from non-final lares The splitting procedure 
returns the splittee anode having only non-final 
lares, and this anode becomes the connect- 
ing.anode. Now attempt to connect candi-  
da te .a -a rc  to connectlng.anode. If the merged 
anode at the connection point would be ill- 
tormed, then split connect ing.anode (a second 
time, if necessary) In this case, split.anode re- 
turns a connectable anode as connecting.anode, 
and we connect cand ida te .a -a rc  to it, 

A final detail in our description of lat- 
t ice . to .automaton concerns tile special handling 
of the flnal.lnode. For this last stage of the pro- 
cedure, the subroutine which makes a new can- 
d ida te .a -arc  makes a dummy a-arc whose (real) 
origin is the final .anode, This anode is stocked 
with lares reflecting all of the final lares The 
dummy candidate.a-arc can then be processed 
as usual. When its origin has been connected to 
the automaton, it becomes the f inal .anode,  with 
all final a-arcs as its incoming a-arcs, and the 
automaton is complete. 

3 Epsi lon (null)  t rans i t ions  

Tile basic algorithm described thus far does not 
permit the creation of epsilon transitions, and 
thus yields automata which are not minimal. 
However, epsilon arcs can be enabled by varying 
the current procedure split .a-arc, which breaks 
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an unconnectable candidate.a-arc into several 
eventually connectable a-arcs and pushes them 
onto *candidate.a-arcs*. 

In the splitting procedure described thus far, the 
a-arc is split by dividing its origin; its label and 
extremity are duplicated. In the variant 
(proposed by the third author) which enables 
epsilon a-arcs, however, if the antecedence con-  
dition (below) is verified for a given splittee a- 
arc, then its label is instead ~ (epsilon); and its 
extremity instead contains the lares of a sibling 
splittee's origin. This procedure insures that the 
sibling's origin will eventually connect with the 
epsilon a-arc's extremity. Splittee a-arcs with 
epsilon labels are placed at the top of the list 
pushed onto *candidate.a-ares* to ensure that 
they will be connected before sibling splittees. 

What is the antecedence condition? Recall that 
during the present tests for split.a-are, we parti- 
tion the a-arc's origin larcs. The antecedence 
condition obtains when one such larc partition is 
antecedent  to another partition. Partition P1 is 
antecedent to P2 if evelT larc in P1 is antecedent 
to every larc in P2. And larcl is antecedent to 
late2 if, moving leftward in the lattice from 
larc2, one can arrive at an lnode where larcl is 
an outgoing larc. 

A final detail: the revised procedure can create 
duplicate epsilon a-arcs. We eliminate such re- 
dundancy at connection time: duplicate epsilon 
a-arcs are discarded, thus aborting the connec- 
tion procedure. 

4 E x t e n d e d  e x a m p l e  

We now step through an extended example 
showing the complete procedure in action. Sev- 
eral epsilon arcs will be formed. 

We show anodes containing numbers indicating 
their reflected lares We show lare.origin. 
groups on the left side of anodes when relevant, 
and lare.extremlty.groups on the right 

Consider tile lattice of Arabic forms shown in 
Figure 3. After initializing a new automaton, we 
proceed as follows: 

• Visit lnode W, constructing this candi- 
date.a-are: 

The a-arc is connected to the initial anode  

Visit lnode F, constn~cting 
dale.a-are: 

fg 

this eandi- 

The only connecting.anode is that con- 
taining tile label of the initial Inode, >. 
After connection, we obtain: 

W 1 

Visit lnode L, constructing 
date.a-are: 

this candi- 

Anodes 1 and 2 in the automaton are con- 
necting.anodes. We try to merge them, 
and get: 

The tentative merged anode is well-formed, and 
the merge is completed. Thus, before connec- 
tion, the automaton appears as follows. (For 
graphic economy, we show two a-arcs with 
common terminals as a single a-arc with two 
labels.) 
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Now, in link.candidate, we split candidate.a-are 
so as to separate inital lares from other larcs. The 
split yields two candidate.a-arcs: the first con- 
tains arc 9, since it departs from the origin 
lnode; and the second contains the other arcs. 

@L@ 
@ L ©  

Following our basic procedure, the connection 
of these two arcs would give the following 
automaton: 

However, the augmented procedure will instead 
create one epsilou and one labeled transition. 
Why? Our split separated larc 9 and larcs (3, 13) 
ill the candidate.a-arc.  But larc 9 is antecedent 
to larcs 3 and 13. So the splittee candidate.a-arc 
whose origin contains larc 9 becomes an epsilon 
a-arc, which connects to the automaton at the 
initial anode. The sibling splittee -- the a-arc 
whose origin contains (3, 13) -- is processed as 
usual. Because the epsilon a-arc's extremity was 
given the lares of this sibling's origin, connec- 
tion of the sibling will bring about a merge be- 
tween that extremity and anode 1. The result is 
as follows: 

2 

L . ~ )  

• Visit lnode S, constructing this candidate,a- 
a r c :  

@s© 
Anode I is the tentative connection point for the 
candidate.a-arc, since its larc set has the inter- 
section (4. 14) with that of candida te .a -ar t ' s  
origin. 

Once again, we split candidate.a-are,  since it 
contains larc 10, one of the lares of the initial 
node. But larc 10 is an antecedent of arcs 4 and 
14. We thus create an epsilon a-arc with larc 10 
in its origin which would connect to the initial 
anode, Its extremity will contain lares 4 and 14, 
and would again merge with anode 1 during the 
connection of the sibling splittee, ttowever, the 
epsilon a-arc is recognized as redundant, and 
eliminated at connection time. The sibling a-arc 
labeled S connects, to anode 1, giving 

2 

0 1 L 

3 

Visit lnode A, constructing this candidate.a- 
a r c  

The two connecting.anodes for tile candidate.a- 
a rc  are 2 and 3. Their merge succeeds, yielding: 

We now split the candidate.a-arc,  since it finds 
no anode containing a superset of its origin's 
larcs: larcs (12, 19, 21) do not appear in the 
merged connecting.anode. Three splittee candi- 
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date automaton arcs are produced, with three 
larc sets in their origins: (5, 18), (12, 19), and 
(21). But larcs 12 and 19 are antecedents of  
larcs 5 and 18. Thus one of the splittees will be- 
come an epsilon a-arc which will, after all sib- 
lings have been connected, span from anode 1 to 
anode 2. And since (21) is also antecedent to (5, 
18) a second sibling will become an epsilon a- 
arc from the initial anode to anode 2. The third 
sibling splittee connects to the same anode, giv- 
ing Figure 4. 

Visit lnode N, constructing this candidate.a- 
arc: 

The connecting.anode is anode 2. Once again, a 
split is required, since this anode does not con- 
tain arcs 11, 16, and 22. Again, three candi- 
date,a-arcs are composed, with larc sets (6, 17), 
(11, 16) and (22). But the last two sets are ante- 
cedent to the first set. Two epsilon arcs would 
thus be created, but both already exist. After 
connection of the third sibling splittee, the 
automaton of Figure 5 is obtained. 

Visit lnode K, constructing this candidate.a- 
are'. 

K o 

We find and successfully merge connect- 
ing.anodes (3 and 4). For reasons already dis- 
cussed, the candidate.a-are is split into two sib- 
lings. The first, with an origin containing lares 
(15, 16), will require our first application of  
split,anode to divide anode 1. The division is 
necessary because the connecting merge would 
be ill-formed, and connection would create the 
parasite path KTB. The split creates anode 4 (not 
shown) as the extremity of a new pair of a-arcs 
W, F - -  a second a-arc pair departing the initial 
anode with this same label set. 

The second splittee larc contains in its origin 
state lares 7 and 8. It connects to both anode 3 
and anode 4, which successfully merge, giving 

the automaton of Figure 6. 

Visit lnode T, constructing this candidate.a- 
arc: 

The arc connects to the automaton at anode 5. 

Visit lnode B, making this candidate.a-arc: 

The arc connects to anode 6, giving the final 
automaton of Figure 7. 

C o n c l u s i o n  a n d  P l a n s  

The algorithm for transforming lattices into 
non-deterministic finite state automata which we 
have presented here has been successfully ap- 
plied to lattices derived from dictionaries, i.e. 
very large corpora of strings (Meddeb- 
ttamrouni (1996), pages 205-217). 

Applications of the algorithm to the parsing of  
speech recognition results are also planned: lat- 
tices of phones or words produced by speech 
recognizers can be converted into initialized 
charts suitable for chart parsing. 
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