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A b s t r a c t  

We present a novel OCR error correction method 
for languages without word delimiters that have a 
large character set, such as Japanese and Chinese. 
It consists of a statistical OCR model, an approxi- 
mate word matching method using character shape 
similarity, and a word segmentation algorithm us- 
ing a statistical language model. By using a sta- 
tistical OCR model and character shape similarity, 
the proposed error corrector outperforms the previ- 
ously published method. When the baseline char- 
acter recognition accuracy is 90%, it achieves 97.4% 
character recognition accuracy. 

1 I n t r o d u c t i o n  

As our society is becoming more computerized, peo- 
ple are getting enthusiastic about entering every- 
thing into computers. So the need for OCR in areas 
such as office automation and information retrieval 
is becoming larger, contrary to our expectation. 

In Japanese, although the accuracy of printed 
character OCR is about 98~, sources such as old 
books, poor quality photocopies, and faxes are still 
difficult to process and cause many errors. The accu- 
racy of handwritten OCR is still about 90% (Hilde- 
brandt and Liu, 1993), and it worsens dramatically 
when the input quality is poor. If NLP techniques 
could be used to boost the accuracy of handwriting 
and poor quality documents, we could enjoy a very 
large market for OCR related applications. 

OCR error correction can be thought of a spelling 
correction problem. Although spelling correction 
has been studied for several decades (Kukich, 1992), 
the traditional techniques are implicitly based on 
English and cannot be used for Asian languages such 
as Japanese and Chinese. 

The traditional strategy for English spelling cor- 
rection is called isolated word error correction: Word 
boundaries are placed by white spaces. If the tok- 
enized string is not in the dictionary, it is a non- 
word. For a non-word, correction candidates are re- 
trieved fl'om the dictionary by approximate string 

match techniques using context-independent word 
distance measures such as edit distance (Wagner and 
Fischer, 1974) and ngram distance (Angell et al., 
1983). 

Recently, statistical language models and feature- 
based method have been used for context-sensitive 
spelling correction, where errors are corrected con- 
sidering the context in which the error occurs 
(Church and Gale, 1991; Mays et al., 1991; Golding 
and Schabes, 1996). Similar techniques are used for 
correcting the output of English OCRs (Tong and 
Evans, 1996) and English speech recognizers (Ring- 
ger and Allen, 1996). 

There are two problems in Japanese (and Chinese) 
spelling correction. The first is the word boundary 
problem. It is impossible to use isolated word error 
correction techniques because there are no delimiters 
between words. The second is the short word prob- 
lem. Word distance measures are useless because the 
average word length is short (< 2), and the charac- 
ter set is large (> 3000). There are a much larger 
number of one edit distance neighbors for a word, 
compared with English. 

Recently, the first problem was solved by selecting 
the most likely word sequence from all combinations 
of exactly and approximately matched words using a 
Viterbi-like word segmentation algorithm and a sta- 
tistical language model considering unknown words 
and non-words (Nagata, 1996). However, the second 
problem is not solved yet, at least elegantly. The so- 
lution presented in (Nagata, 1996) which sorts a list 
of one edit distance words considering the context 
in which it will be placed is inaccurate because the 
context itself might include some errors. 

In this paper, we present a context-independent 
approximate word match method using character 
shape similarity. This is suitable for languages with 
large character sets, such as Japanese and Chinese. 
We also present a method to build a statistical OCR 
model by smoothing the character confusion proba- 
bility using character shape similarity. 

It seems previous NLP researchers are reluctant 
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to use resources such as the character confusion ma- 
trix and feature vectors of the characters, and try to 
solve the problem by using only linguistic devices. 
We found that ,  by using character  shape similarity, 
the resulting OCR error corrector is robust and ac- 
curate enough to correct unrestricted texts with a 
wide range of recognition accuracies. 

2 O C R  M o d e l  
2.1 N o i s y  C h a n n e l  M o d e l  

First, we formulate tile spelling correction of OCR 
errors in the noisy channel paradigm. Let C rep- 
resent the input string and X represent the OCR 
output  string. Finding the most probable string 
given the OCR output  X amounts  to maximizing 
the function P(XIC)P(C) ,  

= argmcaxP(ClX ) = argmc~xP(XIC)P(C ) (1) 

because Bayes'  rule states that ,  

P(XIC)P(C)  
P(CIX)  - P ( X )  (2) 

P(C) is called the language model. It is computed 
from the training corpus. Let us call P ( X I C  ) the 
OCR model. It can be computed from the a priori 
likelihood estimates for individual characters, 

P(XlC) = I I  P(xiM) (a) 
i = 1  

where n is the string length. P(xilci) is called the 
characters confusion probability. 

2.2 Z e r o - F r e q u e n c y  P r o b l e m  

The character confusion probabilities are computed 
from the character confusion matrix,  which is a set of 
the frequencies of the input-output  character pairs of 
the OCR. The confusion matrix,  however, is highly 
dependent on the character recognition method and 
the quality of the input image. It  is a labor intensive 
task to make a confusion matrix,  since Japanese has 
more than 3,000 characters. But  the more serious 
problem is that  the confusion matr ix  is too sparse 
to be used for statistical modeling. 

For example, suppose the word "t~1~" (environ- 
ment) is incorrectly recognized as a non-word " ~  
~ " .  The following is an excerpt of a confusion ma- 
trix, where the pair of a character  and a number  
separated by a slash represents the output  character 
and its frequency. 

input c h a r a c t e r  ~ :  
~/1289 ~/t ~/i 
input character ~: 

Even if we collect more than one thousand recog- 
nition examples, there are no examples in which ' ~ '  
is recognized as ' ~ ' .  To compute  the confusion prob- 
ability P ( ~ I ~ ) ,  we need a smoothing method.  

This is called the zero-frequency problem. Al- 
though it has been studied in many areas such 
as speech recognition, statistical language modeling 
and text compression, no previous work has exam- 
ined on tile smoothing of the character confusion 
probabilities. This is probably because the problem 
arises only when we consider OCR error correction 
of languages with large character sets. 

We propose a novel method to smooth the char- 
acter confusion probabilities. First,  we est imate the 
sum of tile probabilities of novel events. We then 
distribute the probabili ty mass to each novel event 
based oIl character similarity. 

We use a scheme, which we refer to as the Witten- 
Bell method (Witten and Bell, 1991), to est imate the 
sum of the probabilities for M1 novel events because 
it is simple and robust 1 Let C(ci,cj) be the fre- 
quency of events where ci and cj are the input and 
the output  characters, respectively. Let fl(ci) be the 
sum of the probabilities of unseen output  charac- 
ters where the input character  is ci. By using the 
Witten-Bell method,  ~(ci) is est imated as, 

= P( jlcl) 
cj :C( cl ,cj ):~O 

= E ,  cj)) (4) 
E ,  c( i, + E ,  

where 
1 i f x > O  

® ( x ) =  0 otherwise (5) 

In the above example, ' ~ '  appears  1291(= 1289+ 1 + 
1) times as input and there are three distinct char- 
acters in the output.  Therefore, the probabili ty of 
observing novel characters is 3/(1291 + 3) = 3/1294. 

One of the possible alternatives to the Witten-Bell  
method is the Good-Turing method (Good, 1953). 
But we didn' t  use the method since it assumes the 
distribution of the frequency of frequencies to be rel- 
atively smooth,  which is not the case in the character 
confusion matrix.  

2.3 B a c k - o f f  S m o o t h i n g  

Both the Witten-Bell and Good-Turing methods do 
not in themselves tell one how to share ~(ci) among 

~In (Witten and Bell, 1991), the method is referred to as 
"method C" for estimating the escape probability in a text 
compression method, Prediction by Partial Matching (PPM). 
It estimates the probability of observing novel events to be 
r/(n + r), where n is the total number of events seen previ- 
ously, and r is the number of symbols that are distinct. The 
probability of the event observed c times is c/(n + r). 
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the distinct unseen events. The simplest s t rategy 
is to assume all unseen events are equally probable, 
but this is not reasonable because recognition errors 
are more likely to occur among characters with simi- 
lar shapes. Therefore, we distributed the probabili ty 
mass ~(ci) based on character shape similarity com- 
puted from feature vectors. 

First, we made an appropr ia te  number of charac- 
ter classes in which similar characters are gathered. 
This is done by clustering the feature vectors of each 
character; details are described in the next subsec- 
tion. We then made a confusion matr ix  between the 
character classes from the character confusion ma- 
trix. Let C(class~, class j) be the frequency that  the 
characters in class~ are recognized as the characters 
in classy. It  is computed as the sum of the elements 
in the character confusion matr ix  associated with 
the characters in classi and classj. 

C(classi,classj)= E C(ci,cj) (6) 
el 6 c l a s s  I ,cj 6 c l a s s  j 

By using the Witten-Bell  method,  we can esti- 
mate  the class confusion probabilities between arbi- 
t rary classes. We then distribute the probabil i ty for 
unseen events in proportion ~o the class confusion 
probability, 

P(cj[ci) = a(ci)P(class(cj)lclass(ci)) (7) 

where 

= (8) 
~--~ ~ :c(~i ,~j)=0 P( class ( Cj )1 class ( ci ) ) 

is a normalizing constant,  and class(ci) is the func- 
tion that  returns the class of character c~. 

Numerical values for a ' s  as well as the charac- 
ter class confusion probabilities can be precomputed.  
Therefore, the method is computat ionally efficient. 

2.4 C h a r a c t e r  C l u s t e r i n g  

In general, character recognition consists of feature 
extraction and classification. Feature extraction is 
applied to concentrate the information in the im- 
age into a few, highly selective features. Classifica- 
tion is accomplished by comparing the feature vec- 
tor corresponding to the input character with the 
representatives of each character,  using a distance 
metric. Therefore, if we cluster feature vectors of 
each character,  the members  of the resulting class 
are characters with similar shape, and so tend to 
cause confusion. 

The feature we used in the clustering experi- 
ment is PDC (Peripheral Direction Contributivity) 
(Hagita et al., 1983), which is one of the best features 

for Japanese character recognition 2. We clustered 
the feature vectors for 3021 Japanese characters into 
128 classes by using the LBG algorithm (Linde et 
al., 1980), which is one of the most popular vector 
quantization methods. 

Let 's  go back to the previous example of estimat- 
ing P ( ~ ] ~ ) .  After character clustering, ' ~ '  and ' ~ '  
are clustered into class 29 and 119, respectively. 

class 29 (including ~ ) :  

class 119 (including ~): 

Here is the excerpt of the class confusion matrix for 
class 29. 

input class 29: 
29/30884 87/23 33/21 59/20 15/9 119/7 94/6 
78/6 28/5 2/4 109/4 101/4 71/4 104/3 107/3 
21/3 58/3 70/2 113/2 56/2 0/2 34/2 38/2 26/2 
18/2 44/1 72/1 50/1 30/1 102/1 19/1 89/1 
110/1 4/1 122/1 123/1 

Since class 29 appears  31036(30884 + 23 + . . . )  
times as input and there are 36 distinct classes 
in the output ,  where class 119 appeared 7 times, 
P(classn91class29) = 7/(31036 + 36) = 7/31072. 
This class confusion probabil i ty and the normalizing 
constant c~(~;) are used to compute P ( ~ I ~ )  using 
equation (7). 

3 L a n g u a g e  M o d e l  

3.1 W o r d  S e g m e n t a t i o n  M o d e l  

Let the input Japanese character sequence be C = 
clc2...cm, which can be segmented into word se- 
quence W = wlw2.. .wn. We approximate  P(C) 
in Equation (1) by the joint probability of word se- 
quence P(W). P(W) is then approximated by the 
product of word bigram probabilities P(wi[wi-1). 

n 

P(C) ~ P(W) = H P(wilwi-1) (9) 
i=l 

2PDC features are formed by assigning stroke directions 
to pixels and selecting just pixels on the first, second, and 
third stroke encountered by the scan line. The marginal dis- 
tribution of the four direction contributivity of such three pix- 
els is then taken along 16 lines in eight different directions. 
Therefore, the dimension of the original PDC feature vector is 
8"3"4"16=1536. By using 2-stage feature selection, it can be 
reduced to 256, while still preserving the original recognition 
ability. 
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Using the language model (9), the OCR error cor- 
rection task can be defined as finding a word se- 
quence I/V that maximizes the joint probability of 
word sequence given recognized character sequence 
P ( W I X  ). By using Bayes' rule, this amounts to 
maximizing the product of P ( X I W  ) and P(W).  

l f i /= arg mwax p(wIx) -= arg n~xP(XIW)P(W)(10) 

The maximization search can be efficiently imple- 
mented by using the ViterbMike dynamic program- 
ing procedure described in (Nagata, 1996). The 
algorithm starts fi'om the beginning of the input 
sentence, and proceeds character by character. At 
each point in the sentence, it looks up the combina- 
tion of the best partial word segmentation hypoth- 
esis ending there and all word hypotheses starting 
there. The word hypotheses proposed at each point 
include both exactly matched words and approxi- 
mately matched words. All prefixes of the substring 
starting at the point are also proposed as unknown 
words if they are not in the dictionary. 

3.2 W o r d  M o d e l  for  U n k n o w n  W o r d s  

We defined a statistical word model to assign a rea- 
sonable word probability to an arbitrary substring 
in the input sentence. The word model is formally 
defined as the joint probability of the character se- 
quence wi = cl .. • ck if it is an unknown word. We 
decompose it into the product of word length prob- 
ability and word spelling probability, 

P(wII<UNK>) = P(cl ... ck I<UNK>) = P(k)P(cl. . .  ck Ik) (11) 

where k is the length of the character sequence and 
<UI~K> represents unknown word. 

We assume that  word length probability P(k) 
obeys a Poisson distribution whose parameter is the 
average word length )~ in the training corpus. This 
ineans that  we regard word length as the interval 
between hidden word boundary markers, which are 
randomly placed with an average interval equal to 
the average word length. 

(,~ 1) k - 1  
- e - ( ~ - 1 )  ( 1 2 )  P ( k ) -  ( k - l ) !  

We approximate the spelling probability given 
word length P ( o . . . c k l k )  by the word-based char- 
acter bigram model, regardless of word length. 

k 

P(c,... ck) = P(cl 1#) I I  P(cilc,-1)P(#lck) (13) 
i=2 

where "#"  indicates the word boundary marker. 

4 A p p r o x i m a t e  W o r d  M a t c h i n g  

Since there are no delimiters between words in 
Japanese, we have to hypothesize all substrings in 
the input sentence as words, and retrieve their ap- 
proximately matching words from the dictionary as 
correction candidates. The most likely correction 
candidate is selected by the word segmentation algo- 
rithm using the OCR model and tile language model. 
For simplicity, we will present the method as if it 
were for an isolated word error correction. 

In English spelling correction, correction candi- 
dates are generated by the minimum edit distance 
technique (Wagner and Fischer, 1974). Edit dis- 
tance is the mininlum number of editing operations 
(insertions, deletions, and substitutions) required to 
transform one string into another. Since the tar- 
get is OCR output,  we can restrict the type of er- 
rors to substitutions only. Thus, the edit distance 
of two words becomes c/n, where c is the number of 
matched characters and n is the length of the mis- 
spelled (and the dictionary) word. Since the cost of 
computing the edit distance between a string and all 
dictionary words is expensive, we create an inverted 
index into the dictionary using character bigrams as 
the access keys (Angell et al., 1983). 

In Japanese OCR spelling correction, it is rea- 
sonable to generate correction candidates by edit 
distance for words longer than 2 characters since 
the number of correction candidates would be small. 
However, for two character words, edit distance is 
useless, because there are a large number of words 
with one edit distance. Since the average word 
length of Japanese is about two characters, this is 
a serious problem. 

We propose an approximate word matching 
method that uses character similarity. Let X be a 
non-word caused by OCR errors, and W be a cor- 
rection candidate word. X would be corrected by W 
if the following relationship holds, 

P ( X ) P ( X I X )  < P ( W ) P ( X I W )  (14) 

The left hand side represents the probability that 
X is an unknown word and that  it is correctly rec- 
ognized. The right hand side represents the proba- 
bility that W is incorrectly recognized as X. The 
larger the product of the word unigram probability 
P(W) and tim word confusion probability P ( X I W  ), 
the more likely word W is the correct word for X. 
Therefore, for two character words, we sort the list 
of all one edit distance words by P(W)P(X]W) ,  and 
select the top-k words as the correction candidates. 

For example, if "~tJ~" is incorrectly recognized as 
"~ t~" ,  there are at least 20 dictionary words whose 
edit distance is one. 
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If we sort the list of one edit distance words by 
P(W), P(XIW), and P(W)P(XIW), the correction 
candidates become as follows, 

s o r t e d  by P(W): 
t ~  ~ ~ t ~  ~ . . .  
sorted by P(XIW) : 
~ ~ ~ ~ ~ ... 

sorted by P(W) P(XlW): 
~ ~{~ ~ [~ ~:~ ... 

Thus, by using P(W)P(XIW), we can make " ~  
~ "  the most likely correction word. The approxi- 
mate  word matching method is so accurate that ,  in 
practice, it is sufficient to use only the top 5 candi- 
dates. This makes the program very efficient. 

5 E x p e r i m e n t s  

5.1 T r a i n i n g  D a t a  for  t h e  L a n g u a g e  M o d e l  

We used the EDR Japanese Corpus Version 1.0 
(EDR, 1991) to train the language model. It is a 
corpus of approximately 5.1 million words (208 thou- 
sand sentences). It contains a variety of Japanese 
sentences taken from newspapers, magazines, dic- 
tionaries, encyclopedias, textbooks,  etc. It  has a 
variety of annotat ions including word segmentation, 
pronunciation, and part  of speech. 

In this experiment,  we randomly selected 9070 of 
the sentences in the EDR Corpus for training. The 
first column of Table 1 shows the number of sen- 
tences, words, and characters of the training set. 

Table 1: The amount  of the training da ta  and the 
test da ta  for handwri t ten OCR 

training 
Sentences 192802 
Words 4746461 
Characters 7521293 

test1 
100 

2463 
3912 

There were 133281 distinct words in the training 
data. We discarded the words whose fl'equency was 
one, and made a dictionary of 65152 words. We then 
counted the vocabulary dependent word bigrams. 
Tha t  is, the words that  were not in the dictionary 
were replaced with the unknown word symbol <UNK> 
before counting the bigrams. There were 758172 
distinct word bigrams. We discarded the bigrams 
whose frequency was one, and the remaining 294668 
bigrams were used in the word segmentation model. 

In the word model, we used 3167 character uni- 
grams and 91198 character bigrams. All unigrams 
and bigrams whose frequencies were one were dis- 
carded. As for the average word length, instead of 
averaging all words in the corpus (=1.58), we aver- 
aged the words whose frequency was one (=4.76) in 
order to avoid the influence of highly frequent words. 

5.2 T e s t l :  H a n d w r i t t e n  O C R  

We designed two experiments to evaluate the perfor- 
mance of the OCR error corrector. The first experi- 
ment used simulated outputs  of a handwrit ing OCR, 
while the second used real outputs  of a printed char- 
acter OCR. 

The first experiment was designed to test the OCR 
error corrector over a wide range of baseline recogni- 
tion accuracies. The use of the OCR simulator was 
necessary because it is very difficult to obtain a large 
amount  of test da ta  with arbi t rary accuracies. 

We selected 100 sentences from the remaining 1070 
of the EDR corpus for testing. The second column 
of Table 1 shows the number  of sentences, words, 
and characters of the test set. By using an OCR 
simulator, we made four sets of character matrices 
whose first-rank recognition accuracies were 70%, 
80%, 90%, and 95%. They contained at most 10 
candidates for each character and their cumulative 
recognition accuracies were 9070, 9570, 98%, and 
98%, respectively. 

For comparison, we implemented the OCR er- 
ror correction method, which does not use char- 
acter similarity information, presented in (Nagata,  
1996). Instead of using character confusion matrix,  
he approximated it by the correct character distri- 
bution over the rank of the candidates 3. We refer 
to his method as the candidate rank method,  and 
our method as the character similarity method. 

Figure 1 shows the recognition accuracies after er- 
ror correction for various baseline OCR accuracies. 
The horizontal axis represents the accuracies of the 
baseline OCR, while the vertical axis represents the 
accuracies after error correction. The farther the 
point lies above the diagonal line, the more improve- 
ments are brought by the OCR error corrector. 

3In (Nagata, 1996), it was assumed that the rank order 
distribution of the correct characters is a geometric distribu- 
tion whose parameter is the accuracy of the first candidate. 
Let cl be the i-th character in the input, xij be the j-th can- 
didate for ci in the output, and p be the probability that the 
first candidate is correct. The confusion probability P(xij Ici) 
is approximated a~, 

P(x~jlci) "~ P(xij is correct) ~ p(1 - p ) j - 1  
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Figure 1: Comparison of the improvement  in char- 
acter recognition accuracy 

The character similarity method is significantly 
bet ter  than the candidate rank method for all base- 
line recognition accuracies examined. For example, 
when the baseline accuracy is 90%, the character 
similarity method achieved 97.4%, while the accu- 
racy of the candidate rank method was 93.9% 4 

5.3 T e s t 2 :  P r i n t e d  C h a r a c t e r  O C R  

The second experiment was designed to test the 
OCR error corrector on unrestricted text and un- 
known OCR. In the first experiment,  al though the 
test sentences were open data,  their statistical char- 
acteristics are expected to be similar to the training 
da ta  because both of them were taken from the same 
corpus. Moreover, since the OCR simulator and the 
OCR error corrector used the same character confu- 
sion matrix,  the input character matrices were closed 
data  with respect to OCR. 

We selected 30 documents,  each of which con- 
tained about  1000 characters. These documents  had 
nothing to do with the EDR corpus. Ten of them 
were newspapers and the other 20 documents  were 
a miscellaneous collection of novels, essays, patents,  
laws, scientific papers, etc.. Table 2 shows the break- 
down of document  type and image resolution. News- 
papers were scanned at 300dpi and 400dpi, two of 

4(Nagata, 1996) reported that ,  when the baseline accuracy 
is 90%, his method achieved 96.3%. The difference between 
96.3% and 93.9% comes from the difference in the corpora. 
tie tested the ATR corpus whose word perplexity is about  30, 
while we tested the EDR corpus whose perplexity is about  95. 
tlere, perplexities are computed using word bigram model. 

Table 2: The document  type and the image resolu- 
tion of the test da ta  for the printed character OCR 

newspapers 
miscellaneous 

them, scanned at 300dpi, were discarded because of 
low quality. Other  miscellaneous documents were 
mainly scanned at 200dpi and 300dpi. Ten that  used 
smaller fonts were also scanned at 400dpi. 

The printed character OCR used was a commer- 
cial product (RICOH Yomitori-Monogatari). It  out- 
puts at most 10 candidates for each character as well 
as a score ranging from 0 to 100 that  represents the 
certainty of the first candidate. In fact, we know 
nothing about  the algorithm and the training da ta  
of the OCR. At least, the training data  should be 
different from ours since one is created for printed 
characters while the other was designed for hand- 
written characters. 

The 68 test document  images contained 69102 in- 
put characters. After character recognition, there 
were 69305 output  characters where 67639 (97.9%) 
characters were correct. There were 1422 (2.1%) re- 
placement errors, 244 (0.4%) insertion errors and 41 
(0.06%) deletion errors. 

£, 

4 

Error Cor rec t ion  Accuracy 
1 - - ,  , , , ' , , , , , 

0 .99 o J  

0,98 o o 

0.97 o o ~o of O 

0.96 o o o 

0.95 

0.94 

0.93 

0.92 

0.91 

0 . 9  ' ' ' i i i L i i 
o .9 0.91 0 .92  0.93 0 .94  0 9 5  0.96 0.97 0.98 0.99 

Character Recognition Accuracy (Before NLP)  

Figure 2: Error correction accuracy 

By using the OCR error corrector, 575 characters 
were corrected, where 294 were right and 281 were 
wrong. The net improvelnent was only 13 charac- 
ters. Figure 2 shows the recognition accuracies of 
each document image before and after error correc- 
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Table 3: OCR score and the number of right and 
wrong corrections by the error corrector 

OCR score <=  100 
right correction 294 

wrong correction 281 
net improvements 13 

<=  80 <=  60 
199 169 
48 22 

151 147 

tion: 24 documents were improved, 30 documents 
got worse, and 14 documents were unchanged. 

Figure 2 indicates that the OCR error corrector 
improves the accuracy when the baseline recognition 
accuracy is less than 98%, while it worsens when the 
accuracy is more than 98%. This is mainly because 
of wrong corrections, where unknown words in the 
original text are replaced by more frequent words in 
the dictionary. Most unknown words are numbers, 
acronyms, and transliterated foreign words. 

Wrong correction can be avoided if the certainty of 
the character recognition (OCR score) is available. 
Table 3 shows the number of right and wrong cor- 
rections when correction is allowed only if the the 
OCR score is less than a certain threshold. The 
score of the printed character OCR ranges from 0 
to 100, where 100 means it is pretty sure about the 
output. If we reject the corrections suggested by the 
error corrector when the OCR score is more than 
80, the number of wrong corrections is reduced from 
281 to 48, while that of right correction is reduced 
from 294 to 199. Thus, the number of net improve- 
ments increases from 13 to 151, which means a 10.6% 
(151/1422) reduction in replacement errors. 

6 D i s c u s s i o n  

Most previous works on Japanese OCR error cor- 
rection considered only printed character OCRs 
and their target domain was limited. (Takao and 
Nishino, 1989) used part of speech bigram model 
and heuristic templates for unknown words. They 
achieved about 95% accuracy when the baseline ac- 
curacy was 91% for magazines and introductory 
textbooks of science and technology. (Ito and 
Maruyama, 1992) used part of speech bigram model 
and beam search in order to get multiple candidates 
in their interactive OCR corrector. They achieved 
94.61% accuracy when the baseline accuracy was 
87.46% for patents in electric engineering. We used 
word bigram model, a statistical word model for un- 
known words, and a statistical OCR model. We 
achieved 97.4% accuracy, when the baseline accu- 
racy was 90% and the domain was not limited. 

It is very difficult to compare our results with the 

previous results because the experiment conditions 
are completely different. However, considering the 
fact that we did not restrict the target domain, our 
method arguably outperformed the previously pub- 
lished results, when the baseline accuracy is more 
then 90%. There is only one published work inves- 
tigating the baseline accuracy much lower than 90% 
(Nagata, 1996). As we proved in the experiment, we 
outperformed his results significantly. 

7 C o n c l u s i o n  

We have presented a Japanese OCR error corrector. 
It arguably outperforms previously published tech- 
niques. To improve the error correction accuracy, 
a more sophisticated language model for unknown 
words, including numbers, acronyms, and transliter- 
ated foreign words, must be investigated. 

R e f e r e n c e s  
Richard C. Angell, George W. Freund, and Peter  Willett. 

1983. Automatic  spelling correction using a tr igram sim- 
ilarity measure. Information Processing ~ Management, 
19(4):255-261. 

Kenneth W. Church and William A. Gale. 1991. Probabil i ty 
scoring for spelling correction. Statistics and Computing, 
1:93-103. 

EDR. 1991. Edr electronic dictionary version 1 technical 
guide. Technical Report TR2-003, Japan Electronic Dic- 
t ionary Research Insti tute.  

Andrew R. Golding and Yves Schabes. 1996. Combin- 
ing t r igram-based and feature-based method for context- 
sensitive spelling correction. In A CL-96, pages 71-78. 

I. J. Good. 1953. The population frequencies of species 
and the estimation of population parameters. Biometrika, 
40:237-264. 

Norihiro Hagita, Seiichiro Naito, and Isao Masuda. 1983. 
Handprinted chinese characters recognition by periph- 
eral direction contrihutivity feature. IEICE Transactions 
on Information and Systems, J66-D(10):1185-1192. (In 
Japanese).  

Thomas H. Hildebrandt and Wentai Liu. 1993. Optical recog- 
nition of handwri t ten chinese characters: Advances since 
1980. Pattern recognition, 26(2):205-225. 

Nobuyasu Ito and Hiroshi Marusama.  1992. A method of de- 
tecting and correcting errors m the results of japanese ocr. 
Transaction of Information Processing Society of Japan, 
33(5):664-670. (In Japanese). 

Karen Kukich. 1992. Techniques for automatically correcting 
words in text. A CM Computing Surveys, 24(4):377-439. 

Yoseph Linde. Andrds Buzo, and Robert  M. Gray. 1980. An 
algorithm for vector quantizer design. IEEE ~ransaetions 
on Communications, COM-28(1):84-95. 

Eric Mays, Fred J. Damerau, and Robert L. Mercer. 1991. 
Context  based spelling correction. Information Processing 

Management, 27(5):517-522. 
Masaaki Nagata. 1996. Context-based spelling correction for 

japanese ocr. In COLING-96, pages 806-811. 
Eric K. Ringger and James F. Allen. 1996. A fertility channel 

model for post-correction of continuous speech recognition. 
In ICSLP-96, pages 897-900. 

Tetsuyasu Takao and Fumihito Nishino. 1989. Implementa- 
tion and evaluation of post-processing for japanese docu- 
ment readers. Transaction of Information Processing So- 
ciety of Japan, 30(11):1394-1401. (In Japanese). 

Xiang Tong and David A. Evans. 1996. A statistical approach 
to automatic  ocr error correction in context. In WVLC-96, 
pages 88-10. 

Robert A. Wagner and Michael J. Fischer. 1974. The 
string-to-string correction problem. Journal of the ACM, 
21(1):168-173. 

Inn H. Wit ten  and Timothy C. Bell. 1991. The zero-frequency 
problem: Est imating the probabilities of novel events in 
adaptive text compression. IEEE Transaction on Infor- 
mation Theory, 37(4):1085-1094. 

928 


