
Dynamic compilation of weighted context-free grammars

M e h r y a r M o h r i and F e r n a n d o C. N . P e r e i r a
A T & T Labs - Research

180 Park Avenue
Florhaln Park, NJ 07932, USA

{mohr±, p e r e ± r a } ¢ r e s e a r c h , a r t . com

A b s t r a c t

Weighted context-free grammars are a conve-
nient formalism for representing grammatical
constructions and their likelihoods in a variety
of language-processing applications. In partic-
ular, speech understanding applications require
appropriate grammars both to constrain speech
recognition and to help extract the meaning
of utterances. In many of those applications,
the actual languages described are regular, but
context-free representations are much more con-
cise and easier to create. We describe an effi-
cient algorithm for compiling into weighted fi-
nite au tomata an interesting class of weighted
context-flee grammars that represent regular
languages. The resulting au tomata can then be
combined with other speech recognition compo-
nents. Our method allows the recognizer to dy-
namically activate or deactivate grammar rules
and substitute a new regular language for some
terminal symbols, depending on previously rec-
ognized inputs, all without recompilation. We
also report experimental results showing the
practicality of the approach.

1. M o t i v a t i o n

Context-free grammars (CFGs) are widely used
in language processing systems. In many appli-
cations, in particular in speech recognition, in
addition to recognizing grammaticM sequences
it is necessary to provide some measure of the
probability of those sequences. It is then natu-
ral to use weighted CFGs, in which each rule is
given a weight from an appropriate weight alge-
bra (Salomaa and Soittola, 1978). Weights can
encode probabilities, for instance by setting a
rule's weight to the negative logarithm of the
probability of the rule. Rule probabilities can
be estimated in a variety of ways, which we will
not discuss further in this paper.

Since speech recognizers cannot be fully cer-
tMn about the correct transcription of a spoken
utterance, they instead generate a range of al-
ternative hypotheses with associated probabil-
ities. An essential function of the grammar is
then to rank those hypotheses according to the
probability that they would be actually uttered.
The grammar is thus used together with other
information sources - pronunciation dictionary,
phonemic context-dependency model, acoustic
model (Bahl et al., 1983; Rabiner and Juang,
1993) - to generate an overall set of transcrip-
tion hypotheses with corresponding probabili-
ties.

General CFGs are computationally too de-
manding for reM-time speech recognition sys-
tems, since the amount of work required to ex-
pand a recognition hypothesis in the way just
described would in general be unbounded for
an unrestricted grammar. Therefore, CFGs
used in spoken-dialogue applications often rep-
resent regular languages (Church, 1983; Brown
and Buntschuh, 1994), either by construction or
as a result of a finite-state approximation of/~
more general CFG (Pereira and Wright, 1997).t
Assuming that the grammar can be efficiently
converted into a finite automaton, appropriate
techniques can then be used to combine it with
other finite-state recognition models for use in
real-time recognition (Mohri et al., 1998b).

There is no general algorithm that would map
an arbitrary CFG generating a regular language
into a corresponding finite-state automaton (U1-
lian; 1967). However, we will describe a use-
ful class of grammars that can be so trans-
formed, and a transformation algorithm that
avoids some of the potential for combinatorial

1Grammars representing regular languages have also
been used successfully in other areas of computational
linguistics (Karlsson et al., 1.995).

891

explosion in the process.
Spoken dialogue systems require grammars

or language models to change as the dialogue
proceeds, because previous interactions set the
context for interpreting new utterances. For in-
stance, a previous request for a date might ac-
tivate the date grammar and lexicon and inac-
tivate the location grammar and lexicon in an
automated reservations task. Without such dy-
namic grammars, efficiency and accuracy would
be compromised because many irrelevant words
and constructions would be available when eval-
uating recognition hypotheses. We consider two
dynamic grammar mechanisms: activation and
deactivation of grammar rules, and the substi-
tution of a new regular language for a terminal
symbol when recognizing the next utterance.

We describe a new algorithm for compil-
ing weighted CFGs, based on representing the
grammar as a weighted transducer. This
representation provides opportunities for op-
timization, including optimizations involving
weights, which are not possible for general
CFGs. The algorithm also supports dynamic
grammar changes without recompilation. Fur-
thermore, the algorithm can be executed on de-
mand: states and transitions of the automa-
ton are expanded only as needed for the recog-
nition of the actual input utterances. More-
over, our lazy compilation algorithm is opti-
mal in the sense that the construction requires
work linear in the size of the input grammar,
which is the best one can expect given that
any algorithm needs to inspect the whole in-
put grammar. It is however possible to speed-
up grammar compilation further by applying
pre-compilation optimizations to the grammar,
as we will see later. The class of grammars
to which our algorithm applies includes right-
linear grammars, left-linear grammars and cer-
tain combinations thereof.

The algorithm has been fully implemented
and evaluated experimentally, demonstrating
its effectiveness.

2. A l g o r i t h m

We will s tart by giving a precise definition of
dynamic grammars. We will then explain each
stage of grammar compilation. Grammar com-
pilation takes as input a weighted CFG repre-
sented as a weighted transducer (Salomaa and

Soittola, 1978), which may have been opti-
mized prior to compilation (preoptimized). The
weighted transducer is analyzed by the com-
pilation algorithm, and the analysis, if suc-
cessful, outputs a collection of weighted au-
tomata that are combined at runtime according
to the current dynamic grammar configuration
and the strings being recognized. Since not all
CFGs can be compiled into weighted automata,
tlle compilation algorithm may reject an input
grammar. The class of allowed grammars will
be defined later.

2.1. D y n a m i c g r a m m a r s

The following notation will be used in the rest
of the paper. A weighted CFG G =- (V,P)
over the alphabet E, with real-number weights
consists of a finite alphabet V of variables or
nonterminals disjoint from E, and a finite set
P C V × R × (VU E)* of productions or deriva-
tion rules (Autebert et al., 1997). Given strings
u, v E (V U E)*, and real numbers c and c r, we

write (u, c) -~ (v, c') when there is a derivation
from u with weight c to v with weight d. We
denote by L6(X) the weighted language gener-
ated by a nonterminal X:

LG(X) = {(w, c) e r* × a : (X, 0) (w, c)}

We can now define the two grammar-changing
operations that we use.

D y n a m i c a c t i v a t i o n o r d e a c t i v a t i o n o f
ru les 2 We augment the grammar with a set
of active nonterminaIs, which are those avail-
able as start symbols for derivations. More pre-
cisely, let A C V be the set of active nonter-
minals. The language generated by G is then
Lc = [JxEA LG(X). Note that inactive nonter-
minals, and the rules involving them, are avail-
able for use in derivations; they are just not
available as start symbols. Dynamic rule acti-
vation or deactivation is just the dynamic re-
definition of the set A in successive uses of the
grammar.

D y n a m i c s u b s t i t u t i o n Let a be a weighted
rational transduction of E* to A* × R, E C A,
that is a regular weighted substitution (Berstel,
1979). a is a monoid morphism verifying:

2This is the terminology used in this area, though a
more appropr ia te expression would be dynamic activa-
t ion or deac t iva t ion of nonterminal symbols.

892

Vx e r , c n c g (a - × R)

where Rcg(A* x R) denotes the set of
weighted regular languages over the alphabet
A. Thus a simply substi tutes for each symbol
a E E a weighted regular expression a(a). A
dynamic substitution consists of the application
of the substitution a to E, during the process
of recognition of a word sequence. Thus, after
substitution, the language generated by the new
grammar G ~ is: 3

La, = a(La)

Our algorithm allows for both of those dy-
namic grammar changes without recompiling
the grammar.

2.2. P r e p r o c e s s i n g

Our compilation algorithm operates on a
weighted transducer T(G) encoding a factored
representation of the weighted CFG G, which
is generated fi'om G by a separate preproces-
sor. This preprocessor is not strictly needed,
since we could use a version of the main algo-
rithm that works directly on G. However, pre-
processing can improve dramatically the time
and space needed for the main compilation step,
since the preprocessor uses determinization and
minimization algorithms for weighted transduc-
ers (Mohri, 1997) to increase the sharing - - fac-
t o r i n g - among grammar rules that s tar t or end
the same way.

The preprocessing step builds a weighted
transducer in which each path corresponds to a
grammar rule. Rule Xo~ ~ Y1 . . .Yn has a cor-
responding path that maps X to the sequence
Y1 . . .Y~ with weight a. For example, the small
CFG in Figure 1 is preprocessed into the com-
pacted transducer shown in Figure 2.

2.3. C o m p i l a t i o n

The compilation of weighted left-linear or right-
linear grammars into weighted au tomata is
straightforward (Aho and Ullman, 1973). In
the right-linear case, for instance, the states of
the automaton are the grammar nonterminals
together with a new final state F. There is a

3~ can be extended as usual to map E* x II~ to
Reg(A" × R).

Z .1 --+ X Y

X .2 --+ aY

Y . 3 --+ bX

Y . 4 - - + c

(1)

Figure 1: Grammar Gx.

Figure 2: Weighted transducer T(G1).

transition labeled with a C E and weight a C R
from X E V to Y C V iff the grammar con-
tains the rule Xo~ ~ aY. There is a transition
from X to F labeled with a and weight a iff
X a -+ a is a rule of tile gramlnar. The initial
states are the states corresponding to the active
nonterminals. For example, Figure 3 shows the
weighted automaton for grammar G2 consisting
of the last three rules of G1 with start symbol
X.

However, the standard methods for left- and
right-linear grammars cannot be used for gram-
mars such as G1 that generate regular sets but
have rules that are neither left- nor right-linear.
But we can use the methods for left- and right-
linear grammars as subroutines if the grammar
can be decomposed into left-linear and right-
linear components that do not call each other
recursively (Pereira and Wright, 1997). More
precisely, define a dependency graph DG for
G's nonterminals and examine the set of its
strongly-connected components (SCCs). 4 The
nodes of DG are G's nonterminals, and there
is a directed edge from X to Y if Y appears
in the right-hand side of a rule with left-hand
side X, that is, if the definition of X depends
on Y. Each SCC S of Da has a corresponding
subgrammar of G consisting of those rules with

4Recall that the strongly connected components of a
directed graph are the equivalence classes of graph nodes
under the relation R defmed by: q R q~ if q' can be
reached from q aud q h'om q~.

893

a/0.2

Figure 3: Compilation of G2.

Figure 4: Dependency graph Dal for grammar
G1.

left-hand nonterminals in S, with nonterminals
not in S treated as terminal symbols. If each of
these subgrammars is either left-linear or right-
linear, we shall see that compilation into a single
finite automaton is possible.

The dependency graph Da can be obtained
easily from the transducer r(G). For exam-
ple, Figure 4 shows the dependency graph for
our example grammar G1, with SCCs {Z} and
{X, Y}. It is clear that G1 satisfies our condi-
tion, and Figure 5 shows the result of compiling
G1 with A = {Z}.

The SCCs of DG can be obtained in time lin-
ear in the size of G (Aho et al., 1974). Be-
fore starting the compilation, we check that
each subgrammar is left-linear or right-linear
(as noted above, nonterminals not in the SCC
of a subgrammar are treated as terminals). For
example, if {X1, X2} is an SCC, then the sub-
grammar

X1 ~ aYlbY2X1
X1 ~ bY2aY1X2
X2 --4 bbYlabX1

(2)

Figure 5: Compilation of G1 with start symbol
Z.

Figure 6: Weighted automaton I(({X, Y)) cor-
responding to the strongly connected compo-
nent {X,Y} of G1.

with X1,X2, Y1,Y2 C V and a,b C E is right-
linear, since expressions such as aYlbY2 can be
treated as elements of the terminal alphabet of
the subgrammar.

When the compilation condition holds, for
each SCC S we can build a weighted automa-
ton K(S) representing the language of S's sub-
grammar using the standard methods. Since
some nonterminals of G are treated as termi-
nal symbols within a subgrammar, the transi-
tions of an automaton K(S) may be labeled
with nonterminals not in S. s The nontermi-
nals not in S can then be replaced by their cor-
responding automata. The replacement opera-
tion is lazy, that is, the states and transitions of
the replacing automata are only expanded when
needed for a given input string. Another inter-
esting characteristic of our algorithm is that the
weighted automata K(S) can be made smaller
by determinization and minimization, leading
to improvements in runtime performance.

The automaton M(X) that represents the
language generated by nonterminal symbol X
can be defined using K(S), where S is the
strongly connected component containing X,
X E S. For instance, when the subgrammar
of S is right-linear, M(X) is the automaton
that has the same states, transitions, and final
states as K(S) and has the state correspond-
ing to X as initial state. For example, Figure
6 shows K({X, Y}) for 61. M(X) is then ob-
tained from K({X, Y}) by taking X as initial
state. The left-linear case can be treated in a
similar way. Thus, M(X) can always be de-
fined in constant time and space by editing the
automaton K(S). We use a lazy implementa-
tion of this editing operation for the definition

5More precisely, they can only be part of other
strongly connected components that come before S in
a reverse topological sort of the components. This guar-
antees the convergence of the replacement of the nonter-
minals by the corresponding automata .

894

x/0

Figure 7: Automaton Mc with activated non-
terminals: A = {X, Y, Z).

of the automata M(X): the states and transi-
tions of M(X) are determined using K(S) only
when necessary for the given input string. This
allows us to save both space and time by avoid-
ing a copy of K(S) for each X E S.

Once the automaton representing the lan-
guage generated by each nonterminal is cre-
ated, we can define the language generated by G
by building an automaton Mc with one initial
state and one final state, and transitions labeled
with active nonterminals from the initial to the
final state. Figure 7 illustrates this in the case
where A = {X, Y, Z}.

Given this construction, the dynamic activa-
tion or deactivation of nonterminals can be done
by modifying the automaton M~. This opera-
tion does not require any recompilation, since it
does not affect the automaton M(X) built for
each nonterminal X.

All the steps in building the automata M(X)
- - construction of DG, finding the SCCs, and
computing for K(S) for each SCC S - - require
linear time and space with respect to the size
of G. In fact, since we first convert G into
a compact weighted transducer r(G), the to-
tal work required is linear in the size of r(G). 6
This leads to significant gains as shown by our
experiments.

In summary, the compilation algorithm has
the following steps:

1. Build the dependency graph Da of the
grammar G.

2. Compute the SCCs of Do. 7

3. For each SCC S, construct the automaton
K(S). For each X e S, build M(X) from

6Applying the algorithm to a compacted weighted
transducer r(G) involves various subtleties that we omit
for simplicity.

VWe order the SCCs in reverse topological order, but
this is not necessary for the correctness of the algorithm.

4. Create a simple automaton Mc accepting
exactly the set of active nonterminals A.

5. The automaton is then expanded on-the-fly
for each input string using lazy replacement
and editing.

The dynamic substitution of a terminal sym-
bol a by a weighted automaton 9 aa is done by
replacin9 the symbol a by the automaton a~, us-
ing the replacement operation discussed earlier.
]'his replacement is also done on demand, with
only the necessary part of aa being expanded for
a given input string. In practice, the automaton
a~ can be large, a list of city or person names for
example. Thus a lazy implementation is crucial
for dynamic substitutions.

3. O p t i m i z a t i o n s , E x p e r i m e n t s a n d
R e s u l t s

We have a full implementation of the compila-
tion algorithm presented in the previous section,
including the lazy representations that are cru-
cial in reducing the space requirements of speech
recognition applications. Our implementation
of the compilation algorithm is part of a gen-
eral set of grammar tools, the GRM Library
(Mohri, 1998b), currently used in speech pro-
cessing projects at AT&T Labs. The GRM Li-
brary also includes an efficient compilation tool
for weighted context-dependent rewrite rules
(Mohri and Sproat, 1996) that is used in text-
to-speech projects at Lucent Bell Laboratories.
Since the GRM library is compatible with the
FSM general-purpose finite-state machine li~
brary (Mohri et al., 1998a), we were able to use
the tools provided in FSM library to optimize
the input weighted transducers T(G) and the
weighted automata in the compilation output.

We did several experiments that show the ef-
ficiency of our compilation method. A key fea-
ture of our grammar compilation method is the
representation of the grammar by a weighted
transducer that can then be preoptimized using
weighted transducer determinization and mini-
mization (Mohri, 1997; Mohri, 1998a). To show

SFor any X, this is a constant time operation. For
instance, if t((S) is right-linear, we just need to pick out
the state associated to X in I((X).

9In fact, our implementation allows more generally
dynamic substitutions by weighted transducers.

895

oo
c~

uo
d ¸

¢d
ci

o

/
/
/

. . . . no optimization /
- (ll~n~l 0) /

optimization /

i /
I

/
/ /

/
/

/
/ /

/ / ,

/ ~ •

. ~ : ~ "

50 100 150 200 250
VOCABULARY

!

o~

i '
11

11
i I

. no optimization / /

• (size / 25) / /
optimization /

/ /
/ /

/ /
/ /

/ /
,=

/ /
/ /

/ /
/

VOCABULARY

Figure 8: Advantage of transducer representation combined with preoptimization: time and space.

the benefits of this representation, we compared
the compilation time and the size of the re-
sulting lazy automata with and without preop-
timization. The advantage of preoptimization
would be even greater if the compilation output
were fully expanded rather than on-demand.

We did experiments with full bigram models
with various vocabulary sizes, and with two un-
weighted grammars derived by feature instanti-
ation from hand-built feature-based grammars
(Pereira and Wright, 1997). Figure 8 shows
the compilation times of full bigram models
with and without preoptimization, demonstrat-
ing the importance of the optimization allowed
by using a transducer representation of the
grammar. For a 250-word vocabulary model,
the compilation time is about 50 times faster
with the preoptimized representation, l° Figure
8 also shows the sizes of the resulting lazy au-
tomata in the two cases. While in the preop-
timized case time and s_~ace grow linearly with
vocabulary size (O(v/[GI)), they grow quadrat-
ically in the unoptimized case (O(IGI)).

The bigram examples also show the advan-
tages of lazy replacement and editing over the
full expansion used in previous work (Pereira
and Wright, 1997). Indeed, the size of the
fully-expanded automaton for the preoptimized

X°For convenience, the compilation time for the unop-
timized case in Figure 8 was divided by 10, and the size
of the result by 25.

Table 1: Feature-based grammars.

I IGI]optim. time expanded I expanded
(s) states transitions

~431 [no .04 9675 I 11,470
431 yes .02 1535 2002

12657 I no 9:76 ' 274614 I 321615
12657 yes 2.02 112795 144083

case grows quadratically with the vocabulary
size (O(lat)), while it grows with the cube of
the vocabulary size in the unoptimized case
(O(IGI3/2)). For example, compilation is about
700 times faster in the optimized case for a fully
expanded automaton even for a 40-word vo-
cabulary model, and the result about 39 times
smaller.

Our experiments with a small and a medium-
sized CFG obtained from feature-based gram-
mars confirm these observations (Table 1).

If dynamic grammars and lazy expansion are
not needed, we can expand the result fully and
then apply weighted determinization and min-
imization algorithms. Additional experiments
show that this can yield dramatic reductions in
automata size.

4. C o n c l u s i o n

A new weighted CFG compilation algorithm has
been presented. It can be used to compile effi-

896

ciently an interesting class of grammars repre-
senting weighted regular languages and allows
for dynamic modifications that are crucial in
many speech recognition applications.

While we focused here on CFGs with real
number weights, which are especially relevant in
speech recognition, weighted CFGs can be de-
fined more generally over an arbitrary semiring
(Salomaa and Soittola, 1978). Our compilation
algorithm applies to general semirings without
change. Both the grammar compilation algo-
rithms (GRM library) and our automata opti-
mization tools (FSM library) work in the most
general case.

A c k n o w l e d g e m e n t s

We thank Bruce Buntschuh and Ted Roycraft
for their help with defining the dynamic gram-
mar features and for their comments on this
work.

R e f e r e n c e s

Alfred V. Aho and Jeffrey D. Ullman. 1973.
The Theory of Parsing, Translation and
Compiling. Prentice-Hall.

Alfi'ed V. Aho, John E. Hopcroft, and Jeffrey D.
Ullman. 1974. The design and analysis of
computer algorithms. Addison Wesley: Read-
ing, MA.

Jean-Michel Autebert, Jean Berstel, and Luc
Boasson. 1997. Context-free languages and
pushdown automata. In Grzegorz Rozenberg
and Arto Salomaa, editors, Handbook of For-
mal Languages, volume 1, pages 111-172.
Springer.

Lalit R. Bahl, Fred Jelinek, and Robert Mercer.
1983. A maximum likelihood approach to
continuous speech recognition. IEEE Trans-
actions on Pattern Analysis and Machine In-
telligence (PAMI), 5(2):179-190.

Jean Berstel. 1979. Transductions and Context-
Free Languages. Teubner Studienbucher:
Stuttgart.

Michael K. Brown and Bruce M. Buntschuh.
1994. A context-free grammar compiler for
speech understanding systems. In Proceed-
ings of the International Conference on Spo-
ken Language Processing (ICSLP '9~), pages
21-24, Yokohama, Japan.

Kenneth W. Church. 1983. A finite-state parser
for use in speech recognition. In 21 st Meet-

ing of the Association for Computational Lin-
guistics (ACL '83), Proceedings of the Con-
ference. ACL.

Fred Karlsson, Atro Voutilainen, Juha Heikkila,
and Atro Anttila. 1995. Constraint Gram-
mar, A language-Independent System for
Parsing Unrestricted Text. Mouton de
Gruyter.

Mehryar Mohri and Richard Sproat. 1996. An
efficient compiler for weighted rewrite rules.
In 34th Meeting of the Association for Com-
putational Linguistics (ACL 96), Proceedings
of the Conference, Santa Cruz, California.
ACL.

Mehryar Mohri, Fernando C. N. Pereira, and
Michael Riley. 1998a. A rational design for a
weighted finite-state transducer library. Lec-
ture Notes in Computer Science, to appear.

Mehryar Mohri, Michael Riley, Don Hindle,
Andrej Ljolje, and Fernando C. N. Pereira.
1998b. Full expansion of context-dependent
networks in large vocabulary speech recogni=
tion. In PTvceedings of the International Con-
ference on Acoustics, Speech, and Signal Pro-
cessing (ICASSP '98), Seattle, Washington.

Mehryar Mohri. 1997. Finite-state transducers
in language and speech processing. Compu-
tational Linguistics, 23:2.

Mehryar Mohri. 1998a. Minimization algo-
rithms for sequential transducers. Theoretical
Computer Science, to appear.

Mehryar Mohri. 1998b. Weighted Grammar
Tools: the GRM Library. In preparation.

Fernando C. N. Pereira and Rebecca N. Wright.
1997. Finite-state approximation of phrase-
structure grammars. In Emmanuel Roche
and Yves Schabes, editors, Finite-State Lan-
guage Processing, pages 149-173. MIT Press,
Cambridge, Massachusetts.

Lawrence Rabiner and Biing-Hwang Juang.
1993. Fundamentals of Speech Recognition.
Prentice-Hall, Englewood Cliffs, NJ.

Arto Salomaa and Matti Soittola. 1978.
Automata-Theoretic Aspects of Formal Power
Series. Springer-Verlag: New York.

Joseph S. Ullian. 1967. Partial algorithm prob-
lems for context free languages. Information
and Control,] 1:90-101.

897

