
A structure-sharing parser for lexicalized grammars

Roger E v a n s
In fo rma t ion Technology Research Ins t i tu te

Universi ty of Br ighton
Brighton, BN2 4G J, UK

Roger. Evans @it ri. bright on. ac. uk

David Weir
Cognit ive and C o m p u t i n g Sciences

Universi ty of Sussex
Brighton, BN1 9QH, UK

David. Weir@cogs.susx.ae. uk

A b s t r a c t

In wide-coverage lexicalized grammars many of
the elementary structures have substructures in
common. This means that in conventional pars-
ing algorithms some of the computat ion associ-
ated with different structures is duplicated. In
this paper we describe a precompilation tech-
nique for such grammars which allows some of
this computat ion to be shared. In our approach
the elementary structures of the grammar are
transformed into finite state automata which
can be merged and minimised using standard al-
gorithms, and then parsed using an automaton-
based parser. We present algorithms for con-
structing automata from elementary structures,
merging and minimising them, and string recog-
nition and parse recovery with the resulting
grammar.

1 I n t r o d u c t i o n

It is well-known that fully lexicalised grammar
formalisms such as LTAG (Joshi and Schabes,
1991) are difficult to parse with efficiently. Each
word in the parser's input string introduces an
elementary tree into the parse table for each
of its possible readings, and there is often a
substantial overlap in structure between these
trees. A conventional parsing algorithm (Vijay-
Shanker and Joshi, 1985) views the trees as in-
dependent, and so is likely to duplicate tile pro-
cessing of this common structure. Parsing could
be made more efficient (empirically if not for-
mally), if the shared structure could be identi-
fied and processed only once.

Recent work by Evans and Weir (1997) and
Chen and Vijay-Shanker (1997) addresses this
problem from two different perspectives. Evans
and Weir (1997) outline a technique for com-
piling LTAG grammars into automata which are

then merged to introduce some sharing of struc-
ture. Chen and Vijay-Shanker (1997) use un-
derspecified tree descriptions to represent sets
of trees during parsing. Tile present paper takes
the former approach, but extends our previous
work by:

• showing how merged automata can be min-
irnised, so that they share as much struc-
ture as possible;

• showing that by precompiling additional
information, parsing can be broken down
into recognition followed by parse recovery;

• providing a formal treatment of the algo-
ri thms for transforming and minimising the
grammar, recognition and parse recovery.

In the following sections we outline the basic
approach, and describe informally our improve-
ments to the previous account. We then give a
formal account of the optimisation process and
a possible parsing algorithm that makes use of
it 1 .

2 A u t o m a t o n - b a s e d p a r s i n g
Conventional LTAG parsers (Vijay-Shanker and
Joshi, 1985; Schabes and Joshi, 1988; Vijay-
Shanker and Weir, 1993) maintain a pa r s e ta-
ble, a set of i t e m s corresponding to complete
and partial constituents. Parsing proceeds by
first seeding the table with items anchored on
the input string, and then repeatedly scanning
the table for p a r s e r ac t ions . Parser actions
introduce new items into the table licensed by
one or more items already in the table. The
main types of parser actions are:

1. extending a constituent by incorporating
a complete subconstituent (on the left or

1However, due to lack of space, no proofs and only
minimal informal descriptions are given in this paper.

372

right);
2. extending a consti tuent by adjoining a sur-

rounding complete auxiliary constituent;
3. predicting the span of the foot node of an

auxiliary consti tuent (to the left or right).

Parsing is complete when all possible parser ac-
tions have been executed.

In a completed parse table it is possible to
trace the sequence of items corresponding to the
recognition of an elementary tree f rom its lexi-
cal anchor upwards. Each item in the sequence
corresponds to a node in the tree (with the se-
quence as a whole corresponding to a complete
traversal of the tree), and each step corresponds
to the parser action that licensed the next item,
given the current one. From this perspective,
parser actions can be restated relative to the
items in such a sequence as:

1. subst i tute a complete subconsti tuent (on
the left or right);

2. adjoin a surrounding complete auxiliary
constituent;

3. predict the span of the tree's foot node (to
the left or right).

The recognition of the tree can thus be viewed
as the computat ion of a finite state atttomaton,
whose states correspond to a traversal of the
tree and whose input symbols are these re la-
t i v i s e d parser actions.

This perspective suggests a re-casting of the
conventional LTAG parser in terms of such au-
tomata 2. For this automaton-based parser, the
g rammar structures are not trees, but au tomata
corresponding to tree traversals whose inputs
are strings of relativised parser actions. Items
in the parse table reference automaton states
instead of tree addresses, and if the automa-
ton state is final, the item represents a complete
constituent. Parser actions arise as before, but
are executed by relativising them with respect
to the incomplete i tem participating in the ac-
tion, and passing this relativised parser action
as the next input symbol for the automaton ref-
erenced by that item. The resulting state of
that au tomaton is then used as the referent of
the newly licensed item.

On a first pass, this re-casting is exactly that: it
does nothing new or different from the original

~Evans and Weir (1997) provides a longer informal
introduction to this approach.

parser on the original grammar. However there
are a number of subtle differences3:

• the au tomata are more abstract than the
trees: the only grammatical information
they contain are the input symbols and the
root node labels, indicating the category of
the consti tuent the au tomaton reeognises;

,, au tomata for several trees can be merged
together and optimised using standard
well-studied techniques, resulting in a sin-
gle automaton that recognises many trees
at once, sharing as many of the common
parser actions as possible.

It is this final point which is the focus of this
paper. By representing trees as automata, we
can merge trees together and apply standard
optinfisation techniques to share their common
structure. The parser will remain unchanged,
but will operate more efficiently where struc-
ture has been shared. Additionally, because
the au tomata are more abstract than the trees,
capturing precisely the parser's view of the
trees, sharing may occur between trees which
are structurally quite different, but which hap-
pen to have common parser actions associated
with them.

3 M e r g i n g a n d m i n i m i s i n g a u t o m a t a
Combining the au tomata for several trees can
be achieved using a variety of s tandard algo-
ri thms (Huffman, 1954; Moore, 1956). How-
ever any transformations must respect one im-
portant feature: once the parser reaches a fi-
nal state it needs to know what tree it has just
recognised 4. When au tomata for trees with dif-
ferent root categories are merged, the resulting
automaton needs to somehow indicate to the
parser what trees are associated with its final
states.

In Evans and Weir (1997), we combined au-
tomata by introducing a new initial state with
e-transitions to each of the original initial states,

3A further difference is that the traversal encoded
in the automaton captures part of the parser's control
strategy. However for simplicity we assume here a fixed
parser control strategy (bottom-up, anchor-out) and do
not pursue this point further - Evans and Weir (1997)
offers some discussion.

4For recognition alone it only needs to know the root
category of the tree, but to recover the parse it needs to
identify the tree itself.

373

and then determinising the resulting automa-
ton to induce some sharing of structure. To
recover trees, final au tomaton states were an-
notated with the number of the tree the final
state is associated with, which the parser can
then readily access.

However, the drawback of this approach is that
differently annota ted final states can never be
merged, which restricts the scope for structure
sharing (minirnisation, for example, is not pos-
sible since all the final states are distinct). To
overcome this, we propose an alternative ap-
proach as follows:

• each au tomaton transit ion is annotated
with the set of trees which pass through
it: when transitions are merged in au-
tomaton optimisation, their annotations
are unioned;

• the parser maintains for each item in the
table the set of trees that are valid for the
item: initially this is all the valid trees for
the automaton, but gets intersected with
the annota t ion of any transition followed;
also if two paths through the automaton
meet (i.e., an item is about to be added
for a second time), their annotations get
unioned.

This approach supports arbi t rary merging of
states, including merging all the final states into
one. The parser maintains a dynamic record of
which trees are valid for states (in particular fi-
nal states) in the parse table. This means that
we can minimise our au tomata as well as deter-
minising them, and so share more structure (for
example, common processing at the end of the
recognition process as well as the beginning).

4 R e c o g n i t i o n a n d p a r s e r e c o v e r y
We noted above that a parsing algorithm
needs to be able to access the tree that
an au tomaton has recognised. The algo-
r i thm we describe below actually needs rather
more information than this, because it uses a
two-phase recognition/parse-recovery approach.
The recognition phase only needs to know, for
each complete item, what the root label of the
tree recognised is. This can be recovered from
the ~valid tree' annotat ion of the complete item
itself (there may be more than one valid tree,
corresponding to a phrase which has more than

one parse which happen to have been merged to-
gether). Parse recovery, however, involves run-
ning the recogniser 'backwards' over the com-
pleted parse table, identifying for each item, the
items and actions which licensed it.

A complication arises because the automata, es-
pecially the merged automata, do not directly
correspond to tree structure. The recogniser re-
turns the tree recognised, and a search of the
parse table reveals the parser action which com-
pleted its recognition, but that information in
itself may not be enough to locate exactly where
in the tree the action took place. However, the
additional information required is static, and
so can be pre-compiled as the au tomata them-
selves are built up. For each action transition
(the action, plus the start and finish states)
we record the tree address that the transition
reaches (we catl this the ac t i on - s i t e , or just
a-site for short). During parse recovery, when
the parse table indicates an action that licensed
an item, we look up the relevant transition to
discover where in the tree (or trees, if we are
traversing several simultaneously) the present
item must be, so that we can correctly construct
a derivation tree.

5 T e c h n i c a l d e t a i l s

5.1 C o n s t r u c t i n g t h e a u t o m a t a
We identify each node in an elementary tree 7
with an e l e m e n t a r y a d d r e s s 7/i. The root
of 7 has the address 7 /e where e is the empty
string. Given a node v/i, its n children are ad-
dressed from left to right with the addresses
7/il , . . .v/in, respectively. For convenience,
let anchor (7) and foot (7) denote the elemen-
tary address of the node that is the anchor and
footnode (if it has one) of 7, respectively; and
label (7/i) and parent (7/i) denote the label of
7/i and the address of the parent of v/i, respec-
tively.

In this paper we make the following assumup-
tions about elementary trees. Each tree has a
single anchor node and therefore a single spine 5.
In the algorithms below we assume that nodes
not on the spine have no children. In practice,
not all e lementary LTAG trees meet these con-
ditions, and we discuss how the approach de-
scribed here might be extended to the more gen-

5The path from the root to the anchor node.

374

eral case in Section 6.

Let "y/i be an elementary address of a
node on the spine of 7 with n children
~ f / i l , . . . , ' , / i l k , . . . , ~ / i n for n > 1, where k is
such that "~ilk dominates anchor ("/).

7 / i k + l i f j = l & n > k
7~i j - 1 i f2_<j_<k

nex t (3 ' / i j)= 3" / i j+ l i f k < j < n
7/i otherwise

next defines a function that traverses a spine,
start ing at the anchor. Traversal of an elemen-
tary tree during recognition yields a sequence of
p a r s e r ac t ions , which we annotate as follows:
the two actions A and ~ indicate a substitu-
tion of a tree rooted with A to the left or right,
respectively; __A, and ~_A_ indicate the presence
of the foot node, a node labelled A, to the left
or right, respectively; Finally A indicates an
adjunet ion of a tree with root and foot labelled
A. These actions consti tute the input language
of the au tomaton that traverses the tree. This
au tomaton is defined as follows (note that we
use e-transitions between nodes to ease the con-
struction - we assume these are removed using
a s tandard algorithm).

Let ~' be an elementary tree with terminal and
nonterminal alphabets VT and VN, respectively.
Each state of the following automaton specifies
the elementary address 7 / i being visited. When
the node is first visited we use the state -[-[7/i];
when ready to move on we use the state T[~/i].
Define as follows the finite state automaton
M = (Q, E, _l_ [anchor ('y)], 6, F). Q is the set
of states, E is the input alphabet, q0 is the ini-
tial state, 5 is the transit ion relation, and F is
the set of final states.

Q = { T['Ui], ±[3"/i] [3"/i is an address in 7 };

- - , , ,~+ IA e VN ;
F = { T[3"/e] }; and
6 includes the following transitions:
(±[foot ('7)], __A,, T[foot (3')]) if foot (3') is to the right
of anchor (3")
(_t_[foot (3')], ÷A, T[foot (3')]), if foot (3') is to the left
of anchor (3")
{ (T[3"/i], e, ±[next (3'/i)]) I 3"/i is an address in 3'

{ (±[3'/i],_~, -r[3'/i]) I 3"/i substitution node,
label (3"/i) = A,
7/ i to right of anchor (3') }

{ (±[^//il, ,d_, "r[~/i]) I 3"/i substitution node,
label (3"/i) = A,
? / i to left of anchor (~r') }

((±[3'/i], ~ , T[3'/i]) I ~//i adjunction node
label (3"/i) = A }

{ (_1_[3'/i], ~, T[3'/i D I ?/ i adjunction node }
{ (T[7/i], ~ , T[3"/i]) I 3"/i adjunction node,

label (3"/i) = d }
In order to recover derivation trees, we also
define the partial function a-site(q,a,q ~) for
(q, a, q') E 5 which provides information about
the site within the elementary tree of actions
occurring in the automaton.

q,) = ~ 3"/i i f a ¢ (~ ; q' = T[~//i] a-site(q, a~
undefined otherwise (

5.2 C o m b i n i n g A u t o m a t a
Suppose we have a set of trees F =
{3 '1 , . . . , 7n }. Let M . n , . . . ,M.Y~ be the e-free
au tomata that are built from members of the
set F using the above construction, where for
1 < k < n, Mk = (Qk ,Ek ,qk ,bk , Fk).
Construction of a single au tomaton for F is a
two step process. First we build an automa-
ton that accepts all elementary computations
for trees in F; then we apply the s tandard au-
tomaton determinization and minimization al-
gorithms to produce an equivalent, compact au-
tomaton. The first step is achieved simply by
introducing a new initial state with e-transitions
to each of the qk:

Let M = (Q, E, q0, 5, F) where

Q = (q0 } u Ul<k< Oi;
Z = I.Jl<k<, Ek
F = Ul<k<,~ F~
5 = Ul<~<,~(q0, e, qk) U U~<k<~ 5k.

We determinize and then minimize M using
the s tandard set-of-states constructions to pro-
duce Mr = (Q', E, Q0,5 ' ,F ') . Whenever two
states are merged in either the determinizing
or minimizing algorithms the resulting state is
named by the union of the states from which it
is formed.

For each transit ion (QI ,a , Q2) E 5' we define
the function a-sites(Q1, a, Q2) to be a set of el-
ementary nodes as follows:

a-sites(Q1, a, Q2) = [.Jq~ eQ~,q2eQ2 a-site(ql, a, q2)

Given a transit ion in Mr , this function returns
all the nodes in all merged trees which that tran-

375

sition reaches.

Finally, we define:

cross(Q1, a, Q2) = { 3' 17/i E a-sites(Q1, a, Q2) }

This gives tha t subset of those trees whose el-
ementary computa t ions take the Mr through
state Q1 to Q2. These are the transit ion an-
nota t ions referred to above, used to constrain
the parser 's set of valid trees.

5.3 The Recognition Phase
This section illustrates a simple bo t tom-up
parsing a lgor i thm that makes use of minimized
a u t o m a t a produced from sets of trees that an-
chor the same input symbol.

The input to the parser takes the form of a se-
quence of minimized au tomata , one for each of
the symbols in the input . Let the input string
be w = a l . . . a n and the associated au toma ta
be M I , . . . Mn where Mk = (Qk, Ek, qk, 5k, Fk)
for 1 < k < n. Let treesof(Mk) = Fk where Fk
is a set of the names of those elementary trees
tha t were used to construct the au toma ta Mk.

During the recognition phase of the algorithm,
a set I of i t e m s are created. An i tem has
the form (T, q, [l, r, l', r']) where T is a set of
e lementary tree names, q is a au toma ta state
and l , r , l ' , r ' E { 0 , . . . , n , - - } such tha t either
l < l ' < r ' < r o r l < r a n d l ' = r ' = - . The in-
dices l, l', # , r are posit ions between input sym-
bols (posit ion 0 is before the first input symbols
and posi t ion n is after the final input symbol)
and we use Wp,p, to denote that substr ing of the
input w between posit ions p and p'. I can be
viewed as a four dimensional array, each entry
of which contains a set of pairs comprising of a
set of nonterminals and an au toma ta state.

Roughly speaking, an i tem (T, q, [I, r, l', r]) is in-
eluded in I when for every 7 E T, anchored
by some ak (where I < k _< r and if l' # -
then k < l' or r ' _< k); q is a state in Qk, such
tha t some elementary subcomputa t ion reaching
q from the initial state, qk, of Mk is an ini-
tial subst r ing of the e lementary computa t ion for
7 tha t reaches the e lementary address 7/i, the
subtree rooted at 7/i spans Wt,r, and i fT / i dom-
inates a foot node then that foot node spans
We,r,, otherwise l' = r ' = -

The input is accepted if an i tem
(T, qf,[O,n, ,]) is added to I where T
contains some initial tree rooted in the start

symbol S and ql E Fk for some k.

When adding i tems to I we use the procedure
add(T, q, [l, r, l', r']) which is defined such that
if there is already an entry (T', q, [l, r, l', r']) E
I for some T' then replace this with the entry
(T U T', q, [l, r , l ' , rq)6; otherwise add the new
entry (T, q, [/, r, l', r']) to I.

I is initialized as follows. For each k E
{ 1 , . . . , n } call add(T, q k , [k - 1 , k , - , -]) where
T = treesof(Mk) and qk is the initial state of
the au toma ta Mk.

We now present the rules with which the com-
plete set I is built. These rules correspond
closely to the familiar steps in existing bot tom-
up LTAG parser, in particular, the way that
we use the four indices is exactly the same as
in other approaches (Vijay-Shanker and Joshi,
1985). As a result a s tandard control s trategy
can be used to control the order in which these
rules are applied to existing entries of I.

1. If (T,q,[l ,r , l ' ,r ']) ,(T' ,qs,[r,r", - , -]) E l ,
qf E Fk for some k, (q,A,q~) E 5k, for
some U, label (~,l/e) = A from some ~/i E
T ~ ~z T" = T VI cross(q,A,q~) then call
add(T" , q', [1, r", l', r']).

2. If <T, q, [l, r, l', r']), iT' , q$, [l", l, - , -]> e I,
qf E Fk for some k, (q,A,q ') E 5k, for
some k', l abe l (7 ' /e) = A from some 71 E
T' gz T" = T A c r o s s (q , a , q ') then call
add(T" , q', [l", r, l', r']>.

3. I f (T,q , [1 , r , - , -]) E I , (q, A , q ,) e S k for

some k & T' = T A cross(q,_A,,q') then
for each r ~ such that r < r / < n call
add(T ' , q', [/, r ' , r, r']).

4. If (T, q, [l, r, - , -]) E I, (q,÷A__,q') E ~k

for some k & T' = T M cross(q,÷A,q~)
then for each l' such that 0 < l' < l call
add(T' , q', [/', r, l', l]).

5. If (T,q,[l ,r , l ' ,r ']) , (T' ,qf ,[l" ,r", l ,r]) G I,
qf E Fk for some k, (q ,A ,q ') E 5k' for
some k', label (~//e) = A from some ~/ E
T' & T" = T V~ e ro s s (q ,~ ,q ') then call
add(T" , q', [l", r", l', r']).

°This replacement is t reated as a new entry in the
table. If the old entry has already licenced other entries,
this may result in some duplicate processing. This could
be eliminated by a more sophisticated treatment of tree
sets.

376

The running t ime of this a lgori thm is O(rfi)
since the last rule must be embedded within six
loops each of which varies with n. Note that
a l though the thi rd and four th rules both take
O(n) steps, they need only be embedded within
the 1 and r loops.

5.4 Recover ing Parse Trees
Once the set of i tems I has been completed, the
final task of the parser is to a recover derivation
tree 7. This involves retracing the steps of the
recognit ion process in reverse. At each point,
we look for a rule tha t would have caused the
inclusion of i tem in I. Each of these rules in-
volves some transi t ion (q, a, q') ~ 5k for some k
where a is one of the parser actions, and from
this t ransi t ion we consult the set of elementary
addresses in a-sites(q, a, q') to establish how to
build the derivation tree. We eventually reach
i tems added dur ing the initialization phase and
the process ends. Given the way our parser has
been designed, some search will be needed to
find the i tems we need. As usual, the need for
such search can be reduced through the inclu-
sion of pointers in items, though this is at the
cost of increasing parsing time. There are var-
ious points in the following description where
nonde te rmin i sm exists. By exploring all possi-
ble paths, it would be s traightforward to pro-
duce an A N D / O R derivation tree that encodes
all derivat ion trees for the input string.

We use the procedure der((T, q, [l, r, l', r']), r)
which completes the part ial derivation tree r by
backing up th rough the moves of the au tomata
in which q is a state.

A derivation tree for the input is returned
by the call der(<T, qf, [O, n, - , -]) , ~-) where
(T, qf , [O, n, - , -]) E I such that T contains
some initial tree 7 rooted with the start non-
terminal S and qI is the final state of some au-
t oma ta Mk, 1 < k <_ n. r is a derivation tree
containing just one node labelled with name 7.

In general, on a call to der(<T, q, [l, r, l', r']), T)
we examine I to find a rule tha t has caused this
i tem to be included in I. There are six rules
to consider, corresponding to the five recogniser
rules, plus lexical in t roduct ion, as follows:

1. If (T ' ,q ' , [l , r" , I ' , r ']>, (T" ,q f , [r" , r , - , -] l e

TDerivation trees are labelled with tree names and
edges are labelled with tree addresses.

I, qI E Fk for some k, (q ' , A , q) E 6k, for
some k', 7 is the label of the root of %
3' E T', label (-'//e) = A from some 7' E T"
& ~//i E a-sites(q', A , q) , then let z' be the
derivation tree containing a single node
labelled 7', and let T" be the result of at-
taching der((T", q/, [r", r, - , -]) , ~-') under
the root of T with an edge labelled the tree
address i. We then complete the derivation
tree by calling der((T' , q', [l, r", l', r']}, T").

2. If (T', q', [r", r, l', r']>, <T", qf, [l, r", - , -]) e
I, qf E Fk for some k, (q ' ,A ,q) ~ @ for
some U 7 is the label of the root of y,
7 E T', label (7 ' /e) = A from some 7' E T"
& 7/i E a-sites(q', +__a, q), then let r ' be the
derivation tree containing a single node
labelled 7', and let r" be the result of at-
taching der((T", qs, [l, r", - , -]) , r ') under
the root of r with an edge labelled the tree
address i. We then complete the derivation
tree by calling der((T' , q', [r", r, l', r']>, r").

3. If r = r', <T' ,q ' , [l , l ' , - , -]) ~ I and

(q,,_A,,q) 6 c~ k for some k, 7 is the
label of the root of T, 7 E T' and
foot (7) E a-sites(q' ,_A,, q) then make the
call der((T' , q', [l, l', - , -]), r).

4. If l = l', <T ' ,q ' , [r ' , r , - , -]) E I and

(q , ,÷Aq ,) E 6k tbr some k, 3' is the
label of the root of % 7 E T' and
foot (3') E a-sites(q', ÷ A q) then make the
call der(<T', q', [r', r, - , -]>, ~-).

5. If <T',q',[l",r",l',r']), <T",qf,[l,r,l",r"]) E
I, qs E Fk for some k, (q ' , A , q) E @ for
some k', 7 is the label of the root of "r,
3' E T' , label (7' /e) = A from some 7' E T"
and "y/i E a-sites(q', A , q) , then let T' be
the derivation tree containing a single node
labelled 7% and let "r" be the result of at-
taching der(<T",qi, [1, r,l",r"]), r') under
the root of -r with an edge labelled the tree
address i. We then complete the derivation
tree by calling der(<T', q', [/", r", l', r']), ~-").

6. If I + 1 = r, r ' = l' = - q is the initial state
of M~, 3' is the label of the root ofT-, 7 E T,
then re turn the final derivation tree 7-.

6 D i s c u s s i o n
The approach described here offers empirical
rather than formal improvements in perfor-
mance. In the worst case, none of the trees

377

word
come

break

give

no. of trees automaton no. of states no. of transitions trees per state
133 merged 898 1130 1

minimised 50 130 11.86
177 merged 1240 1587 1

minimised 68 182 12.13
337 merged 2494 3177 1

minimised 83 233 20.25

Table 1: DTG compaction results (from Carroll et al. (1998)).

in the grammar share any structure so no op-
timisation is possible. However, in the typi-
cal case, there is scope for substantial structure
sharing among closely related trees. Carroll et
al. (1998) report preliminary results using this
technique on a wide-coverage DTG (a variant
of LTAG) grammar. Table 1 gives statistics for
three common verbs in the grammar: the total
number of trees, the size of the merged automa-
ton (before any optimisation has occurred) and
the size of the minimised automaton. The fi-
nal column gives the average of the number of
trees that share each state in the automaton.
These figures show substantial optimisation is
possible, both in the space requirements of the
grammar and in the sharing of processing state
between trees during parsing.

As mentioned earlier, the algorithms we have
presented assume that elementary trees have
one anchor and one spine. Some trees, how-
ever, have secondary anchors (for example, a
subcategorised preposition). One possible way
of including such cases would be to construct
automata from secondary anchors up the sec-
ondary spine to the main spine. The automata
for both the primary and secondary anchors
associated with a lexieal item could then be
merged, minimized and used for parsing as
above.

Using automata for parsing has a long his-
tory dating back to transition networks (Woods,
1970). More recent uses include Alshawi (1996)
and Eisner (1997). These approaches differ from
the present paper in their use of automata as
part of the grammar formalism itself. Here,
automata are used purely as a stepping-stone
to parser optimisation: we make no linguistic
claims about them. Indeed one view of this
work is that it frees the linguistic descriptions
from overt computational considerations. This
work has perhaps more in common with the

technology of LR parsing as a parser optimi-
sation technique, and it would be interesting to
compare our approach with a direct application
of LR ideas to LTAGs.

R e f e r e n c e s

H. Alshawi. 1996. Head automata and bilingual
tilings: Translation with minimal representations.
In ACL96, pages 167-176.
J. Carroll, N. Nicolov, O. Shaumyan, M. Smets, and
D. Weir. 1998. Grammar compaction and computa-
tion sharing in automaton-based parsing. In Pro-
ceedings of the First Workshop on Tabulation in
Parsing and Deduction, pages 16-25.
J. Chen and K. Vijay-Shanker. 1997. Towards a
reduced-commitment D-theory style TAG parser. In
IWPT97, pages 18-29.
J. Eisner. 1997. Bilexical grammars and a cubic-
time probabilistic parser. In IWPT97, pages 54-65.
R. Evans and D. Weir. 1997. Automaton-based
parsing for lexicalized grammars. In IWPT97, pages
66-76.
D. A. Huffman. 1954. The synthesis of sequential
switching circuits. J. Franklin Institute.
A. K. Joshi and Y. Schabes. 1991. Tree-adjoining
grammars and lexicalized grammars. In Maurice Ni-
vat and Andreas Podelski, editors, Definability and
Recognizability of Sets of Trees. Elsevier.
E. F. Moore, 1956. Automata Studies, chap-
ter Gedanken experiments on sequential machines,
pages 129-153. Princeton University Press, N.J.
Y. Schabes and A. K. Joshi. 1988. An Earley-type
parsing algorithm for tree adjoining grammars. In
ACL88.
K. Vijay-Shanker and A. K. Joshi. 1985. Some com-
putational properties of tree adjoining grammars. In
A CL85, pages 82-93.
K. Vijay-Shanker and D. Weir. 1993. Parsing some
constrained grammar formalisms. Computational
Linguistics, 19(4):591-636.
W. A. Woods. 1970. Transition network gram-
mars for natural language analysis. Commun. ACM,
13:591-606.

378

